Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
2.
PLoS Genet ; 12(11): e1006410, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27832076

ABSTRACT

A proportion of homologous recombination (HR) events in mammalian cells resolve by "long tract" gene conversion, reflecting copying of several kilobases from the donor sister chromatid prior to termination. Cells lacking the major hereditary breast/ovarian cancer predisposition genes, BRCA1 or BRCA2, or certain other HR-defective cells, reveal a bias in favor of long tract gene conversion, suggesting that this aberrant HR outcome might be connected with genomic instability. If termination of gene conversion occurs in regions lacking homology with the second end of the break, the normal mechanism of HR termination by annealing (i.e., homologous pairing) is not available and termination must occur by as yet poorly defined non-canonical mechanisms. Here we use a previously described HR reporter to analyze mechanisms of non-canonical termination of long tract gene conversion in mammalian cells. We find that non-canonical HR termination can occur in the absence of the classical non-homologous end joining gene XRCC4. We observe obligatory use of microhomology (MH)-mediated end joining and/or nucleotide addition during rejoining with the second end of the break. Notably, non-canonical HR termination is associated with complex breakpoints. We identify roles for homology-mediated template switching and, potentially, MH-mediated template switching/microhomology-mediated break-induced replication, in the formation of complex breakpoints at sites of non-canonical HR termination. This work identifies non-canonical HR termination as a potential contributor to genomic instability and to the formation of complex breakpoints in cancer.


Subject(s)
Breast Neoplasms/genetics , DNA-Binding Proteins/genetics , Homologous Recombination/genetics , Ovarian Neoplasms/genetics , Animals , BRCA1 Protein/genetics , BRCA2 Protein/genetics , Breast Neoplasms/pathology , Chromatids/genetics , DNA End-Joining Repair/genetics , Female , Gene Conversion/genetics , Genomic Instability/genetics , Humans , Mice , Mouse Embryonic Stem Cells , Ovarian Neoplasms/pathology
3.
Nat Commun ; 6: 8325, 2015 Oct 08.
Article in English | MEDLINE | ID: mdl-26446488

ABSTRACT

Leukemia/lymphoma-related factor (LRF) is a POZ/BTB and Krüppel (POK) transcriptional repressor characterized by context-dependent key roles in cell fate decision and tumorigenesis. Here we demonstrate an unexpected transcription-independent function for LRF in the classical non-homologous end joining (cNHEJ) pathway of double-strand break (DSB) repair. We find that LRF loss in cell lines and mouse tissues results in defective cNHEJ, genomic instability and hypersensitivity to ionizing radiation. Mechanistically, we show that LRF binds and stabilizes DNA-PKcs on DSBs, in turn favouring DNA-PK activity. Importantly, LRF loss restores ionizing radiation sensitivity to p53 null cells, making LRF an attractive biomarker to direct p53-null LRF-deficient tumours towards therapeutic treatments based on genotoxic agents or PARP inhibitors following a synthetic lethal strategy.


Subject(s)
DNA Repair/physiology , DNA-Binding Proteins/metabolism , Transcription Factors/metabolism , Animals , Cells, Cultured , DNA-Binding Proteins/genetics , Fibroblasts/cytology , Fibroblasts/metabolism , Gene Expression Regulation/physiology , Genome , Mice , Protein Array Analysis , Transcription Factors/genetics
4.
Nucleic Acids Res ; 42(9): 5616-32, 2014 May.
Article in English | MEDLINE | ID: mdl-24598253

ABSTRACT

The repair of toxic double-strand breaks (DSB) is critical for the maintenance of genome integrity. The major mechanisms that cope with DSB are: homologous recombination (HR) and classical or alternative nonhomologous end joining (C-NHEJ versus A-EJ). Because these pathways compete for the repair of DSB, the choice of the appropriate repair pathway is pivotal. Among the mechanisms that influence this choice, deoxyribonucleic acid (DNA) end resection plays a critical role by driving cells to HR, while accurate C-NHEJ is suppressed. Furthermore, end resection promotes error-prone A-EJ. Increasing evidence define Poly(ADP-ribose) polymerase 3 (PARP3, also known as ARTD3) as an important player in cellular response to DSB. In this work, we reveal a specific feature of PARP3 that together with Ku80 limits DNA end resection and thereby helps in making the choice between HR and NHEJ pathways. PARP3 interacts with and PARylates Ku70/Ku80. The depletion of PARP3 impairs the recruitment of YFP-Ku80 to laser-induced DNA damage sites and induces an imbalance between BRCA1 and 53BP1. Both events result in compromised accurate C-NHEJ and a concomitant increase in DNA end resection. Nevertheless, HR is significantly reduced upon PARP3 silencing while the enhanced end resection causes mutagenic deletions during A-EJ. As a result, the absence of PARP3 confers hypersensitivity to anti-tumoral drugs generating DSB.


