Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
2.
Nat Med ; 30(2): 382-393, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38278991

ABSTRACT

Although loss of TAR DNA-binding protein 43 kDa (TDP-43) splicing repression is well documented in postmortem tissues of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), whether this abnormality occurs during early-stage disease remains unresolved. Cryptic exon inclusion reflects loss of function of TDP-43, and thus detection of proteins containing cryptic exon-encoded neoepitopes in cerebrospinal fluid (CSF) or blood could reveal the earliest stages of TDP-43 dysregulation in patients. Here we use a newly characterized monoclonal antibody specific to a TDP-43-dependent cryptic epitope (encoded by the cryptic exon found in HDGFL2) to show that loss of TDP-43 splicing repression occurs in ALS-FTD, including in presymptomatic C9orf72 mutation carriers. Cryptic hepatoma-derived growth factor-like protein 2 (HDGFL2) accumulates in CSF at significantly higher levels in familial ALS-FTD and sporadic ALS compared with controls and is elevated earlier than neurofilament light and phosphorylated neurofilament heavy chain protein levels in familial disease. Cryptic HDGFL2 can also be detected in blood of individuals with ALS-FTD, including in presymptomatic C9orf72 mutation carriers, and accumulates at levels highly correlated with those in CSF. Our findings indicate that loss of TDP-43 cryptic splicing repression occurs early in disease progression, even presymptomatically, and that detection of the HDGFL2 cryptic neoepitope serves as a potential diagnostic biomarker for ALS, which should facilitate patient recruitment and measurement of target engagement in clinical trials.


Subject(s)
Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Humans , Frontotemporal Dementia/genetics , Amyotrophic Lateral Sclerosis/genetics , C9orf72 Protein/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Biomarkers/cerebrospinal fluid
3.
bioRxiv ; 2023 Jan 24.
Article in English | MEDLINE | ID: mdl-36789434

ABSTRACT

Loss of TAR DNA-binding protein 43 kDa (TDP-43) splicing repression is well-documented in postmortem tissues of amyotrophic lateral sclerosis (ALS), yet whether this abnormality occurs during early-stage disease remains unresolved. Cryptic exon inclusion reflects functional loss of TDP-43, and thus detection of cryptic exon-encoded peptides in cerebrospinal fluid (CSF) could reveal the earliest stages of TDP-43 dysregulation in patients. Here, we use a newly characterized monoclonal antibody specific to a TDP-43-dependent cryptic epitope (encoded by the cryptic exon found in HDGFL2) to show that loss of TDP-43 splicing repression occurs in C9ORF72-associated ALS, including pre-symptomatic mutation carriers. In contrast to neurofilament light and heavy chain proteins, cryptic HDGFL2 accumulates in CSF at higher levels during early stages of disease. Our findings indicate that loss of TDP-43 splicing repression occurs early in disease progression, even pre-symptomatically, and that detection of HDGFL2's cryptic neoepitope may serve as a prognostic test for ALS which should facilitate patient recruitment and measurement of target engagement in clinical trials.

4.
Front Neurol ; 13: 935382, 2022.
Article in English | MEDLINE | ID: mdl-35959400

ABSTRACT

Background: Neurofilament light chain (NfL) is an axonal cytoskeletal protein that is released into the extracellular space following neuronal or axonal injury associated with neurological conditions such as multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), and other diseases. NfL is detectable in the cerebrospinal fluid (CSF) and blood. Numerous studies on MS have demonstrated that NfL is correlated with disease activity, predicts disease progression, and is reduced by treatment with MS disease-modifying drugs, making NfL an attractive candidate to supplement existing clinical and imaging measures in MS. However, for NfL to achieve its potential as a clinically useful biomarker for clinical decision-making or drug development, a standardized, practical, and widely accessible assay is needed. Our objective was to develop a novel NfL assay on an automated, globally available immunoassay platform and validate its performance. Methods: A prototype NfL assay was first developed and evaluated on the ADVIA Centaur® XP immunoassay system from Siemens Healthineers. The lower limit of quantitation (LLoQ), within-lab precision, assay range, cross-reactivity with neurofilament medium and heavy chains, and effect of interfering substances were determined. NfL assay values in serum and CSF were compared with radiological and clinical disease activity measures in patients with MS and ALS, respectively. This assay was further optimized to utilize serum, plasma, and CSF sample types on the Atellica® IM system and transferred to Siemens' CLIA laboratory where it was analytically validated as a laboratory-developed test (LDT). Results: In this study, an LLoQ of 1.85 pg/mL, within-lab precision <6%, and an assay range of up to 646 pg/mL were demonstrated with the serum prototype assay. Cross-reactivity of <0.7% with the neurofilament medium and heavy chains was observed. Serum and CSF NfL assay values were associated with radiological and clinical disease activity measures in patients with MS and ALS, respectively. The optimized version of the NfL assay demonstrated specimen equivalence with additional plasma tube types and was analytically validated as an LDT. Conclusion: The analytical performance of the NfL assay fulfilled all acceptance criteria; therefore, we suggest that the assay is acceptable for use in both research and clinical practice settings to determine elevated NfL levels in patients.

