Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38293094

ABSTRACT

Understanding the impact of genomic variants on transcription factor binding and gene regulation remains a key area of research, with implications for unraveling the complex mechanisms underlying various functional effects. Our study delves into the role of DNA's biophysical properties, including thermodynamic stability, shape, and flexibility in transcription factor (TF) binding. We developed a multi-modal deep learning model integrating these properties with DNA sequence data. Trained on ChIP-Seq (chromatin immunoprecipitation sequencing) data in vivo involving 690 TF-DNA binding events in human genome, our model significantly improves prediction performance in over 660 binding events, with up to 9.6% increase in AUROC metric compared to the baseline model when using no DNA biophysical properties explicitly. Further, we expanded our analysis to in vitro high-throughput Systematic Evolution of Ligands by Exponential enrichment (SELEX) and Protein Binding Microarray (PBM) datasets, comparing our model with established frameworks. The inclusion of DNA breathing features consistently improved TF binding predictions across different cell lines in these datasets. Notably, for complex ChIP-Seq datasets, integrating DNABERT2 with a cross-attention mechanism provided greater predictive capabilities and insights into the mechanisms of disease-related non-coding variants found in genome-wide association studies. This work highlights the importance of DNA biophysical characteristics in TF binding and the effectiveness of multi-modal deep learning models in gene regulation studies.

2.
Bioinformatics ; 39(11)2023 11 01.
Article in English | MEDLINE | ID: mdl-37991847

ABSTRACT

MOTIVATION: The two strands of the DNA double helix locally and spontaneously separate and recombine in living cells due to the inherent thermal DNA motion. This dynamics results in transient openings in the double helix and is referred to as "DNA breathing" or "DNA bubbles." The propensity to form local transient openings is important in a wide range of biological processes, such as transcription, replication, and transcription factors binding. However, the modeling and computer simulation of these phenomena, have remained a challenge due to the complex interplay of numerous factors, such as, temperature, salt content, DNA sequence, hydrogen bonding, base stacking, and others. RESULTS: We present pyDNA-EPBD, a parallel software implementation of the Extended Peyrard-Bishop-Dauxois (EPBD) nonlinear DNA model that allows us to describe some features of DNA dynamics in detail. The pyDNA-EPBD generates genomic scale profiles of average base-pair openings, base flipping probability, DNA bubble probability, and calculations of the characteristically dynamic length indicating the number of base pairs statistically significantly affected by a single point mutation using the Markov Chain Monte Carlo algorithm. AVAILABILITY AND IMPLEMENTATION: pyDNA-EPBD is supported across most operating systems and is freely available at https://github.com/lanl/pyDNA_EPBD. Extensive documentation can be found at https://lanl.github.io/pyDNA_EPBD/.


Subject(s)
DNA , Models, Chemical , Computer Simulation , DNA/chemistry , Software , Base Pairing , Nucleic Acid Conformation
3.
bioRxiv ; 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37745370

ABSTRACT

Motivation: The two strands of the DNA double helix locally and spontaneously separate and recombine in living cells due to the inherent thermal DNA motion.This dynamics results in transient openings in the double helix and is referred to as "DNA breathing" or "DNA bubbles." The propensity to form local transient openings is important in a wide range of biological processes, such as transcription, replication, and transcription factors binding. However, the modeling and computer simulation of these phenomena, have remained a challenge due to the complex interplay of numerous factors, such as, temperature, salt content, DNA sequence, hydrogen bonding, base stacking, and others. Results: We present pyDNA-EPBD, a parallel software implementation of the Extended Peyrard-Bishop- Dauxois (EPBD) nonlinear DNA model that allows us to describe some features of DNA dynamics in detail. The pyDNA-EPBD generates genomic scale profiles of average base-pair openings, base flipping probability, DNA bubble probability, and calculations of the characteristically dynamic length indicating the number of base pairs statistically significantly affected by a single point mutation using the Markov Chain Monte Carlo (MCMC) algorithm.

