Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 175
Filter
1.
Angew Chem Int Ed Engl ; : e202404880, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38884594

ABSTRACT

This review analyzes a development in biochemistry, enzymology and biotechnology that originally came as a surprise. As part of directed evolution of stereoselective enzymes in organic chemistry, the concept of partial or complete deconvolution of selective multi-mutational variants was established and refined during the past 15 years. Early deconvolution experiments of stereoselective variants led to the finding that mutations can interact cooperatively or antagonistically with one another, not just additively. Later, this phenomenon was shown to be general. Molecular dynamics (MD) and quantum mechanics/molecular mechanics (QM/MM) computations were performed in order to shed light on the origin of non-additivity at all stages of an evolutionary upward climb. Data of complete deconvolution can be used to construct unique multi-dimensional rugged fitness pathway landscapes, which provide more mechanistic insight than traditional fitness landscapes. Along a related line, biochemists have long tested the result of introducing two point mutations in an enzyme for mechanistic reasons, followed by a comparison of the respective double mutant in so-called double mutant cycles, which originally showed only additive effects, but more recently also uncovered cooperative and antagonistic non-additive effects.

2.
Methods Enzymol ; 693: 191-229, 2023.
Article in English | MEDLINE | ID: mdl-37977731

ABSTRACT

Directed evolution and rational design have been used widely in engineering enzymes for their application in synthetic organic chemistry and biotechnology. With stereoselectivity playing a crucial role in catalysis for the synthesis of valuable chemical and pharmaceutical compounds, rational design has not achieved such wide success in this specific area compared to directed evolution. Nevertheless, one bottleneck of directed evolution is the laborious screening efforts and the observed trade-offs in catalytic profiles. This has motivated researchers to develop more efficient protein engineering methods. As a prime approach, mutability landscaping avoids such trade-offs by providing more information of sequence-function relationships. Here, we describe an application of this efficient protein engineering method to improve the regio-/stereoselectivity and activity of P450BM3 for steroid hydroxylation, while keeping the mutagenesis libraries small so that they will require only minimal screening.


Subject(s)
Cytochrome P-450 Enzyme System , Protein Engineering , Cytochrome P-450 Enzyme System/metabolism , Hydroxylation , Protein Engineering/methods , Steroids , Catalysis
4.
Nat Commun ; 13(1): 7813, 2022 12 19.
Article in English | MEDLINE | ID: mdl-36535947

ABSTRACT

Chiral heterocyclic compounds are needed for important medicinal applications. We report an in silico strategy for the biocatalytic synthesis of chiral N- and O-heterocycles via Baldwin cyclization modes of hydroxy- and amino-substituted epoxides and oxetanes using the limonene epoxide hydrolase from Rhodococcus erythropolis. This enzyme normally catalyzes hydrolysis with formation of vicinal diols. Firstly, the required shutdown of the undesired natural water-mediated ring-opening is achieved by rational mutagenesis of the active site. In silico enzyme design is then continued with generation of the improved mutants. These variants prove to be versatile catalysts for preparing chiral N- and O-heterocycles with up to 99% conversion, and enantiomeric ratios up to 99:1. Crystal structural data and computational modeling reveal that Baldwin-type cyclizations, catalyzed by the reprogrammed enzyme, are enabled by reshaping the active-site environment that directs the distal RHN and HO-substituents to be intramolecular nucleophiles.


Subject(s)
Epoxide Hydrolases , Cyclization , Biocatalysis , Epoxide Hydrolases/metabolism , Limonene , Catalysis , Stereoisomerism
5.
J Am Chem Soc ; 143(37): 14939-14950, 2021 09 22.
Article in English | MEDLINE | ID: mdl-34491742

ABSTRACT

Decades of extensive research efforts by biochemists, organic chemists, and protein engineers have led to an understanding of the basic mechanisms of essentially all known types of enzymes, but in a formidable number of cases an essential aspect has been overlooked. The occurrence of short-lived chiral intermediates formed by symmetry-breaking of prochiral precursors in enzyme catalyzed reactions has been systematically neglected. We designate these elusive species as fleeting chiral intermediates and analyze such crucial questions as "Do such intermediates occur in homochiral form?" If so, what is the absolute configuration, and why did Nature choose that particular stereoisomeric form, even when the isolable final product may be achiral? Does the absolute configuration of a chiral product depend in any way on the absolute configuration of the fleeting chiral precursor? How does this affect the catalytic proficiency of the enzyme? If these issues continue to be unexplored, then an understanding of the mechanisms of many enzyme types remains incomplete. We have systematized the occurrence of these chiral intermediates according to their structures and enzyme types. This is followed by critical analyses of selected case studies and by final conclusions and perspectives. We hope that the fascinating concept of fleeting chiral intermediates will attract the attention of scientists, thereby opening an exciting new research field.