5.
Nat Commun ; 13(1): 2799, 2022 05 19.
Article in English | MEDLINE | ID: mdl-35589711

ABSTRACT

GGGGCC repeat expansion in C9ORF72, which can be translated in both sense and antisense directions into five dipeptide repeat (DPR) proteins, including poly(GP), poly(GR), and poly(GA), is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Here we developed sensitive assays that can detect poly(GA) and poly(GR) in the cerebrospinal fluid (CSF) of patients with C9ORF72 mutations. CSF poly(GA) and poly(GR) levels did not correlate with age at disease onset, disease duration, or rate of decline of ALS Functional Rating Scale, and the average levels of these DPR proteins were similar in symptomatic and pre-symptomatic patients with C9ORF72 mutations. However, in a patient with C9ORF72-ALS who was treated with antisense oligonucleotide (ASO) targeting the aberrant C9ORF72 transcript, CSF poly(GA) and poly(GR) levels decreased approximately 50% within 6 weeks, indicating they may serve as sensitive fluid-based biomarkers in studies directed against the production of GGGGCC repeat RNAs or DPR proteins.


Subject(s)
Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Biomarkers , C9orf72 Protein/genetics , C9orf72 Protein/metabolism , Dipeptides/metabolism , Frontotemporal Dementia/genetics , Frontotemporal Dementia/metabolism , Humans , Proteins
6.
Sci Adv ; 7(15)2021 04.
Article in English | MEDLINE | ID: mdl-33837088

ABSTRACT

A hexanucleotide repeat expansion in the C9orf72 gene is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). How this mutation leads to these neurodegenerative diseases remains unclear. Here, we show using patient stem cell-derived motor neurons that the repeat expansion impairs microtubule-based transport, a process critical for neuronal survival. Cargo transport defects are recapitulated by treating neurons from healthy individuals with proline-arginine and glycine-arginine dipeptide repeats (DPRs) produced from the repeat expansion. Both arginine-rich DPRs similarly inhibit axonal trafficking in adult Drosophila neurons in vivo. Physical interaction studies demonstrate that arginine-rich DPRs associate with motor complexes and the unstructured tubulin tails of microtubules. Single-molecule imaging reveals that microtubule-bound arginine-rich DPRs directly impede translocation of purified dynein and kinesin-1 motor complexes. Collectively, our study implicates inhibitory interactions of arginine-rich DPRs with axonal transport machinery in C9orf72-associated ALS/FTD and thereby points to potential therapeutic strategies.


Subject(s)
Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Amyotrophic Lateral Sclerosis/genetics , Animals , Arginine/genetics , Axonal Transport , C9orf72 Protein/genetics , C9orf72 Protein/metabolism , DNA Repeat Expansion , Dipeptides/pharmacology , Drosophila/genetics , Frontotemporal Dementia/genetics , Humans , Microtubules/metabolism , Motor Neurons/metabolism
7.
Neuroimage Clin ; 28: 102354, 2020.
Article in English | MEDLINE | ID: mdl-32769055