4.
Sci Rep ; 7(1): 9731, 2017 08 29.
Article in English | MEDLINE | ID: mdl-28851939

ABSTRACT

The innate flexibility of a DNA sequence is quantified by the Jacobson-Stockmayer's J-factor, which measures the propensity for DNA loop formation. Recent studies of ultra-short DNA sequences revealed a discrepancy of up to six orders of magnitude between experimentally measured and theoretically predicted J-factors. These large differences suggest that, in addition to the elastic moduli of the double helix, other factors contribute to loop formation. Here, we develop a new theoretical model that explores how coherent delocalized phonon-like modes in DNA provide single-stranded "flexible hinges" to assist in loop formation. We combine the Czapla-Swigon-Olson structural model of DNA with our extended Peyrard-Bishop-Dauxois model and, without changing any of the parameters of the two models, apply this new computational framework to 86 experimentally characterized DNA sequences. Our results demonstrate that the new computational framework can predict J-factors within an order of magnitude of experimental measurements for most ultra-short DNA sequences, while continuing to accurately describe the J-factors of longer sequences. Further, we demonstrate that our computational framework can be used to describe the cyclization of DNA sequences that contain a base pair mismatch. Overall, our results support the conclusion that coherent delocalized phonon-like modes play an important role in DNA cyclization.


Subject(s)
DNA/chemistry , Models, Chemical , Nucleic Acid Conformation , Phonons , Algorithms , Base Pairing , Base Sequence , Cyclization
5.
BMC Bioinformatics ; 17: 68, 2016 Feb 04.
Article in English | MEDLINE | ID: mdl-26846597

ABSTRACT

BACKGROUND: The intrinsic bendability of DNA plays an important role with relevance for myriad of essential cellular mechanisms. The flexibility of a DNA fragment can be experimentally and computationally examined by its propensity for cyclization, quantified by the Jacobson-Stockmayer J factor. In this study, we use a well-established coarse-grained three-dimensional model of DNA and seven distinct sets of experimentally and computationally derived conformational parameters of the double helix to evaluate the role of structural parameters in calculating DNA cyclization. RESULTS: We calculate the cyclization rates of 86 DNA sequences with previously measured J factors and lengths between 57 and 325 bp as well as of 20,000 randomly generated DNA sequences with lengths between 350 and 4000 bp. Our comparison with experimental data is complemented with analysis of simulated data. CONCLUSIONS: Our data demonstrate that all sets of parameters yield very similar results for longer DNA fragments, regardless of the nucleotide sequence, which are in agreement with experimental measurements. However, for DNA fragments shorter than 100 bp, all sets of parameters performed poorly yielding results with several orders of magnitude difference from the experimental measurements. Our data show that DNA cyclization rates calculated using conformational parameters based on nucleosome packaging data are most similar to the experimental measurements. Overall, our study provides a comprehensive large-scale assessment of the role of structural parameters in calculating DNA cyclization rates.


Subject(s)
Biophysical Phenomena , DNA/chemistry , Nucleic Acid Conformation , Cyclization , Humans , Models, Molecular , Pliability
6.
Sci Rep ; 5: 9037, 2015 Mar 12.
Article in English | MEDLINE | ID: mdl-25762409

ABSTRACT

Allostery through DNA is increasingly recognized as an important modulator of DNA functions. Here, we show that the coalescence of protein-induced DNA bubbles can mediate allosteric interactions that drive protein aggregation. We propose that such allostery may regulate DNA's flexibility and the assembly of the transcription machinery. Mitochondrial transcription factor A (TFAM), a dual-function protein involved in mitochondrial DNA (mtDNA) packaging and transcription initiation, is an ideal candidate to test such a hypothesis owing to its ability to locally unwind the double helix. Numerical simulations demonstrate that the coalescence of TFAM-induced bubbles can explain experimentally observed TFAM oligomerization. The resulting melted DNA segment, approximately 10 base pairs long, around the joints of the oligomers act as flexible hinges, which explains the efficiency of TFAM in compacting DNA. Since mitochondrial polymerase (mitoRNAP) is involved in melting the transcription bubble, TFAM may use the same allosteric interaction to both recruit mitoRNAP and initiate transcription.