Subject(s)
Enzymes/chemistry , Enzymes/metabolism , Catalysis , Molecular Structure
7.
Nat Commun ; 12(1): 1621, 2021 03 12.
Article in English | MEDLINE | ID: mdl-33712579

ABSTRACT

Multidimensional fitness landscapes provide insights into the molecular basis of laboratory and natural evolution. To date, such efforts usually focus on limited protein families and a single enzyme trait, with little concern about the relationship between protein epistasis and conformational dynamics. Here, we report a multiparametric fitness landscape for a cytochrome P450 monooxygenase that was engineered for the regio- and stereoselective hydroxylation of a steroid. We develop a computational program to automatically quantify non-additive effects among all possible mutational pathways, finding pervasive cooperative signs and magnitude epistasis on multiple catalytic traits. By using quantum mechanics and molecular dynamics simulations, we show that these effects are modulated by long-range interactions in loops, helices and ß-strands that gate the substrate access channel allowing for optimal catalysis. Our work highlights the importance of conformational dynamics on epistasis in an enzyme involved in secondary metabolism and offers insights for engineering P450s.


Subject(s)
Cytochrome P-450 Enzyme System/chemistry , Cytochrome P-450 Enzyme System/genetics , Molecular Dynamics Simulation , Mutation , Catalysis , Catalytic Domain/genetics , Cytochrome P-450 Enzyme System/metabolism , Hydroxylation , Kinetics , Protein Binding , Protein Structure, Secondary , Substrate Specificity
8.
Chembiochem ; 22(5): 904-914, 2021 03 02.
Article in English | MEDLINE | ID: mdl-33094545

ABSTRACT

Machine learning (ML) has pervaded most areas of protein engineering, including stability and stereoselectivity. Using limonene epoxide hydrolase as the model enzyme and innov'SAR as the ML platform, comprising a digital signal process, we achieved high protein robustness that can resist unfolding with concomitant detrimental aggregation. Fourier transform (FT) allows us to take into account the order of the protein sequence and the nonlinear interactions between positions, and thus to grasp epistatic phenomena. The innov'SAR approach is interpolative, extrapolative and makes outside-the-box, predictions not found in other state-of-the-art ML or deep learning approaches. Equally significant is the finding that our approach to ML in the present context, flanked by advanced molecular dynamics simulations, uncovers the connection between epistatic mutational interactions and protein robustness.


Subject(s)
Epoxide Hydrolases/chemistry , Epoxide Hydrolases/metabolism , Machine Learning , Mutation , Protein Folding , Protein Multimerization , Rhodococcus/enzymology , Epoxide Hydrolases/genetics , Limonene/chemistry , Limonene/metabolism , Molecular Dynamics Simulation , Protein Engineering
9.
Methods Enzymol ; 643: 225-242, 2020.
Article in English | MEDLINE | ID: mdl-32896283

ABSTRACT

Directed evolution has emerged as the most productive enzyme engineering method, with stereoselectivity playing a crucial role when evolving mutants for application in synthetic organic chemistry and biotechnology. In order to reduce the screening effort (bottleneck of directed evolution), improved methods for the creation of small and smart mutant libraries have been developed, including the combinatorial active-site saturation test (CAST) which involves saturation mutagenesis at appropriate residues surrounding the binding pocket, and iterative saturation mutagenesis (ISM). Nevertheless, even CAST/ISM mutant libraries require a formidable screening effort. Thus far, rational design as the alternative protein engineering technique has had only limited success when aiming for stereoselectivity. Here, we highlight a recent methodology dubbed focused rational iterative site-specific mutagenesis (FRISM), in which mutant libraries are not involved. It makes use of the tools that were previously employed in traditional rational enzyme design, but, inspired by CAST/ISM, the process is performed in an iterative manner. Only a few predicted mutants need to be screened, a fast process which leads to the identification of highly enantioselective and sufficiently active mutants.