ABSTRACT

Previous cross-sectional imaging studies found differences in brain structure and in resting state networks between presymptomatic carriers of mutations in C9orf72 (C9+) and healthy controls. We carried out a prospective longitudinal study of clinical and resting state functional imaging in a cohort of 15 presymptomatic C9+ carriers to determine whether differences in resting state connectivity prior to developing symptoms reflect static developmental differences or ongoing low-grade degenerative changes. Presymptomatic C9+ carriers were scanned at baseline with follow-up scanning at 6- and 18-months and compared to a cohort of 14 healthy controls scanned longitudinally. Resting state networks associated with manifest disease were visualized by comparing 27 symptomatic C9+ carriers to 34 healthy controls. Motor, salience, thalamic, and speech production networks were visualized using a seed-based analysis. Neurofilament light chain was measured in serum obtained at the time of the scans. Neither clinical measures of motor, cognitive, and behavioral function nor neurofilament levels changed over follow-up in presymptomatic C9+ carriers. In thalamic networks, there was a reduction in connectivity in presymptomatic carriers at all timepoints with a constant difference compared to healthy controls. In contrast, precuneus/posterior cingulate regions exhibited declining functional connectivity compared to controls over the 18-month follow-up, particularly in motor networks. These were regions that also exhibited reduced functional connectivity in symptomatic C9+ carriers. Reduced connectivity over time also occurred in small regions of frontal and temporal cortex within salience and thalamic networks in presymptomatic C9+ carriers. A few areas of increased connectivity occurred, including cortex near the motor seed and within the speech production network. Overall, changes in functional connectivity over time favor the explanation of ongoing low-grade alterations in presymptomatic C9+ carriers in most networks, with the exception of thalamic networks where functional connectivity reductions were stable over time. The loss of connectivity to parietal cortex regions in several different networks may be a distinct feature of C9orf72-related degeneration. Longitudinal studies of carriers who phenoconvert will be important to determine the prognostic significance of presymptomatic functional connectivity alterations.


Subject(s)
Brain , C9orf72 Protein , Magnetic Resonance Imaging , Brain/physiology , C9orf72 Protein/genetics , Female , Heterozygote , Humans , Longitudinal Studies , Male , Middle Aged , Prospective Studies
8.
Nat Biotechnol ; 26(5): 561-9, 2008 May.
Article in English | MEDLINE | ID: mdl-18438401

ABSTRACT

The safe and effective delivery of RNA interference (RNAi) therapeutics remains an important challenge for clinical development. The diversity of current delivery materials remains limited, in part because of their slow, multi-step syntheses. Here we describe a new class of lipid-like delivery molecules, termed lipidoids, as delivery agents for RNAi therapeutics. Chemical methods were developed to allow the rapid synthesis of a large library of over 1,200 structurally diverse lipidoids. From this library, we identified lipidoids that facilitate high levels of specific silencing of endogenous gene transcripts when formulated with either double-stranded small interfering RNA (siRNA) or single-stranded antisense 2'-O-methyl (2'-OMe) oligoribonucleotides targeting microRNA (miRNA). The safety and efficacy of lipidoids were evaluated in three animal models: mice, rats and nonhuman primates. The studies reported here suggest that these materials may have broad utility for both local and systemic delivery of RNA therapeutics.


Subject(s)
Combinatorial Chemistry Techniques/methods , Drug Carriers/chemistry , Drug Design , Lipids/chemistry , RNA Interference , RNA/administration & dosage , RNA/genetics
9.
Eur J Neurosci ; 24(3): 654-60, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16930397

ABSTRACT

Gonadotropin-releasing hormone (GnRH) neurons are derived from progenitor cells in the olfactory placodes and migrate from the vomeronasal organ (VNO) across the cribriform plate into the forebrain. At embryonic day (E)12 in the mouse most of these neurons are still in the nasal compartment but by E15 most GnRH neurons have migrated into the forebrain. Glycoconjugates with carbohydrate chains containing terminal lactosamine are expressed by neurons in the main olfactory epithelium and in the VNO. One of the key enzymes required to regulate the synthesis and expression of lactosamine, beta1,3-N-acetylglucosaminyltransferase-1 (beta3GnT1), is strongly expressed by neurons in the olfactory epithelium and VNO, and on neurons migrating out of the VNO along the GnRH migratory pathway. Immunocytochemical analysis of lactosamine and GnRH in embryonic mice reveals that the percentage of lactosamine+-GnRH+ double-labeled neurons decreases from > 80% at E13, when migration is near its peak, to approximately 30% at E18.5, when most neurons have stopped migrating. In beta3GnT1-/- mice, there is a partial loss of lactosamine expression on GnRH neurons. Additionally, a greater number of GnRH neurons were retained in the nasal compartment of null mice at E15 while fewer GnRH neurons were detected later in embryonic development in the ventral forebrain. These results suggest that the loss of lactosamine on a subset of GnRH neurons impeded the rate of migration from the nose to the brain.