Subject(s)
Cell Cycle Proteins/physiology , DNA End-Joining Repair , Poly(ADP-ribose) Polymerases/physiology , Recombinational DNA Repair , Antigens, Nuclear/metabolism , Antineoplastic Agents/pharmacology , BRCA1 Protein/metabolism , Cell Line, Tumor , DNA Breaks, Double-Stranded , DNA Helicases/metabolism , DNA-Binding Proteins/metabolism , Drug Screening Assays, Antitumor , Etoposide/pharmacology , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Ku Autoantigen , Nuclear Proteins/metabolism , Protein Processing, Post-Translational , Protein Transport , Replication Protein A/metabolism , Tumor Suppressor p53-Binding Protein 1
5.
J Proteomics ; 78: 113-22, 2013 Jan 14.
Article in English | MEDLINE | ID: mdl-23146917

ABSTRACT

Channels, pumps, receptors, cyclases and other membrane proteins modulate the motility and sensory function of cilia, but these proteins are generally under-represented in proteomic analyses of cilia. Studies of these ciliary membrane proteins would benefit from a protocol to greatly enrich for integral and lipidated membrane proteins. We used LC-MS/MS to compare the proteomes of unfractionated cilia (C), the ciliary membrane (CM) and the ciliary membrane in the detergent phase (DP) of Triton X-114 phase separation. 55% of the proteins in DP were membrane proteins (i.e. predicted transmembrane or membrane-associated through lipid modifications) and 31% were transmembrane. This is to be compared to 23% membrane proteins with 9% transmembrane in CM and 9% membrane proteins with 3% transmembrane in C. 78% of the transmembrane proteins in the DP were found uniquely in DP, and not in C or CM. There were ion channels, cyclases, plasma membrane pumps, Ca(2+) dependent protein kinases, and Rab GTPases involved in the signal transduction in DP that were not identified in the other C and CM preparations. Of 267 proteins unique to the DP, 147 were novel, i.e. not found in other proteomic and genomic studies of cilia.


Subject(s)
Membrane Proteins/metabolism , Paramecium tetraurelia/metabolism , Proteome/metabolism , Proteomics , Protozoan Proteins/metabolism , Cilia/metabolism
6.
PLoS One ; 7(11): e49211, 2012.
Article in English | MEDLINE | ID: mdl-23209566

ABSTRACT

Recruitment of 53BP1 to chromatin flanking double strand breaks (DSBs) requires γH2AX/MDC1/RNF8-dependent ubiquitination of chromatin and interaction of 53BP1 with histone H4 methylated on lysine 20 (H4K20me). Several histone methyltransferases have been implicated in 53BP1 recruitment, but their quantitative contributions to the 53BP1 response are unclear. We have developed a multi-photon laser (MPL) system to target DSBs to subfemtoliter nuclear volumes and used this to mathematically model DSB response kinetics of MDC1 and of 53BP1. In contrast to MDC1, which revealed first order kinetics, the 53BP1 MPL-DSB response is best fitted by a Gompertz growth function. The 53BP1 MPL response shows the expected dependency on MDC1 and RNF8. We determined the impact of altered H4K20 methylation on 53BP1 MPL response kinetics in mouse embryonic fibroblasts (MEFs) lacking key H4K20 histone methyltransferases. This revealed no major requirement for the known H4K20 dimethylases Suv4-20h1 and Suv4-20h2 in 53BP1 recruitment or DSB repair function, but a key role for the H4K20 monomethylase, PR-SET7. The histone methyltransferase MMSET/WHSC1 has recently been implicated in 53BP1 DSB recruitment. We found that WHSC1 homozygous mutant MEFs reveal an alteration in balance of H4K20 methylation patterns; however, 53BP1 DSB responses in these cells appear normal.