Subject(s)
Directed Molecular Evolution , Protein Engineering , Mutagenesis , Mutagenesis, Site-Directed
10.
Angew Chem Int Ed Engl ; 59(30): 12499-12505, 2020 07 20.
Article in English | MEDLINE | ID: mdl-32243054

ABSTRACT

Steroidal C7ß alcohols and their respective esters have shown significant promise as neuroprotective and anti-inflammatory agents to treat chronic neuronal damage like stroke, brain trauma, and cerebral ischemia. Since C7 is spatially far away from any functional groups that could direct C-H activation, these transformations are not readily accessible using modern synthetic organic techniques. Reported here are P450-BM3 mutants that catalyze the oxidative hydroxylation of six different steroids with pronounced C7 regioselectivities and ß stereoselectivities, as well as high activities. These challenging transformations were achieved by a focused mutagenesis strategy and application of a novel technology for protein library construction based on DNA assembly and USER (Uracil-Specific Excision Reagent) cloning. Upscaling reactions enabled the purification of the respective steroidal alcohols in moderate to excellent yields. The high-resolution X-ray structure and molecular dynamics simulations of the best mutant unveil the origin of regio- and stereoselectivity.


Subject(s)
Cytochrome P-450 Enzyme System/chemistry , Mutation , Steroids/chemistry , Cytochrome P-450 Enzyme System/genetics , Hydrogen Bonding , Hydroxylation , Molecular Dynamics Simulation , Oxidation-Reduction , Stereoisomerism , Substrate Specificity
11.
J Am Chem Soc ; 142(4): 2068-2073, 2020 01 29.
Article in English | MEDLINE | ID: mdl-31927987

ABSTRACT

While the mechanism of the P450-catalyzed oxidative hydroxylation of organic compounds has been studied in detail for many years, less is known about sulfoxidation. Depending upon the structure of the respective substrate, heme-Fe═O (Cpd I), heme-Fe(III)-OOH (Cpd 0), and heme-Fe(III)-H2O2 (protonated Cpd 0) have been proposed as reactive intermediates. In the present study, we consider the transformation of isosteric substrates via sulfoxidation and oxidative hydroxylation, respectively, catalyzed by regio- and enantioselective mutants of P450-BM3 which were constructed by directed evolution. 1-Thiochromanone and 1-tetralone were used as the isosteric substrates because, unlike previous studies involving fully flexible compounds such as thia-fatty acids and fatty acids, respectively, these compounds are rigid and cannot occur in a multitude of different conformations and binding modes in the large P450-BM3 binding pocket. The experimental results comprising activity and regio- and enantioselectivity, flanked by molecular dynamics computations within a time scale of 300 ns and QM/MM calculations of transition-state energies, unequivocally show that heme-Fe═O (Cpd I) is the common catalytically active intermediate in both sulfoxidation and oxidative hydroxylation.

12.
Angew Chem Int Ed Engl ; 59(32): 13204-13231, 2020 08 03.
Article in English | MEDLINE | ID: mdl-31267627

ABSTRACT

Directed evolution of stereo-, regio-, and chemoselective enzymes constitutes a unique way to generate biocatalysts for synthetically interesting transformations in organic chemistry and biotechnology. In order for this protein engineering technique to be efficient, fast, and reliable, and also of relevance to synthetic organic chemistry, methodology development was and still is necessary. Following a description of early key contributions, this review focuses on recent developments. It includes optimization of molecular biological methods for gene mutagenesis and the design of efficient strategies for their application, resulting in notable reduction of the screening effort (bottleneck of directed evolution). When aiming for laboratory evolution of selectivity and activity, second-generation versions of Combinatorial Active-Site Saturation Test (CAST) and Iterative Saturation Mutagenesis (ISM), both involving saturation mutagenesis (SM) at sites lining the binding pocket, have emerged as preferred approaches, aided by in silico methods such as machine learning. The recently proposed Focused Rational Iterative Site-specific Mutagenesis (FRISM) constitutes a fusion of rational design and directed evolution. On-chip solid-phase chemical gene synthesis for rapid library construction enhances library quality notably by eliminating undesired amino acid bias, the future of directed evolution?