Subject(s)
Amino Sugars/metabolism , Gonadotropin-Releasing Hormone/metabolism , Neurons/metabolism , Olfactory Mucosa/embryology , Prosencephalon/embryology , Vomeronasal Organ/embryology , Animals , Cell Count , Cell Differentiation/genetics , Cell Movement/genetics , Down-Regulation/genetics , Female , Gene Expression Regulation, Developmental/genetics , Immunohistochemistry , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , N-Acetylglucosaminyltransferases/genetics , Olfactory Bulb/cytology , Olfactory Bulb/embryology , Olfactory Bulb/metabolism , Olfactory Mucosa/cytology , Olfactory Mucosa/metabolism , Olfactory Pathways/cytology , Olfactory Pathways/embryology , Olfactory Pathways/metabolism , Prosencephalon/cytology , Prosencephalon/metabolism , Vomeronasal Organ/cytology , Vomeronasal Organ/metabolism
10.
J Neurosci ; 25(8): 1894-903, 2005 Feb 23.
Article in English | MEDLINE | ID: mdl-15728829

ABSTRACT

During embryonic development, axons from sensory neurons in the olfactory epithelium (OE) extend into the olfactory bulb (OB) where they synapse with projection neurons and form glomerular structures. To determine whether glycans play a role in these processes, we analyzed mice deficient for the glycosyltransferase beta1,3-N-acetylglucosaminyltransferase 1 (beta3GnT1), a key enzyme in lactosamine glycan synthesis. Terminal lactosamine expression, as shown by immunoreactivity with the monoclonal antibody 1B2, is dramatically reduced in the neonatal null OE. Postnatal beta3GnT1-/- mice exhibit severely disorganized OB innervation and defective glomerular formation. Beginning in embryonic development, specific subsets of odorant receptor-expressing neurons are progressively lost from the OE of null mice, which exhibit a postnatal smell perception deficit. Axon guidance errors and increased neuronal cell death result in an absence of P2, I7, and M72 glomeruli, indicating a reduction in the repertoire of odorant receptor-specific glomeruli. By approximately 2 weeks of age, lactosamine is unexpectedly reexpressed in sensory neurons of null mice through a secondary pathway, which is accompanied by the regrowth of axons into the OB glomerular layer and the return of smell perception. Thus, both neonatal OE degeneration and the postnatal regeneration are lactosamine dependent. Lactosamine expression in beta3GnT1-/- mice is also reduced in pheromone-receptive vomeronasal neurons and dorsal root ganglion cells, suggesting that beta3GnT1 may perform a conserved function in multiple sensory systems. These results reveal an essential role for lactosamine in sensory axon pathfinding and in the formation of OB synaptic connections.


Subject(s)
Amino Sugars/physiology , Axons/physiology , N-Acetylglucosaminyltransferases/physiology , Neurons, Afferent/physiology , Olfactory Bulb/cytology , Protein Processing, Post-Translational , Amino Sugars/biosynthesis , Animals , Carbohydrate Sequence , Cell Death , Enzyme Induction , Feeding Behavior , Ganglia, Spinal/cytology , Glycosylation , Mice , Mice, Knockout , Molecular Sequence Data , N-Acetylglucosaminyltransferases/deficiency , N-Acetylglucosaminyltransferases/genetics , Nerve Degeneration , Nerve Regeneration , Neurons, Afferent/ultrastructure , Olfactory Bulb/enzymology , Olfactory Bulb/pathology , Polysaccharides/biosynthesis , Polysaccharides/physiology , RNA, Messenger/biosynthesis , Receptors, Odorant/physiology , Synapses/physiology , Vomeronasal Organ/cytology
11.
Eur J Neurosci ; 19(7): 1800-10, 2004 Apr.
Article in English | MEDLINE | ID: mdl-15078553

ABSTRACT

Semaphorins are known to play an important role in axon guidance of vertebrate olfactory sensory neurons to their targets in specific glomeruli of the olfactory bulb (OB). However, it is not clear how semaphorin-mediated guidance contributes to a systematic hierarchy of cues that govern the organization of this system. Because of the putative role that odorant receptor molecules such as P2 could play in establishing appropriate glomerular destinations for growing olfactory axons, we have also determined the spatial organization of P2 glomeruli in semaphorin 3A (Sema3A) mutant mice. First, in the postnatal OB of control and Sema3A(-/-) mice, we analysed the trajectories of olfactory axons that express the Sema3A receptor, neuropilin-1 (npn-1) and the positions of npn-1(+) glomeruli. Sema3A at the ventral OB midline guides npn-1(+) axons to targets in the lateral and medial OB. Absence of Sema3A permits many npn-1 axons to terminate aberrantly in the rostral and ventral OB. Second, in Sema3A(-/-) mice, many P2 axons are abnormally distributed throughout the ventral OB nerve layer and converge in atypical locations compared with littermate controls where P2 axons converge on stereotypically located lateral and medial glomeruli. In addition to their radically altered spatial distribution, P2 glomeruli in Sema3A(-/-) mice are significantly smaller and more numerous than in heterozygote littermates. These data show that Sema3A is an important repulsive olfactory guidance cue that establishes restricted npn-1(+) subcompartments in the olfactory bulb. Furthermore, Sema3A plays a key role in the convergence of axons expressing the odorant receptor P2 onto their appropriate targets.


