Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Res ; 1664: 87-94, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28322750

ABSTRACT

Facial allodynia is a migraine symptom that is generally considered to represent a pivotal point in migraine progression. Treatment before development of facial allodynia tends to be more successful than treatment afterwards. As such, understanding the underlying mechanisms of facial allodynia may lead to a better understanding of the mechanisms underlying migraine. Migraine facial allodynia is modeled by applying inflammatory soup (histamine, bradykinin, serotonin, prostaglandin E2) over the dura. Whether glial and/or immune activation contributes to such pain is unknown. Here we tested if trigeminal nucleus caudalis (Sp5C) glial and/or immune cells are activated following supradural inflammatory soup, and if putative glial/immune inhibitors suppress the consequent facial allodynia. Inflammatory soup was administered via bilateral indwelling supradural catheters in freely moving rats, inducing robust and reliable facial allodynia. Gene expression for microglial/macrophage activation markers, interleukin-1ß, and tumor necrosis factor-α increased following inflammatory soup along with robust expression of facial allodynia. This provided the basis for pursuing studies of the behavioral effects of 3 diverse immunomodulatory drugs on facial allodynia. Pretreatment with either of two compounds broadly used as putative glial/immune inhibitors (minocycline, ibudilast) prevented the development of facial allodynia, as did treatment after supradural inflammatory soup but prior to the expression of facial allodynia. Lastly, the toll-like receptor 4 (TLR4) antagonist (+)-naltrexone likewise blocked development of facial allodynia after supradural inflammatory soup. Taken together, these exploratory data support that activated glia and/or immune cells may drive the development of facial allodynia in response to supradural inflammatory soup in unanesthetized male rats.


Subject(s)
Encephalitis/immunology , Hyperalgesia/immunology , Microglia/immunology , Minocycline/administration & dosage , Pyridines/administration & dosage , Trigeminal Caudal Nucleus/immunology , Animals , Dura Mater/drug effects , Encephalitis/complications , Hyperalgesia/chemically induced , Hyperalgesia/complications , Hyperalgesia/prevention & control , Inflammation Mediators/metabolism , Macrophages/immunology , Macrophages/metabolism , Male , Microglia/metabolism , Migraine Disorders/complications , Rats, Sprague-Dawley , Trigeminal Caudal Nucleus/drug effects
2.
PLoS One ; 9(7): e102194, 2014.
Article in English | MEDLINE | ID: mdl-25010766

ABSTRACT

BACKGROUND: Several studies demonstrate that estrogen treatment improves cerebral blood flow in ischemic brain regions of young ovariectomized (OVX) rats. Estrogen receptor-α (ER-α) may mediate estrogen's beneficial actions via its effects on the cerebral microvasculature. However, estrogen-derived benefit may be attenuated in aged, reproductively senescent (RS) rats. Our goal was to determine the effects of aging, estrogen deprivation and estrogen repletion with oral conjugated estrogens (CE) on postischemic cerebral microvascular protein expression of ER-α and ER-ß. METHODS: Fisher-344 (n = 37) female rats were randomly divided into the following groups: OVX, OVX CE-treated, RS untreated, and RS CE-treated. After 30 days pretreatment with CE (0.01 mg/kg) rats were subjected to 15 min. transient global cerebral ischemia. Non-ischemic naïve, OVX and RS rats were used as controls. Expression of ER-α and ER-ß in isolated cortical cerebral microvessels (20 to 100 µm in diameter) was assessed using Western blot and immunohistochemistry techniques. RESULTS: Age and reproductive status blunted nonischemic ER-α expression in microvessels of OVX rats (0.31 ± 0.05) and RS rats (0.33 ± 0.06) compared to naïve rats (0.45 ± 0.02). Postischemic microvascular expression of ER-α in OVX rats (0.01 ± 0.0) was increased by CE treatment (0.04 ± 0.01). Expression of ER-α in microvessels of RS rats (0.03 ± 0.02) was unaffected by CE treatment (0.01 ± 0.02). Western blot data are presented as a ratio of ER-α or ER-ß proteins to ß-actin and. Oral CE treatment had no effect on ER-ß expression in postischemic microvessels of OVX and RS rats. Statistical analysis was performed by One-Way ANOVA and a Newman-Keuls or Student's post-hoc test. CONCLUSION: Chronic treatment with CE increases ER-α but not ER-ß expression in cerebral microvessels of OVX rats. Aging appears to reduce the normal ability of estrogen to increase ER-α expression in postischemic cerebral microvessels.


Subject(s)
Aging/genetics , Cellular Senescence/genetics , Estrogen Receptor alpha/biosynthesis , Estrogen Receptor beta/biosynthesis , Aging/pathology , Animals , Brain Ischemia/drug therapy , Brain Ischemia/genetics , Brain Ischemia/pathology , Cellular Senescence/drug effects , Estrogen Receptor alpha/metabolism , Estrogen Receptor beta/metabolism , Estrogens, Conjugated (USP)/administration & dosage , Female , Humans , Microvessels/drug effects , Microvessels/pathology , Rats
3.
J Vis Exp ; (57): e3203, 2011 Nov 29.
Article in English | MEDLINE | ID: mdl-22143194

ABSTRACT

Many of estrogen's effects on vascular reactivity are mediated through interaction with estrogen receptors (1, 2, 3). Although two sub-types exist (estrogen receptor -α and ß),estrogen receptor-α has been identified in both the smooth muscle and in endothelial cells of pial arterial segments using fluorescent staining combined with confocal laser scanning microscopy (4). Furthermore, ER-α is located in the nuclei and in the cytoplasm of rat basilar arteries (5). The receptors are abundant and fluoresce brightly, but clear visualization of discrete groups of receptors is difficult likely due to the numbers located in many cell layers of pial vessel segments. Additionally, many reports using immunohistochemical techniques paired with confocal microscopy poorly detail the requirements critical for reproduction of experiments (6). Our purpose for this article is to describe a simple technique to optimize the staining and visualization of ER-α using cross-sectional slices of pial arterioles obtain from female rat brains. We first perfuse rats with Evans blue dye to easily identify surface pial arteries which we isolate under a dissecting microscope. Use of a cryostat to slice 8 µm cross sections of the arteries allows us to obtain thin vessel sections so that different vessel planes are more clearly visualized. Cutting across the vessel rather than use of a small vessel segment has the advantage of easier viewing of the endothelial and smooth muscle layers. In addition, use of a digital immunofluorescent microscope with extended depth software produces clear images of ten to twelve different vessel planes and is less costly than use of a confocal laser scanning microscope.


Subject(s)
Estrogen Receptor alpha/analysis , Microscopy, Fluorescence/methods , Pia Mater/blood supply , Animals , Arterioles/chemistry , Estrogen Receptor alpha/chemistry , Female , Rats
4.
Brain Behav Immun ; 24(1): 83-95, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19679181

ABSTRACT

Opioid-induced proinflammatory glial activation modulates wide-ranging aspects of opioid pharmacology including: opposition of acute and chronic opioid analgesia, opioid analgesic tolerance, opioid-induced hyperalgesia, development of opioid dependence, opioid reward, and opioid respiratory depression. However, the mechanism(s) contributing to opioid-induced proinflammatory actions remains unresolved. The potential involvement of toll-like receptor 4 (TLR4) was examined using in vitro, in vivo, and in silico techniques. Morphine non-stereoselectively induced TLR4 signaling in vitro, blocked by a classical TLR4 antagonist and non-stereoselectively by naloxone. Pharmacological blockade of TLR4 signaling in vivo potentiated acute intrathecal morphine analgesia, attenuated development of analgesic tolerance, hyperalgesia, and opioid withdrawal behaviors. TLR4 opposition to opioid actions was supported by morphine treatment of TLR4 knockout mice, which revealed a significant threefold leftward shift in the analgesia dose response function, versus wildtype mice. A range of structurally diverse clinically-employed opioid analgesics was found to be capable of activating TLR4 signaling in vitro. Selectivity in the response was identified since morphine-3-glucuronide, a morphine metabolite with no opioid receptor activity, displayed significant TLR4 activity, whilst the opioid receptor active metabolite, morphine-6-glucuronide, was devoid of such properties. In silico docking simulations revealed ligands bound preferentially to the LPS binding pocket of MD-2 rather than TLR4. An in silico to in vitro prediction model was built and tested with substantial accuracy. These data provide evidence that select opioids may non-stereoselectively influence TLR4 signaling and have behavioral consequences resulting, in part, via TLR4 signaling.


Subject(s)
Analgesics, Opioid/pharmacology , Lymphocyte Antigen 96/drug effects , Toll-Like Receptor 4/drug effects , Analgesia , Animals , Cell Line , Computer Simulation , Hot Temperature , Hyperalgesia/psychology , Infusion Pumps , Injections, Spinal , Lymphocyte Antigen 96/agonists , Lymphocyte Antigen 96/antagonists & inhibitors , Macrophages/drug effects , Male , Mice , Naloxone/pharmacology , Narcotic Antagonists/pharmacology , Pain Measurement , Rats , Rats, Sprague-Dawley , Reaction Time/drug effects , Receptors, Opioid, mu/agonists , Receptors, Opioid, mu/antagonists & inhibitors , Receptors, Opioid, mu/drug effects , Signal Transduction/drug effects , Substance Withdrawal Syndrome/psychology , Toll-Like Receptor 4/agonists , Toll-Like Receptor 4/antagonists & inhibitors , Transfection
5.
J Neurosci Methods ; 185(2): 236-45, 2010 Jan 15.
Article in English | MEDLINE | ID: mdl-19837113

ABSTRACT

Migraine is a neurovascular disorder that induces debilitating headaches associated with multiple symptoms including facial allodynia, characterized by heightened responsivity to normally innocuous mechanical stimuli. It is now well accepted that immune activation and immune-derived inflammatory mediators enhance pain responsivity, including the trigeminal system. Nociceptive ("pain" responsive) trigeminal nerves densely innervate the cranial meninges. We have recently proposed that the meninges may serve as a previously unidentified, key interface between the peripheral immune system and the CNS with potential implications for understanding underlying migraine mechanisms. Our focus here is the development of a model for facial allodynia associated with migraine. We developed a model wherein an indwelling catheter is placed between the skull and dura, allowing immunogenic stimuli to be administered over the dura in awake and freely moving rats. Since the catheter does not contact the brain itself, any proinflammatory cytokines induced following manipulation derive from resident or recruited meningeal immune cells. While surgery alone does not alter immune activation markers, TNF or IL6 mRNA and/or protein, it does decrease gene expression and increase protein expression of IL-1 at 4 days after surgery. Using this model we show the induction of facial allodynia in response to supradural administration of either the HIV glycoprotein gp120 or inflammatory soup (bradykinin, histamine, serotonin, and prostaglandin E2), and the induction of hindpaw allodynia in our model after inflammatory soup. This model allows time- and dose-dependent assessment of the relationship between changes in meningeal inflammation and corresponding exaggerated pain behaviors.


Subject(s)
Disease Models, Animal , Face/physiopathology , Migraine Disorders/pathology , Migraine Disorders/physiopathology , Pain Threshold/physiology , Wakefulness , Animals , Antigens, CD/genetics , Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/genetics , Antigens, Differentiation, Myelomonocytic/metabolism , Blood-Brain Barrier/physiopathology , Bradykinin/adverse effects , CD11b Antigen/genetics , CD11b Antigen/metabolism , Catheters, Indwelling , Cytokines/genetics , Cytokines/metabolism , Dose-Response Relationship, Drug , Drug Combinations , Gene Expression Regulation/drug effects , Gene Expression Regulation/physiology , HIV Envelope Protein gp120/adverse effects , Histamine/adverse effects , Hyperalgesia/etiology , Male , Migraine Disorders/chemically induced , Pain Measurement/methods , Rats , Rats, Sprague-Dawley , Serotonin/adverse effects , Time Factors
6.
Brain Behav Immun ; 22(8): 1178-89, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18599265

ABSTRACT

Spinal proinflammatory cytokines are powerful pain-enhancing signals that contribute to pain following peripheral nerve injury (neuropathic pain). Recently, one proinflammatory cytokine, interleukin-1, was also implicated in the loss of analgesia upon repeated morphine exposure (tolerance). In contrast to prior literature, we demonstrate that the action of several spinal proinflammatory cytokines oppose systemic and intrathecal opioid analgesia, causing reduced pain suppression. In vitro morphine exposure of lumbar dorsal spinal cord caused significant increases in proinflammatory cytokine and chemokine release. Opposition of analgesia by proinflammatory cytokines is rapid, occurring < or =5 min after intrathecal (perispinal) opioid administration. We document that opposition of analgesia by proinflammatory cytokines cannot be accounted for by an alteration in spinal morphine concentrations. The acute anti-analgesic effects of proinflammatory cytokines occur in a p38 mitogen-activated protein kinase and nitric oxide dependent fashion. Chronic intrathecal morphine or methadone significantly increased spinal glial activation (toll-like receptor 4 mRNA and protein) and the expression of multiple chemokines and cytokines, combined with development of analgesic tolerance and pain enhancement (hyperalgesia, allodynia). Statistical analysis demonstrated that a cluster of cytokines and chemokines was linked with pain-related behavioral changes. Moreover, blockade of spinal proinflammatory cytokines during a stringent morphine regimen previously associated with altered neuronal function also attenuated enhanced pain, supportive that proinflammatory cytokines are importantly involved in tolerance induced by such regimens. These data implicate multiple opioid-induced spinal proinflammatory cytokines in opposing both acute and chronic opioid analgesia, and provide a novel mechanism for the opposition of acute opioid analgesia.


Subject(s)
Analgesia , Cytokines/metabolism , Morphine/pharmacology , Pain/immunology , Analgesics, Opioid/pharmacology , Animals , Catheters, Indwelling , Chemokine CX3CL1/immunology , Cytokines/cerebrospinal fluid , Hyperalgesia/drug therapy , Injections, Spinal , Interleukin 1 Receptor Antagonist Protein/pharmacology , Interleukin-1/immunology , Male , Methadone/pharmacology , Pain/drug therapy , Pain/metabolism , Pain Measurement , Pain Threshold/drug effects , RNA, Messenger , Rats , Rats, Sprague-Dawley , Receptors, Tumor Necrosis Factor, Type I/pharmacology , Reverse Transcriptase Polymerase Chain Reaction , Spinal Cord/immunology , Spinal Cord/metabolism , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...