Subject(s)
Directed Molecular Evolution/methods , Enzymes/genetics , Bacteria/enzymology , Biocatalysis , Enzymes/chemistry , Fungi/enzymology , Machine Learning , Mutagenesis, Site-Directed , Organic Chemicals/chemical synthesis
13.
Molecules ; 24(18)2019 Sep 11.
Article in English | MEDLINE | ID: mdl-31514332

ABSTRACT

Arbutin (also called ß-arbutin) is a natural product occurring in the leaves of a variety of different plants, the bearberries of the Ericaceae and Saxifragaceae families being prominent examples. It is a ß-glucoside derived from hydroquinone (HQ; 1,4-dihydroxybenzene). Arbutin has been identified in traditional Chinese folk medicines as having, inter alia, anti-microbial, anti-oxidant, and anti-inflammatory properties that useful in the treatment of different ailments including urinary diseases. Today, it is also used worldwide for the treatment of skin ailments by way of depigmenting, which means that arbutin is a component of many products in the cosmetics and healthcare industries. It is also relevant in the food industry. Hundreds of publications have appeared describing the isolation, structure determination, toxicology, synthesis, and biological properties of arbutin as well as the molecular mechanism of melanogenesis (tyrosinase inhibition). This review covers the most important aspects with special emphasis on the chemical and biocatalytic methods for the production of arbutin.


Subject(s)
Arbutin/chemistry , Arbutin/pharmacology , Biocatalysis , Arbutin/biosynthesis , Arbutin/chemical synthesis , Stereoisomerism , Substrate Specificity
14.
Nat Commun ; 10(1): 3198, 2019 07 19.
Article in English | MEDLINE | ID: mdl-31324776

ABSTRACT

Engineering artificial enzymes with high activity and catalytic mechanism different from naturally occurring enzymes is a challenge in protein design. For example, many attempts have been made to obtain active hydrolases by introducing a Ser → Cys exchange at the respective catalytic triads, but this generally induced a breakdown of activity. We now report that this long-standing dogma no longer pertains, provided additional mutations are introduced by directed evolution. By employing Candida antarctica lipase B (CALB) as the model enzyme with the Ser-His-Asp catalytic triad, a highly active cysteine-lipase having a Cys-His-Asp catalytic triad and additional mutations W104V/A281Y/A282Y/V149G can be evolved, showing a 40-fold higher catalytic efficiency than wild-type CALB in the hydrolysis of 4-nitrophenyl benzoate, and tolerating bulky substrates. Crystal structures, kinetics, MD simulations and QM/MM calculations reveal dynamic features and explain all results, including the preference of a two-step mechanism involving the zwitterionic pair Cys105-/His224+ rather than a concerted process.


Subject(s)
Cysteine/chemistry , Lipase/chemistry , Binding Sites , Candida/enzymology , Catalysis , Catalytic Domain , Crystallography, X-Ray , Enzyme Activation , Fungal Proteins/chemistry , Fungal Proteins/genetics , Fungal Proteins/metabolism , Hydrolysis , Kinetics , Lipase/genetics , Lipase/metabolism , Models, Molecular , Mutation , Protein Conformation , Protein Engineering/methods , Substrate Specificity
15.
J Am Chem Soc ; 141(19): 7934-7945, 2019 05 15.
Article in English | MEDLINE | ID: mdl-31023008

ABSTRACT

Enzymatic stereodivergent synthesis to access all possible product stereoisomers bearing multiple stereocenters is relatively undeveloped, although enzymes are being increasingly used in both academic and industrial areas. When two stereocenters and thus four stereoisomeric products are involved, obtaining stereodivergent enzyme mutants for individually accessing all four stereoisomers would be ideal. Although significant success has been achieved in directed evolution of enzymes in general, stereodivergent engineering of one enzyme into four highly stereocomplementary variants for obtaining the full complement of stereoisomers bearing multiple stereocenters remains a challenge. Using Candida antarctica lipase B (CALB) as a model, we report the protein engineering of this enzyme into four highly stereocomplementary variants needed for obtaining all four stereoisomers in transesterification reactions between racemic acids and racemic alcohols in organic solvents. By generating and screening less than 25 variants of each isomer, we achieved >90% selectivity for all of the four possible stereoisomers in the model reaction. This difficult feat was accomplished by developing a strategy dubbed "focused rational iterative site-specific mutagenesis" (FRISM) at sites lining the enzyme's binding pocket. The accumulation of single mutations by iterative site-specific mutagenesis using a restricted set of rationally chosen amino acids allows the formation of ultrasmall mutant libraries requiring minimal screening for stereoselectivity. The crystal structure of all stereodivergent CALB variants, flanked by MD simulations, uncovered the source of selectivity.


