Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
Add more filters










Publication year range
1.
Biotechnol Biofuels Bioprod ; 17(1): 76, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831375

ABSTRACT

BACKGROUND: The aim of this study was to increase the accessibility and accelerate the breakdown of lignocellulosic biomass to methane in an anaerobic fermentation system by mechanical cotreatment: milling during fermentation, as an alternative to conventional pretreatment prior to biological deconstruction. Effluent from a mesophilic anaerobic digester running with unpretreated senescent switchgrass as the predominant carbon source was collected and subjected to ball milling for 0.5, 2, 5 and 10 min. Following this, a batch fermentation test was conducted with this material in triplicate for an additional 18 days with unmilled effluent as the 'status quo' control. RESULTS: The results indicate 0.5 - 10 min of cotreatment increased sugar solubilization by 5- 13% when compared to the unmilled control, with greater solubilization correlated with increased milling duration. Biogas concentrations ranged from 44% to 55.5% methane with the balance carbon dioxide. The total biogas production was statistically higher than the unmilled control for all treatments with 2 or more minutes of milling (α = 0.1). Cotreatment also decreased mean particle size. Energy consumption measurements of a lab-scale mill indicate that longer durations of milling offer diminishing benefits with respect to additional methane production. CONCLUSIONS: Cotreatment in anaerobic digestion systems, as demonstrated in this study, provides an alternative approach to conventional pretreatments to increase biogas production from lignocellulosic grassy material.

2.
Biogeochemistry ; 162(1): 25-42, 2023.
Article in English | MEDLINE | ID: mdl-36687142

ABSTRACT

Although metal redox reactions in soils can strongly affect carbon mineralization and other important soil processes, little is known about temporal variations in this redox cycling. Recently, potentiostatically poised electrodes (fixed-potential electrodes) have shown promise for measuring the rate of oxidation and reduction at a specific reduction potential in situ in riparian soils. Here for the first time, we used these electrodes in unsaturated soils to explore the fine-scale temporal redox fluctuations of both iron and manganese in response to environmental conditions. We used three-electrode systems with working electrodes fixed at 100 mV (vs. SHE) and 400 mV at 50 cm and 70 cm in the valley floor soil of a headwater watershed. Electrodes fixed at 100 mV to mimic iron oxides and at 400 mV to mimic manganese oxides allowed real-time reduction and oxidation rates to be calculated from temporal variations in the electric current. Electrode measurements were compared to soil porewater chemistry, pCO2, pO2, groundwater level, resistivity measurements, and precipitation. The fixed-potential electrodes recorded fluctuations over timescales from minutes to weeks. A consistently negative current was observed at 100 mV (interpreted as oxidation of Fe), while the 400-mV electrode fluctuated between negative and positive currents (Mn oxidation and reduction). When the water table rose above the electrodes, reduction was promoted, but above the water table, rainfall only stimulated oxidation. Precipitation frequency thus drove the multi-day reduction or oxidation events (return interval of 5-10 days). These measurements represent the first direct detections of frequency, period, and amplitude of oxidation and reduction events in unsaturated soils. Fixed-potential electrodes hold promise for accurately exploring the fast-changing biogeochemical impacts of metal redox cycling in soils and represent a significant advance for reactions that have been difficult to quantify.

3.
Materials (Basel) ; 15(1)2022 Jan 05.
Article in English | MEDLINE | ID: mdl-35009526

ABSTRACT

During the last decade, bioprospecting for electrochemically active bacteria has included the search for new sources of inoculum for microbial fuel cells (MFCs). However, concerning power and current production, a Geobacter-dominated mixed microbial community derived from a wastewater inoculum remains the standard. On the other hand, cathode performance is still one of the main limitations for MFCs, and the enrichment of a beneficial cathodic biofilm emerges as an alternative to increase its performance. Glucose-fed air-cathode reactors inoculated with a rumen-fluid enrichment and wastewater showed higher power densities and soluble chemical oxygen demand (sCOD) removal (Pmax = 824.5 mWm-2; ΔsCOD = 96.1%) than reactors inoculated only with wastewater (Pmax = 634.1 mWm-2; ΔsCOD = 91.7%). Identical anode but different cathode potentials suggest that differences in performance were due to the cathode. Pyrosequencing analysis showed no significant differences between the anodic community structures derived from both inocula but increased relative abundances of Azoarcus and Victivallis species in the cathodic rumen enrichment. Results suggest that this rarely used inoculum for single-chamber MFCs contributed to cathodic biofilm improvements with no anodic biofilm effects.

4.
Environ Sci Technol ; 55(5): 2722-2742, 2021 03 02.
Article in English | MEDLINE | ID: mdl-33559467

ABSTRACT

Despite ongoing management efforts, phosphorus (P) loading from agricultural landscapes continues to impair water quality. Wastewater treatment research has enhanced our knowledge of microbial mechanisms influencing P cycling, especially regarding microbes known as polyphosphate accumulating organisms (PAOs) that store P as polyphosphate (polyP) under oxic conditions and release P under anoxic conditions. However, there is limited application of PAO research to reduce agricultural P loading and improve water quality. Herein, we conducted a meta-analysis to identify articles in Web of Science on polyP and its use by PAOs across five disciplines (i.e., wastewater treatment, terrestrial, freshwater, marine, and agriculture). We also summarized research that provides preliminary support for PAO-mediated P cycling in natural habitats. Terrestrial, freshwater, marine, and agriculture disciplines had fewer polyP and PAO articles compared to wastewater treatment, with agriculture consistently having the least. Most meta-analysis articles did not overlap disciplines. We found preliminary support for PAOs in natural habitats and identified several knowledge gaps and research opportunities. There is an urgent need for interdisciplinary research linking PAOs, polyP, and oxygen availability with existing knowledge of P forms and cycling mechanisms in natural and agricultural environments to improve agricultural P management strategies and achieve water quality goals.


Subject(s)
Bioreactors , Polyphosphates , Agriculture , Phosphorus , Wastewater , Water Quality
5.
Bioresour Technol ; 316: 123919, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32771939

ABSTRACT

Ferricyanide is often used in microbial fuel cells (MFCs) to avoid oxygen intrusion that occurs with air cathodes. However, MFC internal resistances using ferricyanide can be larger than those with air cathodes even though ferricyanide results in higher power densities. Using a graphite fiber brush cathode and a ferricyanide catholyte (FC-B) the internal resistance was 62 ± 4 mΩ m2, with 84 ± 8 mΩ m2 obtained using ferricyanide and a flat carbon paper cathode (FC-F) and only 51 ± 1 mΩ m2 using a 70% porosity air cathode (A-70). The FC-B MFCs produced the highest maximum power density of all configurations examined: 2.46 ± 0.26 W/m2, compared to 1.33 ± 0.14 W/m2 for the A-70 MFCs. The electrode potential slope (EPS) analysis method showed that electrode resistances were similar for ferricyanide and air-cathode MFCs, and that higher power was due to the larger experimental working potential (500 ± 12 mV) of ferricyanide compared to the air cathode (233 ± 5 mV).


Subject(s)
Bioelectric Energy Sources , Electricity , Electrodes , Electrons , Oxidants , Oxygen
6.
Sci Total Environ ; 678: 639-646, 2019 Aug 15.
Article in English | MEDLINE | ID: mdl-31078855

ABSTRACT

Exoelectrogenic communities for bioelectrochemical systems such as microbial fuel cells (MFCs) are usually enriched from microbial consortia of municipal wastewater treatment plants and other circumneutral and mesophilic environments. Thus, the study of extreme environments offers an enormous potential to find new exoelectrogens and expand the functionality and applications of MFC technology. In this study, a microbial community previously enriched from acid mine drainage (AMD) sediments was used as inoculum in single-chamber MFCs operated at pH 3.7. The power obtained from the AMD-derived inoculum reached 1 mW m-2 (27.1 ±â€¯7.8 mV with 1 kΩ external resistance), which compares to previous MFC studies operated under low-pH conditions. Additionally, polarization curves showed power-generation levels of 2.4 ±â€¯0.2 mW m-2 and 0.4 ±â€¯0.3 mW m-2, which were associated with the different inoculum sources: MFCs operated with sulfate concentrations of ~2000 and < 25 mg L-1, respectively. Microbial characterization performed at the end of the operation showed that both anodic and cathodic biofilm communities were highly dominated by the Proteobacteria phylum (>72% of 16S rRNA gene sequences), followed by Firmicutes (4-11%). Furthermore, the anodic microbial communities of the best-performing reactors were dominated by the Delftia genus (phylum Proteobacteria), which was recently identified as a taxon including exoelectrogenic candidates. These findings expand the literature of low-pH operated MFCs and acid-tolerant exoelectrogens, and also represent a starting point to apply this technology to treat acidic organic loads.


Subject(s)
Bacterial Physiological Phenomena , Bioelectric Energy Sources/microbiology , Biofilms , Bioreactors/microbiology , Wastewater/chemistry , Water Pollutants/chemistry , Bacteria/classification , Bacteria/metabolism , Bacterial Physiological Phenomena/drug effects , Chile , Extreme Environments , Mining
7.
Bioelectrochemistry ; 118: 139-146, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28803164

ABSTRACT

The limited database of acidophilic or acidotolerant electrochemically active microorganisms prevents advancements on microbial fuel cells (MFCs) operated under low pH. In this study, three MFCs were used to enrich cathodic biofilms using acid mine drainage (AMD) sediments as inoculum. Linear sweep voltammetry showed cathodic current plateaus of 5.5 (±0.7) mA at about -170mV vs Ag/AgCl and 8.5 (±0.9) mA between -500mV to -450mV vs Ag/AgCl for biofilms developed on small graphite fiber brushes. After gamma irradiation, biocathodes exhibited a decrease in current density approaching that of abiotic controls. Electrochemical impedance spectroscopy showed six-fold lower charge transfer resistance with viable biofilm. Pyrosequencing data showed that Proteobacteria and Firmicutes dominated the biofilms. Acidithiobacillus representatives were enriched in some biocathodes, supporting the potential importance of these known iron and sulfur oxidizers as cathodic biocatalysts. Other acidophilic chemolithoautotrophs identified included Sulfobacillus and Leptospirillum species. The presence of chemoautotrophs was consistent with functional capabilities predicted by PICRUSt related to carbon fixation pathways in prokaryotic microorganisms. Acidophilic or acidotolerant heterotrophs were also abundant; however, their contribution to cathodic performance is unknown. This study directs subsequent research efforts to particular groups of AMD-associated bacteria that are electrochemically active on cathodes.


Subject(s)
Bacteria/metabolism , Bioelectric Energy Sources/microbiology , Biofilms , Industrial Waste , Mining , Electrochemistry , Electrodes , Hydrogen-Ion Concentration , Oxidation-Reduction
8.
Enzyme Microb Technol ; 104: 47-55, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28648180

ABSTRACT

Monod kinetic parameters provide information required for kinetic analysis of anaerobic oxidation of methane coupled to denitrification (AOM-D). This information is critical for engineering AOM-D processes in wastewater treatment facilities. We first experimentally determined Monod kinetic parameters for an AOM-D enriched culture and obtained the following values: maximum specific growth rate (µmax) 0.121/d, maximum substrate-utilization rate (qmax) 28.8mmol CH4/g cells-d, half maximum-rate substrate concentration (Ks) 83µΜ CH4, growth yield (Y) 4.76gcells/mol CH4, decay coefficient (b) 0.031/d, and threshold substrate concentration (Smin) 28.8µM CH4. Clone library analysis of 16S rRNA and mcrA gene fragments suggested that AOM-D reactions might have occurred via the syntrophic interaction between denitrifying bacteria (e.g., Ignavibacterium, Acidovorax, and Pseudomonas spp.) and hydrogenotrophic methanogens (Methanobacterium spp.), supporting reverse methanogenesis-dependent AOM-D in our culture. High µmax and qmax, and low Ks for the AOM-D enrichment imply that AOM-D could play a significant role in mitigating atmospheric methane efflux. In addition, these high kinetic features suggest that engineered AOM-D systems may provide a sustainable alternative to nitrogen removal in wastewater treatment.


Subject(s)
Methane/metabolism , Anaerobiosis , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Biomass , Bioreactors/microbiology , Denitrification , Industrial Microbiology , Kinetics , Oxidation-Reduction , Phylogeny , Sewage/microbiology , Wastewater , Water Purification
9.
Appl Microbiol Biotechnol ; 99(21): 9319-29, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26286510

ABSTRACT

In bioelectrochemical systems, exoelectrogenic bacteria respire with anode electrodes as their extracellular electron acceptor; therefore, lower anode potentials can reduce the energy gain to each microbe and select against ones that are not able to respire at a lower potential range. Often fully developed anode communities are compared across bioelectrochemical systems with set anode potentials or fixed external resistances as different operational conditions. However, the comparative effect of the resulting constantly low versus dynamically low anode potentials on the development of anode microbial communities as well as the final cathode microbial communities has not been directly demonstrated. In this study, we used a low fixed anode potential of -250 mV and a higher-current control potential of -119 mV vs. Standard Hydrogen Electrode to approximately correspond with the negative peak anode potential values obtained from microbial fuel cells operated with fixed external resistances of 1 kΩ and 47 Ω, respectively. Pyrosequencing data from a 2-month time series show that a lower set anode potential resulted in a more diverse community than the higher- and variable-potential systems, likely due to the hindered enrichment of a Geobacter-dominated community with limited energy gain at this set potential. In this case, it appears that the selective pressure caused by the low set potential was counteracted by the low energy gain over a 2-month time scale. The air cathode microbial community with constant low anode potentials showed delayed enrichment of denitrifiers or perchlorate-reducing bacteria compared to the fixed external resistance condition.


Subject(s)
Bioelectric Energy Sources , Biota , Electricity , Electrodes/microbiology , Bacteria/classification , Bacteria/growth & development
10.
Bioelectrochemistry ; 106(Pt A): 213-20, 2015 Dec.
Article in English | MEDLINE | ID: mdl-25857596

ABSTRACT

Geobacter sulfurreducens is one of the dominant bacterial species found in biofilms growing on anodes in bioelectrochemical systems. The intracellular concentrations of reduced and oxidized forms of nicotinamide-adenine dinucleotide (NADH and NAD(+), respectively) and nicotinamide-adenine dinucleotide phosphate (NADPH and NADP(+), respectively) as well as adenosine triphosphate (ATP), adenosine diphosphate (ADP), and adenosine monophosphate (AMP) were measured in G. sulfurreducens using fumarate, Fe(III)-citrate, or anodes poised at different potentials (110, 10, -90, and -190 mV (vs. SHE)) as the electron acceptor. The ratios of CNADH/CNAD+ (0.088±0.022) and CNADPH/CNADP+ (0.268±0.098) were similar under all anode potentials tested and with Fe(III)-citrate (reduced extracellularly). Both ratios significantly increased with fumarate as the electron acceptor (0.331±0.094 for NAD and 1.96±0.37 for NADP). The adenylate energy charge (the fraction of phosphorylation in intracellular adenosine phosphates) was maintained near 0.47 under almost all conditions. Anode-growing biofilms demonstrated a significantly higher molar ratio of ATP/ADP relative to suspended cultures grown on fumarate or Fe(III)-citrate. These results provide evidence that the cellular location of reduction and not the redox potential of the electron acceptor controls the intracellular redox potential in G. sulfurreducens and that biofilm growth alters adenylate phosphorylation.


Subject(s)
Adenine Nucleotides/metabolism , Geobacter/metabolism , NADP/metabolism , Adenosine Monophosphate/metabolism , Biofilms/growth & development , Electrodes , Electron Transport , Ferric Compounds/metabolism , Fumarates/metabolism , Geobacter/physiology , Phosphorylation
11.
Environ Sci Technol ; 49(5): 3195-202, 2015 Mar 03.
Article in English | MEDLINE | ID: mdl-25622928

ABSTRACT

Alternative metabolic options of exoelectrogenic biofilms in bioelectrochemical systems (BESs) are important not only to explain the fundamental ecology and performance of these systems but also to develop reliable integrated nutrient removal strategies in BESs, which potentially involve substrates or intermediates that support/induce those alternative metabolisms. This research focused on dissimilatory nitrate reduction as an alternative metabolism to dissimilatory anode reduction. Using the exoelectrogenic nitrate reducer Geobacter metallireducens, the critical conditions controlling those alternative metabolisms were investigated in two-chamber, potentiostatically controlled BESs at various anode potentials and biofilm thicknesses and challenged over a range of nitrate concentrations. Results showed that anode-reducing biofilms facultatively reduced nitrate at all tested anode potentials (-150 to +900 mV vs Standard Hydrogen Electrode) with a rapid metabolic shift. The critical nitrate concentration that triggered a significant decrease in BES performance was a function of anode biofilm thickness but not anode potential. This indicates that these alternative metabolisms were controlled by the availability of nitrate, which is a function of nitrate concentration in bulk solution and its diffusion into an anode-reducing biofilm. Coulombic recovery decreased as a function of nitrate dose due to electron-acceptor substrate competition, and nitrate-induced suspended biomass growth decreased the effluent quality.


Subject(s)
Biofilms , Electrochemical Techniques/methods , Geobacter/metabolism , Nitrates/metabolism , Water Pollutants, Chemical/metabolism , Water Purification/methods , Electrodes , Oxidation-Reduction
12.
Bioresour Technol ; 179: 26-34, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25514399

ABSTRACT

Two identical microbial fuel cells (MFCs) with a floating air-cathode were operated under either buffered (MFC-B) or bufferless (MFC-BL) conditions to investigate anolyte recirculation effects on enhancing proton transfer. With an external resistance of 50 Ω and recirculation rate of 1.0 ml/min, MFC-BL had a 27% lower voltage (9.7% lower maximal power density) but a 64% higher Coulombic efficiency (CE) than MFC-B. MFC-B had a decreased voltage output, batch time, and CE with increasing recirculation rate resulting from more oxygen transfer into the anode. However, increasing the recirculation rate within a low range significantly enhanced proton transfer in MFC-BL, resulting in a higher voltage output, a longer batch time, and a higher CE. A further increase in recirculation rate decreased the batch time and CE of MFC-BL due to excess oxygen transfer into anode outweighing the proton-transfer benefits. The unbuffered MFC had an optimal recirculation rate of 0.35 ml/min.


Subject(s)
Air , Bioelectric Energy Sources , Batch Cell Culture Techniques , Biological Oxygen Demand Analysis , Electricity , Electrodes , Feasibility Studies , Hydrogen-Ion Concentration , Protons
13.
Nat Commun ; 5: 3234, 2014.
Article in English | MEDLINE | ID: mdl-24492668

ABSTRACT

Eukaryotic algae and cyanobacteria produce hydrogen under anaerobic and limited aerobic conditions. Here we show that novel microalgal strains (Chlorella vulgaris YSL01 and YSL16) upregulate the expression of the hydrogenase gene (HYDA) and simultaneously produce hydrogen through photosynthesis, using CO2 as the sole source of carbon under aerobic conditions with continuous illumination. We employ dissolved oxygen regimes that represent natural aquatic conditions for microalgae. The experimental expression of HYDA and the specific activity of hydrogenase demonstrate that C. vulgaris YSL01 and YSL16 enzymatically produce hydrogen, even under atmospheric conditions, which was previously considered infeasible. Photoautotrophic H2 production has important implications for assessing ecological and algae-based photolysis.


Subject(s)
Chlorella vulgaris/metabolism , Hydrogen/metabolism , Microalgae/metabolism , Photosynthesis , Aerobiosis , Autotrophic Processes , Oxygen/metabolism
14.
Sci Total Environ ; 466-467: 490-502, 2014 Jan 01.
Article in English | MEDLINE | ID: mdl-23933432

ABSTRACT

Rivers in northern Chile have arsenic (As) concentrations at levels that are toxic for humans and other organisms. Microorganism-mediated redox reactions have a crucial role in the As cycle; the microbial oxidation of As (As(III) to As(V)) is a critical transformation because it favors the immobilization of As in the solid phase. We studied the role of microbial As oxidation for controlling the mobility of As in the extreme environment found in the Chilean Altiplano (i.e., > 4000 meters above sea level (masl) and < 310 mm annual rainfall), which are conditions that have rarely been studied. Our model system was the upper Azufre River sub-basin, where the natural attenuation of As from hydrothermal discharge (pH 4-6) was observed. As(III) was actively oxidized by a microbial consortium, leading to a significant decrease in the dissolved As concentrations and a corresponding increase in the sediment's As concentration downstream of the hydrothermal source. In-situ oxidation experiments demonstrated that the As oxidation required biological activity, and microbiological molecular analysis confirmed the presence of As(III)-oxidizing groups (aroA-like genes) in the system. In addition, the pH measurements and solid phase analysis strongly suggested that the As removal mechanism involved adsorption or coprecipitation with Fe-oxyhydroxides. Taken together, these results indicate that the microorganism-mediated As oxidation contributed to the attenuation of As concentrations and the stabilization of As in the solid phase, therefore controlling the amount of As transported downstream. This study is the first to demonstrate the microbial oxidation of As in Altiplano basins and its relevance in the immobilization of As.


Subject(s)
Arsenic/metabolism , Rivers/microbiology , Water Pollutants, Chemical/metabolism , Chile , Environmental Monitoring , Mass Spectrometry , Oxidation-Reduction , Spectrometry, X-Ray Emission , Spectrophotometry, Atomic
15.
Biotechnol Bioeng ; 110(11): 3059-62, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23616357

ABSTRACT

Pyrosequencing was used to characterize bacterial communities in air-cathode microbial fuel cells across a volumetric (graphite fiber brush) and a planar (carbon cloth) anode, where different physical and chemical gradients would be expected associated with the distance between anode location and the air cathode. As expected, the stable operational voltage and the coulombic efficiency (CE) were higher for the volumetric anode than the planar anode (0.57 V and CE = 22% vs. 0.51 V and CE = 12%). The genus Geobacter was the only known exoelectrogen among the observed dominant groups, comprising 57 ± 4% of recovered sequences for the brush and 27 ± 5% for the carbon-cloth anode. While the bacterial communities differed between the two anode materials, results showed that Geobacter spp. and other dominant bacterial groups were homogenously distributed across both planar and volumetric anodes. This lends support to previous community analysis interpretations based on a single biofilm sampling location in these systems.


Subject(s)
Bacteria/classification , Bacteria/genetics , Bioelectric Energy Sources , Biota , Electrodes/microbiology , Air , Carbon , Sequence Analysis, DNA
16.
Biotechnol Biofuels ; 6: 37, 2013.
Article in English | MEDLINE | ID: mdl-23506402

ABSTRACT

BACKGROUND: Microalgal biomass contains a high level of carbohydrates which can be biochemically converted to biofuels using state-of-the-art strategies that are almost always needed to employ a robust pretreatment on the biomass for enhanced energy production. In this study, we used an ultrasonic pretreatment to convert microalgal biomass (Scenedesmus obliquus YSW15) into feasible feedstock for microbial fermentation to produce ethanol and hydrogen. The effect of sonication condition was quantitatively evaluated with emphases on the characterization of carbohydrate components in microalgal suspension and on subsequent production of fermentative bioenergy. METHOD: Scenedesmus obliquus YSW15 was isolated from the effluent of a municipal wastewater treatment plant. The sonication durations of 0, 10, 15, and 60 min were examined under different temperatures at a fixed frequency and acoustic power resulted in morphologically different states of microalgal biomass lysis. Fermentation was performed to evaluate the bioenergy production from the non-sonicated and sonicated algal biomasses after pretreatment stage under both mesophilic (35°C) and thermophilic (55°C) conditions. RESULTS: A 15 min sonication treatment significantly increased the concentration of dissolved carbohydrates (0.12 g g(-1)), which resulted in an increase of hydrogen/ethanol production through microbial fermentation. The bioconvertibility of microalgal biomass sonicated for 15 min or longer was comparable to starch as a control, indicating a high feasibility of using microalgae for fermentative bioenergy production. Increasing the sonication duration resulted in increases in both algal surface hydrophilicity and electrostatic repulsion among algal debris dispersed in aqueous solution. Scanning electron microscope images supported that ruptured algal cell allowed fermentative bacteria to access the inner space of the cell, evidencing an enhanced bioaccessibility. Sonication for 15 min was the best for fermentative bioenergy (hydrogen/ethanol) production from microalga, and the productivity was relatively higher for thermophilic (55°C) than mesophilic (35°C) condition. CONCLUSION: These results demonstrate that more bioavailable carbohydrate components are produced through the ultrasonic degradation of microalgal biomass, and thus the process can provide a high quality source for fermentative bioenergy production.

17.
Biotechnol Bioeng ; 110(3): 785-91, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23097182

ABSTRACT

Single-chamber microbial fuel cells (MFCs) with nitrifiers pre-enriched at the air cathodes have previously been demonstrated as a passive strategy for integrating nitrogen removal into current-generating bioelectrochemical systems. To further define system design parameters for this strategy, we investigated in this study the effects of oxygen diffusion area and COD/N ratio in continuous-flow reactors. Doubling the gas diffusion area by adding an additional air cathode or a diffusion cloth significantly increased the ammonia and COD removal rates (by up to 115% and 39%), ammonia removal efficiency (by up to 134%), the cell voltage and cathode potentials, and the power densities (by a factor of approximately 2). When the COD/N ratio was lowered from 13 to 3, we found up to 244% higher ammonia removal rate but at least 19% lower ammonia removal efficiency. An increase of COD removal rate by up to 27% was also found when the COD/N ratio was lowered from 11 to 3. The Coulombic efficiency was not affected by the additional air cathode, but decreased by an average of 11% with the addition of a diffusion cloth. Ammonia removal by assimilation was also estimated to understand the ammonia removal mechanism in these systems. These results showed that the doubling of gas diffusion area enhanced N and COD removal rates without compromising electrochemical performance.


Subject(s)
Bioelectric Energy Sources , Gases/metabolism , Nitrogen/metabolism , Biological Oxygen Demand Analysis , Diffusion , Electricity , Electrodes/microbiology , Oxygen/metabolism
18.
J Environ Monit ; 14(6): 1515-22, 2012 May.
Article in English | MEDLINE | ID: mdl-22596061

ABSTRACT

Disinfection by-product formation potentials (DBPFPs) in wastewater effluents from eight wastewater treatment plants (WWTPs) were investigated. In addition, a WWTP with one primary effluent and two different biological treatment processes was selected for a comparative study. Formation potential tests were carried out to determine the levels of DBP precursors in wastewater. WWTPs that achieved better organic matter removal and nitrification tended to result in lower DBPFPs in effluents. For the WWTP with two processes, haloacetic acid, trihalomethane, and chloral hydrate precursors were predominant DBP precursors in the primary and secondary effluents. The percent reductions of haloacetonitrile and haloketone formation potentials averaged at 96% which was high in comparison to the reductions of other classes of DBPFPs. In addition, biological treatment changed the DBPFP speciation profile by lowering the HAAFP/THMFP ratio. The eight plant survey and the comparative analysis of the WWTP with two processes implied that besides nitrification, there may be other confounding factors impacting DBPFPs. Oxic and anoxic conditions, formation and degradation of soluble microbial products had impacts on the DBPFP reductions. This information can be used by water and wastewater professionals to better control wastewater-derived DBPs in downstream potable water supplies.


Subject(s)
Disinfectants/analysis , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/analysis , Disinfection , Pennsylvania , Trihalomethanes/analysis , Water Microbiology , Water Pollution, Chemical/statistics & numerical data
19.
ISME J ; 6(11): 2002-13, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22572637

ABSTRACT

Microbial fuel cells (MFCs) are often inoculated from a single wastewater source. The extent that the inoculum affects community development or power production is unknown. The stable anodic microbial communities in MFCs were examined using three inocula: a wastewater treatment plant sample known to produce consistent power densities, a second wastewater treatment plant sample, and an anaerobic bog sediment. The bog-inoculated MFCs initially produced higher power densities than the wastewater-inoculated MFCs, but after 20 cycles all MFCs on average converged to similar voltages (470±20 mV) and maximum power densities (590±170 mW m(-2)). The power output from replicate bog-inoculated MFCs was not significantly different, but one wastewater-inoculated MFC (UAJA3 (UAJA, University Area Joint Authority Wastewater Treatment Plant)) produced substantially less power. Denaturing gradient gel electrophoresis profiling showed a stable exoelectrogenic biofilm community in all samples after 11 cycles. After 16 cycles the predominance of Geobacter spp. in anode communities was identified using 16S rRNA gene clone libraries (58±10%), fluorescent in-situ hybridization (FISH) (63±6%) and pyrosequencing (81±4%). While the clone library analysis for the underperforming UAJA3 had a significantly lower percentage of Geobacter spp. sequences (36%), suggesting that a predominance of this microbe was needed for convergent power densities, the lower percentage of this species was not verified by FISH or pyrosequencing analyses. These results show that the predominance of Geobacter spp. in acetate-fed systems was consistent with good MFC performance and independent of the inoculum source.


Subject(s)
Bacteria/classification , Bacterial Typing Techniques , Bioelectric Energy Sources/microbiology , Electrodes/microbiology , Geobacter/isolation & purification , Water Microbiology , Bacteria/genetics , Bacteria/growth & development , Bacteria/metabolism , Biofilms/growth & development , Geobacter/genetics , Geobacter/metabolism , Geobacter/physiology
20.
Water Res ; 46(7): 2215-24, 2012 May 01.
Article in English | MEDLINE | ID: mdl-22386083

ABSTRACT

Nitrogen removal is needed in microbial fuel cells (MFCs) for the treatment of most waste streams. Current designs couple biological denitrification with side-stream or combined nitrification sustained by upstream or direct aeration, which negates some of the energy-saving benefits of MFC technology. To achieve simultaneous nitrification and denitrification, without extra energy input for aeration, the air cathode of a single-chamber MFC was pre-enriched with a nitrifying biofilm. Diethylamine-functionalized polymer (DEA) was used as the Pt catalyst binder on the cathode to improve the differential nitrifying biofilm establishment. With pre-enriched nitrifying biofilm, MFCs with the DEA binder had an ammonia removal efficiency of up to 96.8% and a maximum power density of 900 ± 25 mW/m(2), compared to 90.7% and 945 ± 42 mW/m(2) with a Nafion binder. A control with Nafion that lacked nitrifier pre-enrichment removed less ammonia and had lower power production (54.5% initially, 750 mW/m(2)). The nitrifying biofilm MFCs had lower Coulombic efficiencies (up to 27%) than the control reactor (up to 36%). The maximum total nitrogen removal efficiency reached 93.9% for MFCs with the DEA binder. The DEA binder accelerated nitrifier biofilm enrichment on the cathode, and enhanced system stability. These results demonstrated that with proper cathode pre-enrichment it is possible to simultaneously remove organics and ammonia in a single-chamber MFC without supplemental aeration.


Subject(s)
Bioelectric Energy Sources/microbiology , Biofilms , Denitrification , Nitrification , Nitrogen/isolation & purification , Ammonia/metabolism , Electrochemical Techniques/methods , Electrodes/microbiology , Nitrogen/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...