Subject(s)
Chromatin/genetics , Chromatin/metabolism , Chromosomal Proteins, Non-Histone/metabolism , DNA Breaks, Double-Stranded , DNA-Binding Proteins/metabolism , Histones/metabolism , Lysine/metabolism , Animals , Cell Line , DNA Breaks, Double-Stranded/radiation effects , DNA Repair , Histone-Lysine N-Methyltransferase/deficiency , Histone-Lysine N-Methyltransferase/genetics , Histones/chemistry , Humans , Kinetics , Lasers/adverse effects , Methylation , Mice , Protein Transport , Tumor Suppressor p53-Binding Protein 1 , Ubiquitin-Protein Ligases/metabolism
7.
Cancer Discov ; 2(11): 1048-63, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22915751

ABSTRACT

UNLABELLED: There is a need to improve treatments for metastatic breast cancer. Here, we show the activation of the phosphoinositide 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) pathways in a MMTV-CreBrca1(f/f)Trp53(+/-) mouse model of breast cancer. When treated with the pan-class IA PI3K inhibitor NVP-BKM120, tumor doubling was delayed from 5 to 26 days. NVP-BKM120 reduced AKT phosphorylation, tumor cell proliferation, and angiogenesis. Resistant tumors maintained suppression of AKT phosphorylation but exhibited activation of the MAPK pathway at the "pushing margin." Surprisingly, PI3K inhibition increased indicators of DNA damage, poly-ADP-ribosylation (PAR), and γ-H2AX, but decreased Rad51 focus formation, suggesting a critical role of PI3K activity for Rad51 recruitment. The PARP inhibitor olaparib alone attenuated tumor growth modestly; however, the combination of NVP-BKM120 and olaparib delayed tumor doubling to more than 70 days in the mouse model and more than 50 days in xenotransplants from human BRCA1-related tumors, suggesting that combined PI3K and PARP inhibition might be an effective treatment of BRCA1-related tumors. SIGNIFICANCE: Current treatment options for triple-negative breast cancer are limited to chemotherapeutic regimens that have considerable toxicity and are not curative. We report here that the combination of a PI3K inhibitor with a PARP inhibitor provides in vivo synergy for treatment of an endogenous mouse model for BRCA1-related breast cancers, making this a candidate combination to be tested in human clinical trials.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Breast Neoplasms/drug therapy , Breast Neoplasms/enzymology , Genes, BRCA1 , Phosphoinositide-3 Kinase Inhibitors , Poly(ADP-ribose) Polymerase Inhibitors , Animals , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Line, Tumor , Drug Synergism , Enzyme Inhibitors/administration & dosage , Female , Humans , Mice , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Poly(ADP-ribose) Polymerases/genetics , Poly(ADP-ribose) Polymerases/metabolism
8.
Cilia ; 1(1): 16, 2012 Sep 03.
Article in English | MEDLINE | ID: mdl-23351336

ABSTRACT

BACKGROUND: Changes in genes coding for ciliary proteins contribute to complex human syndromes called ciliopathies, such as Bardet-Biedl Syndrome (BBS). We used the model organism Paramecium to focus on ciliary ion channels that affect the beat form and sensory function of motile cilia and evaluate the effects of perturbing BBS proteins on these channels. METHODS: We used immunoprecipitations and mass spectrometry to explore whether Paramecium proteins interact as in mammalian cells. We used RNA interference (RNAi) and swimming behavior assays to examine the effects of BBS depletion on ciliary ion channels that control ciliary beating. Combining RNA interference and epitope tagging, we examined the effects of BBS depletion of BBS 7, 8 and 9 on the location of three channels and a chemoreceptor in cilia. RESULTS: We found 10 orthologs of 8 BBS genes in P. tetraurelia. BBS1, 2, 4, 5, 7, 8 and 9 co-immunoprecipitate. While RNAi reduction of BBS 7 and 9 gene products caused loss and shortening of cilia, RNAi for all BBS genes except BBS2 affected patterns of ciliary motility that are governed by ciliary ion channels. Swimming behavior assays pointed to loss of ciliary K+ channel function. Combining RNAi and epitope tagged ciliary proteins we demonstrated that a calcium activated K+ channel was no longer located in the cilia upon depletion of BBS 7, 8 or 9, consistent with the cells' swimming behavior. The TRPP channel PKD2 was also lost from the cilia. In contrast, the ciliary voltage gated calcium channel was unaffected by BBS depletion, consistent with behavioral assays. The ciliary location of a chemoreceptor for folate was similarly unperturbed by the depletion of BBS 7, 8 or 9. CONCLUSIONS: The co-immunoprecipitation of BBS 1,2,4,5,7,8, and 9 suggests a complex of BBS proteins. RNAi for BBS 7, 8 or 9 gene products causes the selective loss of K+ and PKD2 channels from the cilia while the critical voltage gated calcium channel and a peripheral receptor protein remain undisturbed. These channels govern ciliary beating and sensory function. Importantly, in P. tetraurelia we can combine studies of ciliopathy protein function with behavior and location and control of ciliary channels.

SELECTION OF CITATIONS
SEARCH DETAIL
...