Subject(s)
Esters/chemistry , Esters/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Lipase/genetics , Lipase/metabolism , Protein Engineering , Fungal Proteins/chemistry , Lipase/chemistry , Molecular Dynamics Simulation , Mutation , Protein Binding , Protein Conformation , Stereoisomerism
16.
J Am Chem Soc ; 141(14): 5655-5658, 2019 04 10.
Article in English | MEDLINE | ID: mdl-30920820

ABSTRACT

A unique P450 monooxygenase-peroxygenase mutual benefit system was designed as the core element in the construction of a biocatalytic cascade reaction sequence leading from 3-phenyl propionic acid to ( R)-phenyl glycol. In this system, P450 monooxygenase (P450-BM3) and P450 peroxygenase (OleTJE) not only function as catalysts for the crucial initial reactions, they also ensure an internal in situ H2O2 recycle mechanism that avoids its accumulation and thus prevents possible toxic effects. By directed evolution of P450-BM3 as the catalyst in the enantioselective epoxidation of the styrene-intermediate, formed from 3-phenyl propionic acid, and the epoxide hydrolase ANEH for final hydrolytic ring opening, ( R)-phenyl glycol and 9 derivatives thereof were synthesized from the respective carboxylic acids in one-pot processes with high enantioselectivity.


Subject(s)
Mixed Function Oxygenases/metabolism , Oxidoreductases/metabolism , Biocatalysis , Propionates/chemistry , Propionates/metabolism
17.
Acc Chem Res ; 52(2): 336-344, 2019 02 19.
Article in English | MEDLINE | ID: mdl-30689339

ABSTRACT

Transition metal catalysts mediate a wide variety of chemo-, stereo-, and regioselective transformations, and therefore play a pivotal role in modern synthetic organic chemistry. Steric and electronic effects of ligands provide organic chemists with an exceedingly useful tool. More than four decades ago, chemists began to think about a different approach, namely, embedding achiral ligand/metal moieties covalently or noncovalently in protein hosts with formation of artificial metalloenzymes. While structurally fascinating, this approach led in each case only to a single (bio)catalyst, with its selectivity and activity being a matter of chance. In order to solve this fundamental problem, my group proposed in 2000-2002 the idea of directed evolution of artificial metalloenzymes. In earlier studies, we had already demonstrated that directed evolution of enzymes constitutes a viable method for enhancing and inverting the stereoselectivity of enzymes as catalysts in organic chemistry. We speculated that it should also be possible to manipulate selectivity and activity of artificial metalloenzymes, which would provide organic chemists with a tool for optimizing essentially any transition metal catalyzed reaction type. In order to put this vision into practice, we first turned to the Whitesides system for artificial metalloenzyme formation, comprising a biotinylated diphosphine/Rh moiety, which is anchored noncovalently to avidin or streptavidin. Following intensive optimization, proof of principle was finally demonstrated in 2006, which opened the door to a new research area. This personal Account critically assesses these early studies as well as subsequent efforts from my group focusing on different protein scaffolds, and includes briefly some of the most important current contributions of other groups. Two primary messages emerge: First, since organic chemists continue to be extremely good at designing and implementing man-made transition metal catalysts, often on a large scale, those scientists that are active in the equally intriguing field of directed evolution of artificial metalloenzymes should be moderate when generalizing claims. All factors required for a truly viable catalytic system need to be considered, especially activity and ease of upscaling. Second, the most exciting and thus far very rare cases of directed evolution of artificial metalloenzymes are those that focus on selective transformations that are not readily possible using state of the art transition metal catalysts.