Subject(s)
Axons/metabolism , Carrier Proteins/metabolism , Gene Expression Regulation, Developmental , Nerve Tissue Proteins/metabolism , Olfactory Bulb/cytology , Olfactory Receptor Neurons/metabolism , Receptors, Odorant/metabolism , Semaphorin-3A , Animals , Animals, Newborn , Carrier Proteins/genetics , Cell Size/genetics , Embryo, Mammalian , Immunohistochemistry/methods , In Situ Hybridization/methods , Mice , Mice, Inbred C57BL , Mice, Transgenic , Nerve Tissue Proteins/genetics , Neuropilin-1/metabolism , Olfactory Bulb/metabolism , Staining and Labeling/methods
12.
Eur J Neurosci ; 19(1): 11-20, 2004 Jan.
Article in English | MEDLINE | ID: mdl-14750959

ABSTRACT

Luteinizing hormone-releasing hormone (LHRH) neurons migrate from the vomeronasal organ (VNO) to the forebrain in all mammals studied. In mice, the direction of LHRH neuron migration is dependent upon axons that originate in the VNO, but bypass the olfactory bulb and project caudally into the basal forebrain. Thus, factors that guide this unique subset of vomeronasal axons that comprise the caudal vomeronasal nerve (cVNN) are candidates for regulating the migration of LHRH neurons. We previously showed that deleted in colorectal cancer (DCC) is expressed by neurons that migrate out of the VNO during development [Schwarting et al. (2001) J. Neurosci., 21, 911-919]. We examined LHRH neuron migration in Dcc-/- mice and found that trajectories of the cVNN and positions of LHRH neurons are abnormal. Here we extend these studies to show that cVNN trajectories and LHRH cell migration in netrin 1 (Ntn1) mutant mice are also abnormal. Substantially reduced numbers of LHRH neurons are found in the basal forebrain and many LHRH neurons migrate into the cerebral cortex of Ntn1 knockout mice. In contrast, migration of LHRH cells is normal in Unc5h3rcm mutant mice. These results are consistent with the idea that the chemoattraction of DCC+ vomeronasal axons by a gradient of netrin 1 protein in the ventral forebrain guides the cVNN, which, in turn, determines the direction of LHRH neuron migration in the forebrain. Loss of function through a genetic deletion in either Dcc or Ntn1 results in the migration of many LHRH neurons to inappropriate destinations.


Subject(s)
Chemotactic Factors/metabolism , Chemotaxis/physiology , Gonadotropin-Releasing Hormone/metabolism , Nerve Growth Factors/metabolism , Neural Pathways/embryology , Neurons/metabolism , Animals , Cell Adhesion Molecules/biosynthesis , Cell Adhesion Molecules/deficiency , Cell Adhesion Molecules/genetics , Chemotactic Factors/deficiency , Chemotactic Factors/genetics , Chemotaxis/genetics , Choristoma/genetics , Choristoma/metabolism , DCC Receptor , Fetus , Gene Expression Regulation, Developmental , Immunohistochemistry , Mice , Mice, Inbred C57BL , Mice, Knockout , Mutation/genetics , Nerve Growth Factors/deficiency , Nerve Growth Factors/genetics , Netrin Receptors , Netrin-1 , Neural Pathways/cytology , Neural Pathways/metabolism , Neurons/cytology , RNA, Messenger/metabolism , Receptors, Cell Surface/biosynthesis , Receptors, Cell Surface/deficiency , Receptors, Cell Surface/genetics , Telencephalon/cytology , Telencephalon/embryology , Telencephalon/metabolism , Tumor Suppressor Proteins/biosynthesis , Tumor Suppressor Proteins/deficiency , Tumor Suppressor Proteins/genetics , Vomeronasal Organ/cytology , Vomeronasal Organ/embryology , Vomeronasal Organ/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...