Subject(s)
DNA-Binding Proteins/metabolism , DNA/metabolism , Algorithms , Allosteric Regulation , DNA/chemistry , DNA, Mitochondrial/chemistry , DNA, Mitochondrial/metabolism , DNA-Binding Proteins/chemistry , Mitochondrial Proteins/chemistry , Mitochondrial Proteins/metabolism , Models, Biological , Protein Aggregates , Protein Binding , Transcription Factors/chemistry , Transcription Factors/metabolism
7.
Article in English | MEDLINE | ID: mdl-25314545

ABSTRACT

The shear viscosity coefficient of the one-component plasma is calculated with unprecedented accuracy using equilibrium molecular dynamics simulations and the Green-Kubo relation. Numerical and statistical uncertainties and their mitigation for improving accuracy are analyzed. In the weakly coupled regime, our results agree with the Landau-Spitzer prediction. In the moderately and strongly coupled regimes, our results are found in good agreement with recent results obtained for the Yukawa one-component plasma using nonequilibrium molecular dynamics. A practical formula is provided for evaluating the viscosity coefficient across coupling regimes, from the weakly coupled regime to solidification threshold. The results are used to test theoretical predictions of the viscosity coefficients found in the literature.


Subject(s)
Plasma Gases , Molecular Dynamics Simulation , Time Factors , Viscosity
8.
Article in English | MEDLINE | ID: mdl-23679552

ABSTRACT

We study the statistical mechanics of the one-dimensional discrete nonlinear Schrödinger (DNLS) equation with saturable nonlinearity. Our study represents an extension of earlier work [Phys. Rev. Lett. 84, 3740 (2000)] regarding the statistical mechanics of the one-dimensional DNLS equation with a cubic nonlinearity. As in this earlier study, we identify the spontaneous creation of localized excitations with a discontinuity in the partition function. The fact that this phenomenon is retained in the saturable DNLS is nontrivial, since in contrast to the cubic DNLS whose nonlinear character is enhanced as the excitation amplitude increases, the saturable DNLS, in fact, becomes increasingly linear as the excitation amplitude increases. We explore the nonlinear dynamics of this phenomenon by direct numerical simulations.

9.
Sci Rep ; 3: 1184, 2013.
Article in English | MEDLINE | ID: mdl-23378916

ABSTRACT

We report that terahertz (THz) irradiation of mouse mesenchymal stem cells (mMSCs) with a single-frequency (SF) 2.52 THz laser or pulsed broadband (centered at 10 THz) source results in irradiation specific heterogenic changes in gene expression. The THz effect depends on irradiation parameters such as the duration and type of THz source, and on the degree of stem cell differentiation. Our microarray survey and RT-PCR experiments demonstrate that prolonged broadband THz irradiation drives mMSCs toward differentiation, while 2-hour irradiation (regardless of THz sources) affects genes transcriptionally active in pluripotent stem cells. The strictly controlled experimental environment indicates minimal temperature changes and the absence of any discernable response to heat shock and cellular stress genes imply a non-thermal response. Computer simulations of the core promoters of two pluripotency markers reveal association between gene upregulation and propensity for DNA breathing. We propose that THz radiation has potential for non-contact control of cellular gene expression.


Subject(s)
Gene Expression Regulation/radiation effects , Mesenchymal Stem Cells/radiation effects , Terahertz Radiation , Animals , Cell Differentiation , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Mice , Oligonucleotide Array Sequence Analysis , Reverse Transcriptase Polymerase Chain Reaction , Time Factors
10.
PLoS Comput Biol ; 9(1): e1002881, 2013.
Article in English | MEDLINE | ID: mdl-23341768

ABSTRACT

Physicochemical properties of DNA, such as shape, affect protein-DNA recognition. However, the properties of DNA that are most relevant for predicting the binding sites of particular transcription factors (TFs) or classes of TFs have yet to be fully understood. Here, using a model that accurately captures the melting behavior and breathing dynamics (spontaneous local openings of the double helix) of double-stranded DNA, we simulated the dynamics of known binding sites of the TF and nucleoid-associated protein Fis in Escherichia coli. Our study involves simulations of breathing dynamics, analysis of large published in vitro and genomic datasets, and targeted experimental tests of our predictions. Our simulation results and available in vitro binding data indicate a strong correlation between DNA breathing dynamics and Fis binding. Indeed, we can define an average DNA breathing profile that is characteristic of Fis binding sites. This profile is significantly enriched among the identified in vivo E. coli Fis binding sites. To test our understanding of how Fis binding is influenced by DNA breathing dynamics, we designed base-pair substitutions, mismatch, and methylation modifications of DNA regions that are known to interact (or not interact) with Fis. The goal in each case was to make the local DNA breathing dynamics either closer to or farther from the breathing profile characteristic of a strong Fis binding site. For the modified DNA segments, we found that Fis-DNA binding, as assessed by gel-shift assay, changed in accordance with our expectations. We conclude that Fis binding is associated with DNA breathing dynamics, which in turn may be regulated by various nucleotide modifications.


Subject(s)
DNA-Binding Proteins/metabolism , DNA/metabolism , Escherichia coli Proteins/metabolism , Binding Sites , Models, Molecular , Protein Binding
11.
Nucleic Acids Res ; 40(20): 10116-23, 2012 Nov 01.
Article in English | MEDLINE | ID: mdl-22904068

ABSTRACT

The genome-wide mapping of the major gene expression regulators, the transcription factors (TFs) and their DNA binding sites, is of great importance for describing cellular behavior and phenotypic diversity. Presently, the methods for prediction of genomic TF binding produce a large number of false positives, most likely due to insufficient description of the physiochemical mechanisms of protein-DNA binding. Growing evidence suggests that, in the cell, the double-stranded DNA (dsDNA) is subject to local transient strands separations (breathing) that contribute to genomic functions. By using site-specific chromatin immunopecipitations, gel shifts, BIOBASE data, and our model that accurately describes the melting behavior and breathing dynamics of dsDNA we report a specific DNA breathing profile found at YY1 binding sites in cells. We find that the genomic flanking sequence variations and SNPs, may exert long-range effects on DNA dynamics and predetermine YY1 binding. The ubiquitous TF YY1 has a fundamental role in essential biological processes by activating, initiating or repressing transcription depending upon the sequence context it binds. We anticipate that consensus binding sequences together with the related DNA dynamics profile may significantly improve the accuracy of genomic TF binding sites and TF binding-related functional SNPs.


Subject(s)
DNA/chemistry , YY1 Transcription Factor/metabolism , Base Sequence , Binding Sites , Consensus Sequence , HeLa Cells , Humans , Molecular Dynamics Simulation , Plasminogen/genetics , Polymorphism, Single Nucleotide , Promoter Regions, Genetic , Protein Binding
12.
Biomed Opt Express ; 2(9): 2679-89, 2011 Sep 01.
Article in English | MEDLINE | ID: mdl-21991556

ABSTRACT

In recent years, terahertz radiation sources are increasingly being exploited in military and civil applications. However, only a few studies have so far been conducted to examine the biological effects associated with terahertz radiation. In this study, we evaluated the cellular response of mesenchymal mouse stem cells exposed to THz radiation. We apply low-power radiation from both a pulsed broad-band (centered at 10 THz) source and from a CW laser (2.52 THz) source. Modeling, empirical characterization, and monitoring techniques were applied to minimize the impact of radiation-induced increases in temperature. qRT-PCR was used to evaluate changes in the transcriptional activity of selected hyperthermic genes. We found that temperature increases were minimal, and that the differential expression of the investigated heat shock proteins (HSP105, HSP90, and CPR) was unaffected, while the expression of certain other genes (Adiponectin, GLUT4, and PPARG) showed clear effects of the THz irradiation after prolonged, broad-band exposure.

13.
PLoS One ; 6(5): e19800, 2011.
Article in English | MEDLINE | ID: mdl-21625483

ABSTRACT

Trinucleotide repeats sequences (TRS) represent a common type of genomic DNA motif whose expansion is associated with a large number of human diseases. The driving molecular mechanisms of the TRS ongoing dynamic expansion across generations and within tissues and its influence on genomic DNA functions are not well understood. Here we report results for a novel and notable collective breathing behavior of genomic DNA of tandem TRS, leading to propensity for large local DNA transient openings at physiological temperature. Our Langevin molecular dynamics (LMD) and Markov Chain Monte Carlo (MCMC) simulations demonstrate that the patterns of openings of various TRSs depend specifically on their length. The collective propensity for DNA strand separation of repeated sequences serves as a precursor for outsized intermediate bubble states independently of the G/C-content. We report that repeats have the potential to interfere with the binding of transcription factors to their consensus sequence by altered DNA breathing dynamics in proximity of the binding sites. These observations might influence ongoing attempts to use LMD and MCMC simulations for TRS-related modeling of genomic DNA functionality in elucidating the common denominators of the dynamic TRS expansion mutation with potential therapeutic applications.


Subject(s)
DNA/genetics , DNA/metabolism , Neoplasms/genetics , Transcription Factors/metabolism , Trinucleotide Repeats/genetics , Binding Sites , Computer Simulation , Electrophoretic Mobility Shift Assay , HeLa Cells , Humans , Markov Chains , Promoter Regions, Genetic
14.
PLoS One ; 5(12): e15806, 2010 Dec 31.
Article in English | MEDLINE | ID: mdl-21209821

ABSTRACT

We report that extended exposure to broad-spectrum terahertz radiation results in specific changes in cellular functions that are closely related to DNA-directed gene transcription. Our gene chip survey of gene expression shows that whereas 89% of the protein coding genes in mouse stem cells do not respond to the applied terahertz radiation, certain genes are activated, while other are repressed. RT-PCR experiments with selected gene probes corresponding to transcripts in the three groups of genes detail the gene specific effect. The response was not only gene specific but also irradiation conditions dependent. Our findings suggest that the applied terahertz irradiation accelerates cell differentiation toward adipose phenotype by activating the transcription factor peroxisome proliferator-activated receptor gamma (PPARG). Finally, our molecular dynamics computer simulations indicate that the local breathing dynamics of the PPARG promoter DNA coincides with the gene specific response to the THz radiation. We propose that THz radiation is a potential tool for cellular reprogramming.


Subject(s)
Stem Cells/cytology , Stem Cells/radiation effects , Adipose Tissue/cytology , Animals , Cell Differentiation , Computer Simulation , Cytoplasm/metabolism , DNA/genetics , Gene Expression Regulation , Mesoderm/metabolism , Mice , Oligonucleotide Array Sequence Analysis , PPAR gamma/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Terahertz Radiation
15.
Nucleic Acids Res ; 38(6): 1790-5, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20019064

ABSTRACT

We assess the role of DNA breathing dynamics as a determinant of promoter strength and transcription start site (TSS) location. We compare DNA Langevin dynamic profiles of representative gene promoters, calculated with the extended non-linear PBD model of DNA with experimental data on transcription factor binding and transcriptional activity. Our results demonstrate that DNA dynamic activity at the TSS can be suppressed by mutations that do not affect basal transcription factor binding-DNA contacts. We use this effect to establish the separate contributions of transcription factor binding and DNA dynamics to transcriptional activity. Our results argue against a purely 'transcription factor-centric' view of transcription initiation, suggesting that both DNA dynamics and transcription factor binding are necessary conditions for transcription initiation.


Subject(s)
Gene Expression Regulation , Promoter Regions, Genetic , Transcription Factors/metabolism , Transcription Initiation Site , Transcription, Genetic , Computer Simulation , DNA/chemistry , HeLa Cells , Humans , Mutation
16.
J Biol Phys ; 35(1): 31-41, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19669567

ABSTRACT

In memory of Alwyn Scott, we discuss the connection between the nonlinear dynamics of double-stranded DNA, experimental findings, and specific DNA functions. We begin by discussing how thermally induced localized openings (bubbles) of the DNA double-strand are important for interpreting dynamic force spectroscopy data. Then, we demonstrate a correlation between the sequence-dependent propensity for bubble formation and transcription initiation and other regulatory effects in viral DNA. Finally, we discuss the possibility of a connection between DNA dynamics and the ability of repair proteins to recognize ultraviolet-radiation damage.

17.
Int J Mol Sci ; 10(3): 805-816, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19399221

ABSTRACT

Self-consistent field theory is used to study the self-assembly of a triblock copolymer melt. Two different external factors (temperature and solvent) are shown to affect the self-assembly. Either one or two-step self-assembly can be found as a function of temperature in the case of a neat triblock melt, or as a function of increasing solvent content (for non-selective solvents) in the case of a triblock-solvent mixture. For selective solvents, it is shown that increasing the solvent content leads to more complicated self-assembly mechanisms, including a reversed transition where order is found to increase instead of decreasing as expected, and re-entrant behavior where order is found to increase at first, and then decrease to a previous state of disorder.


Subject(s)
Polymers/chemistry , Solvents/chemistry , Models, Theoretical , Temperature , Thermodynamics
18.
PLoS Comput Biol ; 5(3): e1000313, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19282962

ABSTRACT

Establishing the general and promoter-specific mechanistic features of gene transcription initiation requires improved understanding of the sequence-dependent structural/dynamic features of promoter DNA. Experimental data suggest that a spontaneous dsDNA strand separation at the transcriptional start site is likely to be a requirement for transcription initiation in several promoters. Here, we use Langevin molecular dynamic simulations based on the Peyrard-Bishop-Dauxois nonlinear model of DNA (PBD LMD) to analyze the strand separation (bubble) dynamics of 80-bp-long promoter DNA sequences. We derive three dynamic criteria, bubble probability, bubble lifetime, and average strand separation, to characterize bubble formation at the transcriptional start sites of eight mammalian gene promoters. We observe that the most stable dsDNA openings do not necessarily coincide with the most probable openings and the highest average strand displacement, underscoring the advantages of proper molecular dynamic simulations. The dynamic profiles of the tested mammalian promoters differ significantly in overall profile and bubble probability, but the transcriptional start site is often distinguished by large (longer than 10 bp) and long-lived transient openings in the double helix. In support of these results are our experimental transcription data demonstrating that an artificial bubble-containing DNA template is transcribed bidirectionally by human RNA polymerase alone in the absence of any other transcription factors.


Subject(s)
DNA-Directed RNA Polymerases/chemistry , DNA/chemistry , DNA/ultrastructure , Models, Chemical , Models, Molecular , Promoter Regions, Genetic , Sequence Analysis, DNA/methods , Base Sequence , Computer Simulation , DNA-Directed RNA Polymerases/ultrastructure , Hot Temperature , Models, Genetic , Molecular Sequence Data
19.
Nucleic Acids Res ; 37(7): 2405-10, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19264801

ABSTRACT

No simple model exists that accurately describes the melting behavior and breathing dynamics of double-stranded DNA as a function of nucleotide sequence. This is especially true for homogenous and periodic DNA sequences, which exhibit large deviations in melting temperature from predictions made by additive thermodynamic contributions. Currently, no method exists for analysis of the DNA breathing dynamics of repeats and of highly G/C- or A/T-rich regions, even though such sequences are widespread in vertebrate genomes. Here, we extend the nonlinear Peyrard-Bishop-Dauxois (PBD) model of DNA to include a sequence-dependent stacking term, resulting in a model that can accurately describe the melting behavior of homogenous and periodic sequences. We collect melting data for several DNA oligos, and apply Monte Carlo simulations to establish force constants for the 10 dinucleotide steps (CG, CA, GC, AT, AG, AA, AC, TA, GG, TC). The experiments and numerical simulations confirm that the GG/CC dinucleotide stacking is remarkably unstable, compared with the stacking in GC/CG and CG/GC dinucleotide steps. The extended PBD model will facilitate thermodynamic and dynamic simulations of important genomic regions such as CpG islands and disease-related repeats.


Subject(s)
DNA/chemistry , Models, Chemical , Thermodynamics , Base Sequence , Computer Simulation , Monte Carlo Method , Nucleic Acid Denaturation
20.
J Phys Condens Matter ; 21(3): 034107, 2009 Jan 21.
Article in English | MEDLINE | ID: mdl-21817252

ABSTRACT

We discuss connections between the nonlinear dynamics of double-stranded DNA, experimental findings, and specific DNA functions. We begin by discussing how thermally induced localized openings (bubbles) of the DNA double strand are important for interpreting dynamic force spectroscopy data. Then we demonstrate a correlation between a sequence-dependent propensity for pre-melting bubble formation and transcription initiation and other regulatory effects in viral DNA. Finally, we discuss the possibility of a connection between DNA dynamics and the ability of repair proteins to recognize ultraviolet (UV) radiation damage sites.

SELECTION OF CITATIONS
SEARCH DETAIL