Subject(s)
Coordination Complexes/chemistry , Enzymes/chemistry , Metalloproteins/chemistry , Transition Elements/chemistry , Catalysis , Directed Molecular Evolution/methods , Enzymes/genetics , Metalloproteins/genetics
18.
Chem Rev ; 119(3): 1626-1665, 2019 02 13.
Article in English | MEDLINE | ID: mdl-30698416

ABSTRACT

The term B-factor, sometimes called the Debye-Waller factor, temperature factor, or atomic displacement parameter, is used in protein crystallography to describe the attenuation of X-ray or neutron scattering caused by thermal motion. This review begins with analyses of early protein studies which suggested that B-factors, available from the Protein Data Bank, can be used to identify the flexibility of atoms, side chains, or even whole regions. This requires a technique for obtaining normalized B-factors. Since then the exploitation of B-factors has been extensively elaborated and applied in a variety of studies with quite different goals, all having in common the identification and interpretation of rigidity, flexibility, and/or internal motion which are crucial in enzymes and in proteins in general. Importantly, this review includes a discussion of limitations and possible pitfalls when using B-factors. A second research area, which likewise exploits B-factors, is also reviewed, namely, the development of the so-called B-FIT-directed evolution method for increasing the thermostability of enzymes as catalysts in organic chemistry and biotechnology. In both research areas, a maximum of structural and mechanistic insights is gained when B-factor analyses are combined with other experimental and computational techniques.


Subject(s)
Proteins/chemistry , Humans , Models, Molecular , Protein Conformation , Protein Engineering , Protein Stability
19.
Biol Chem ; 400(3): 313-321, 2019 02 25.
Article in English | MEDLINE | ID: mdl-30269104

ABSTRACT

Chiral arylpropanols are valuable components in important pharmaceuticals and fragrances, which is the motivation for previous attempts to prepare these building blocks enantioselectively in asymmetric processes using either enzymes or transition metal catalysts. Thus far, enzymes used in kinetic resolution proved to be best, but several problems prevented ecologically and economically viable processes from being developed. In the present study, directed evolution was applied to the thermostable alcohol dehydrogenase TbSADH in the successful quest to obtain mutants that are effective in the dynamic reductive kinetic resolution (DYRKR) of racemic arylpropanals. Using rac-2-phenyl-1-propanal in a model reaction, (S)- and (R)-selective mutants were evolved which catalyzed DYRKR of this racemic substrate with formation of the respective (S)- and (R)-alcohols in essentially enantiomerically pure form. This was achieved on the basis of an unconventional form of iterative saturation mutagenesis (ISM) at randomization sites lining the binding pocket using a reduced amino acid alphabet. The best mutants were also effective in the DYRKR of several other structurally related racemic aldehydes.


Subject(s)
Alcohol Dehydrogenase/metabolism , Propanols/metabolism , Temperature , Alcohol Dehydrogenase/chemistry , Alcohol Dehydrogenase/genetics , Molecular Docking Simulation , Molecular Structure , Propanols/chemistry , Protein Stability , Stereoisomerism
20.
Angew Chem Int Ed Engl ; 58(3): 764-768, 2019 01 14.
Article in English | MEDLINE | ID: mdl-30511432

ABSTRACT

Hydroquinone (HQ) is produced commercially from benzene by multi-step Hock-type processes with equivalent amounts of acetone as side-product. We describe an efficient biocatalytic alternative using the cytochrome P450-BM3 monooxygenase. Since the wildtype enzyme does not accept benzene, a semi-rational protein engineering strategy was developed. Highly active mutants were obtained which transform benzene in a one-pot sequence first into phenol and then regioselectively into HQ without any overoxidation. A computational study shows that the chemoselective oxidation of phenol by the P450-BM3 variant A82F/A328F leads to the regioselective formation of an epoxide intermediate at the C3=C4 double bond, which departs from the binding pocket and then undergoes fragmentation in aqueous medium with exclusive formation of HQ. As a practical application, an E. coli designer cell system was constructed, which enables the cascade transformation of benzene into the natural product arbutin, which has anti-inflammatory and anti-bacterial activities.


Subject(s)
Benzene/metabolism , Cytochrome P-450 Enzyme System/metabolism , Hydroquinones/metabolism , Cytochrome P-450 Enzyme System/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Glucosyltransferases/genetics , Glucosyltransferases/metabolism , Hydroxylation , Models, Molecular , Oxidation-Reduction , Protein Engineering , Rauwolfia/genetics , Rauwolfia/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL