Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 143(23): 8565-8571, 2021 06 16.
Article in English | MEDLINE | ID: mdl-34096703

ABSTRACT

Carbohydrate binding proteins (CBPs) are attractive targets in medicine and biology. Multivalency, with several glycans binding to several binding pockets in the CBP, is important for high-affinity interactions. Herein, we describe a novel platform for design of multivalent carbohydrate cluster ligands by directed evolution, in which serum-stable 2'-fluoro modified RNA (F-RNA) backbones evolve to present the glycan in optimal clusters. We have validated this method by the selection of oligomannose (Man9) glycan clusters from a sequence pool of ∼1013 that bind to broadly neutralizing HIV antibody 2G12 with 13 to 36 nM affinities.


Subject(s)
Carbohydrates/chemistry , HIV Antibodies/chemistry , RNA/chemistry
2.
Org Lett ; 23(8): 3053-3057, 2021 04 16.
Article in English | MEDLINE | ID: mdl-33793242

ABSTRACT

Oligomannose glycans are of interest as HIV vaccine components, but they are subject to mannosidase degradation in vivo. Herein, we report the synthesis of oligosaccharides containing a thio linkage at the nonreducing end. A thio-linked dimannose donor participates in highly stereoselective glycosylations to afford trimannose and tetramannose fragments. Saturation transfer difference nuclear magnetic resonance (STD NMR) studies show that these glycans are recognized by HIV antibody 2G12, and we confirm that the reducing terminal S-linkage confers complete stability against x. manihotis mannosidase.


Subject(s)
Mannosidases/chemistry , Oligosaccharides/chemistry , Polysaccharides/chemistry , Glycosylation , Humans , Mannosidases/metabolism , Molecular Structure
3.
ACS Chem Biol ; 15(3): 789-798, 2020 03 20.
Article in English | MEDLINE | ID: mdl-32109354

ABSTRACT

The high mannose patch (HMP) of the HIV envelope protein (Env) is the structure most frequently targeted by broadly neutralizing antibodies; therefore, many researchers have attempted to use mimics of this region as a vaccine immunogen. In our previous efforts, vaccinating rabbits with evolved HMP mimic glycopeptides containing Man9 resulted in an overall antibody response targeting the glycan core and linker rather than the full glycan or Manα1→2Man tips of Man9 glycans. A possible reason could be processing of our immunogen by host serum mannosidases. We sought to test whether more prolonged dosing could increase the antibody response to intact glycans, possibly by increasing the availability of intact Man9 to germinal centers. Here, we describe a study investigating the impact of immunization regimen on antibody response by testing immunogen delivery through bolus, an exponential series of mini doses, or a continuously infusing mini-osmotic pump. Our results indicate that, with our glycopeptide immunogens, standard bolus immunization elicited the strongest HIV Env-binding antibody response, even though higher overall titers to the glycopeptide were elicited by the exponential and pump regimens. Antibody selectivity for intact glycan was, if anything, slightly better in the bolus-immunized animals.


Subject(s)
AIDS Vaccines/metabolism , Glycopeptides/chemistry , HIV Antibodies/metabolism , HIV Envelope Protein gp120/chemistry , Oligosaccharides/chemistry , Vaccines, Conjugate/metabolism , Animals , Antibodies, Neutralizing , Antibody Formation , Binding Sites , Glycosylation , HIV Envelope Protein gp120/metabolism , HIV Envelope Protein gp120/urine , HIV Infections/prevention & control , Humans , Immunization , Mannosidases/metabolism , Oligosaccharides/urine , Protein Binding , Protein Conformation , Rabbits , Small Molecule Libraries/chemistry , Vaccination
4.
J Org Chem ; 80(3): 1905-8, 2015 Feb 06.
Article in English | MEDLINE | ID: mdl-25545007

ABSTRACT

The carbonyl-C, carbonyl-O, and leaving-S kinetic isotope effects (KIEs) were determined for the hydrolysis of formylthiocholine. Under acidic conditions, (13)k(obs) = 1.0312, (18)k(obs) = 0.997, and (34)k(obs) = 0.995; for neutral conditions, (13)k(obs) = 1.022, (18)k(obs) = 1.010, and (34)k(obs) = 0.996; and for alkaline conditions, (13)k(obs) = 1.0263, (18)k(obs) = 0.992, and (34)k(obs) = 1.000. The observed KIEs provided helpful insights into a qualitative description of the bond orders in the transition state structure.


Subject(s)
Isotopes/chemistry , Sulfur Compounds/chemistry , Thiocholine/chemistry , Hydrolysis , Kinetics , Molecular Structure , Thiocholine/analogs & derivatives
5.
J Org Chem ; 78(23): 12029-39, 2013 Dec 06.
Article in English | MEDLINE | ID: mdl-24224609

ABSTRACT

Formylthiocholine (FTC) was synthesized and found to be a substrate for nonenzymatic and butyrylcholinesterase (BChE)-catalyzed hydrolysis. Solvent (D2O) and secondary formyl-H kinetic isotope effects (KIEs) were measured by an NMR spectroscopic method. The solvent (D2O) KIEs are (D2O)k = 0.20 in 200 mM HCl, (D2O)k = 0.81 in 50 mM HCl, and (D2O)k = 4.2 in pure water. The formyl-H KIEs are (D)k = 0.80 in 200 mM HCl, (D)k = 0.77 in 50 mM HCl, (D)k = 0.75 in pure water, (D)k = 0.88 in 50 mM NaOH, and (D)(V/K) = 0.89 in the BChE-catalyzed hydrolysis in MES buffer at pH 6.8. Positional isotope exchange experiments showed no detectable exchange of (18)O into the carbonyl oxygen of FTC or the product, formate, under any of the above conditions. Solvent nucleophile-O KIEs were determined to be (18)k = 0.9917 under neutral conditions, (18)k = 1.0290 (water nucleophile) or (18)k = 0.989 (hydroxide nucleophile) under alkaline conditions, and (18)(V/K) = 0.9925 for BChE catalysis. The acidic, neutral, and BChE-catalyzed reactions are explained in terms of a stepwise mechanism with tetrahedral intermediates. Evidence for a change to a direct displacement mechanism under alkaline conditions is presented.


Subject(s)
Butyrylcholinesterase/metabolism , Deuterium Oxide/chemistry , Esters/metabolism , Sulfhydryl Compounds/metabolism , Biocatalysis , Butyrylcholinesterase/blood , Esters/chemistry , Kinetics , Molecular Structure , Oxygen Isotopes , Sulfhydryl Compounds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...