Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Animals (Basel) ; 13(23)2023 Nov 22.
Article in English | MEDLINE | ID: mdl-38066968

ABSTRACT

Cytoplasmic linker-associated protein-2 (CLASP2) is a member of the CLIP-associating proteins (CLASPs) family involved in the structure and function of microtubules and Golgi apparatus. Several studies performed using different mammalian and non-mammalian model organisms reported that CLASP2 controls microtubule dynamics and the organization of microtubule networks. In Drosophila and mice, an important role of CLASP2 during the development of germ cell lines has been uncovered. However, no study has clearly defined its role during fish germ cell differentiation. In the present study, we used two excellent aquatic animal models among teleost fish: zebrafish (Danio rerio) and guppy (Poecilia reticulata). Using qPCR, we found that the clasp2 transcript level is significantly high in the testis of both fish. Then, by in situ hybridization, we localized the clasp2 transcript in the spermatozoa of zebrafish and the spermatozeugmata of guppy. Our data suggest a potential role for this gene in the last stage of spermiogenesis in fish.

2.
PLoS One ; 18(12): e0294914, 2023.
Article in English | MEDLINE | ID: mdl-38128019

ABSTRACT

Neonatal resuscitation is an uncommon, albeit critical task that is more likely to succeed if performed properly and promptly. In this context, simulation is an appropriate way for training and assessing the abilities of all medical staff involved in delivery room care. Recent studies have shown that learning is enhanced if the simulation experience is realistic and engaging. Hence, Virtual Reality can be beneficial for newborn resuscitation training. However, the difficulty of providing realistic haptic interaction limits its use. To overcome this constraint, we have designed RiNeo MR, a simulator for newborn life support training, combining a sensorized manikin to monitor in real time resuscitation skills, with a Virtual Reality application. The system includes a Virtual Reality headset, Leap Motion to track the user's hands, sensorized bag valve mask, and manikin to monitor head and mask positioning, ventilation, and chest compression. RiNeo MR can be used in two modalities: 2D to let the trainee practice resuscitation manoeuvres on the physical manikin, while receiving real time feedback; 3D that allows the user to be immersed in a virtual environment and practice in an hospital-like setting. In the 3D mode, virtual and real manikins are overlapped and communicate in real time. Tests on 16 subjects (11 controls without medical expertise and 5 paediatric residents) demonstrated that the simulator is well tolerated in terms of discomfort. Moreover, the simulator is high rated for user experience and system usability, suggesting that RiNeo MR can be a promising tool to improve newborn life support training. RiNeo MR is a proof of concept of a mixed-reality newborn life support simulator that can be a promising tool to spread newborn resuscitation high-quality training among healthcare providers involved in perinatal medicine.


Subject(s)
Augmented Reality , Simulation Training , Virtual Reality , Humans , Infant, Newborn , Child , Resuscitation , Computer Simulation , Learning , User-Computer Interface , Clinical Competence
3.
Prehosp Disaster Med ; 38(4): 450-455, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37605860

ABSTRACT

INTRODUCTION: The Stop the Bleed campaign provided civilians with tourniquet application training and increased the demand for tourniquets among the general population, which led to the development of new commercially available devices. However, most widely available tourniquets have not undergone testing by regulatory bodies and their efficacy remains unknown. STUDY OBJECTIVE: This study aimed to compare the efficacy and performance of Combat Application Tourniquets (CAT) versus uncertified tourniquets. METHODS: This study compared 25 CAT with 50 commercially available "look-alike" tourniquets (LA-TQ) resembling the CAT. The CAT and the LA-TQ were compared for cost, size, and tested during one-hour and six-hour applications on a manikin's leg. The outcomes were force applied, force variation during the application, and tourniquet rupture rate. RESULTS: The LA-TQ were cheaper (US$6.07 versus US$27.19), shorter, and had higher inter-device variability than the CAT (90.1 [SE = 0.5] cm versus 94.5 [SE = 0.1] cm; P <.001). The CAT applied a significantly greater force during the initial application when compared to the LA-TQ (65 [SE = 3] N versus 14 [SE = 1] N; P <.001). While the initial application force was maintained for up to six hours in both groups, the CAT group applied an increased force during one-hour applications (group effect: F [1,73] = 105.65; P <.001) and during six-hour applications (group effect: F [1,12] = 9.79; P = .009). The rupture rate differed between the CAT and the LA-TQ (0% versus 4%). CONCLUSION: The LA-TQ applied a significantly lower force and had a higher rupture rate compared to the CAT, potentially affecting tourniquet performance in the context of public bleeding control. These findings warrant increased layperson education within the framework of the Stop the Bleed campaign and further investigations on the effectiveness of uncertified devices in real-world applications.


Subject(s)
Certification , Tourniquets , Humans
4.
Int J Mol Sci ; 24(13)2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37446129

ABSTRACT

In vertebrates, neurotrophins and their receptors play a fundamental role in the central and peripheral nervous systems. Several studies reported that each neurotrophin/receptor signalling pathway can perform various functions during axon development, neuronal growth, and plasticity. Previous investigations in some fish species have identified neurotrophins and their receptors in the spinal cord under physiological conditions and after injuries, highlighting their potential role during regeneration. In our study, for the first time, we used an excellent animal model, the zebrafish (Danio rerio), to compare the mRNA localization patterns of neurotrophins and receptors in the spinal cord. We quantified the levels of mRNA using qPCR, and identified the transcription pattern of each neurotrophin/receptor pathway via in situ hybridization. Our data show that ngf/trka are the most transcribed members in the adult zebrafish spinal cord.


Subject(s)
Nerve Growth Factors , Zebrafish , Animals , Nerve Growth Factors/metabolism , Zebrafish/genetics , Zebrafish/metabolism , Receptors, Nerve Growth Factor/genetics , Spinal Cord/metabolism , RNA, Messenger/metabolism , Receptor, trkA/genetics
5.
Nat Commun ; 13(1): 4107, 2022 07 15.
Article in English | MEDLINE | ID: mdl-35840613

ABSTRACT

Unrestrained ketogenesis leads to life-threatening ketoacidosis whose incidence is high in patients with diabetes. While insulin therapy reduces ketogenesis this approach is sub-optimal. Here, we report an insulin-independent pathway able to normalize diabetic ketogenesis. By generating insulin deficient male mice lacking or re-expressing Toll-Like Receptor 4 (TLR4) only in liver or hepatocytes, we demonstrate that hepatic TLR4 in non-parenchymal cells mediates the ketogenesis-suppressing action of S100A9. Mechanistically, S100A9 acts extracellularly to activate the mechanistic target of rapamycin complex 1 (mTORC1) in a TLR4-dependent manner. Accordingly, hepatic-restricted but not hepatocyte-restricted loss of Tuberous Sclerosis Complex 1 (TSC1, an mTORC1 inhibitor) corrects insulin-deficiency-induced hyperketonemia. Therapeutically, recombinant S100A9 administration restrains ketogenesis and improves hyperglycemia without causing hypoglycemia in diabetic mice. Also, circulating S100A9 in patients with ketoacidosis is only marginally increased hence unveiling a window of opportunity to pharmacologically augment S100A9 for preventing unrestrained ketogenesis. In summary, our findings reveal the hepatic S100A9-TLR4-mTORC1 axis in non-parenchymal cells as a promising therapeutic target for restraining diabetic ketogenesis.


Subject(s)
Diabetes Mellitus, Experimental , Ketosis , Animals , Calgranulin B/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Insulin/metabolism , Ketone Bodies/metabolism , Liver/metabolism , Male , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism
6.
JMIR Serious Games ; 10(1): e28595, 2022 Mar 23.
Article in English | MEDLINE | ID: mdl-35319477

ABSTRACT

The use of augmented reality (AR) and virtual reality (VR) for life support training is increasing. These technologies provide an immersive experience that supports learning in a safe and controlled environment. This review focuses on the use of AR and VR for emergency care training for health care providers, medical students, and nonprofessionals. In particular, we analyzed (1) serious games, nonimmersive games, both single-player and multiplayer; (2) VR tools ranging from semi-immersive to immersive virtual and mixed reality; and (3) AR applications. All the toolkits have been investigated in terms of application goals (training, assessment, or both), simulated procedures, and skills. The main goal of this work is to summarize and organize the findings of studies coming from multiple research areas in order to make them accessible to all the professionals involved in medical simulation. The analysis of the state-of-the-art technologies reveals that tools and studies related to the multiplayer experience, haptic feedback, and evaluation of user's manual skills in the foregoing health care-related environments are still limited and require further investigation. Also, there is an additional need to conduct studies aimed at assessing whether AR/VR-based systems are superior or, at the minimum, comparable to traditional training methods.

7.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 5019-5022, 2021 11.
Article in English | MEDLINE | ID: mdl-34892334

ABSTRACT

Massive hemorrhage remains the number one cause of preventable death in trauma worldwide. However, immediate intervention by a bystander can significantly improve the survival of the injured person. In this context, the tourniquets represent the most quick and effective devices for stopping arterial and venous blood flow. The aim of this study was to implement a system to detect the force applied by a tourniquet on a simulated limb, without blood flow. The system we designed is characterized by four low-cost force sensing resistors placed on each lower limb of a manikin, below the groin. Tests on 21 tourniquets, revealed that our system is able to detect the force applied for 60 minutes, also discriminating between turns. Hence, this system can be used to compare the performance of different types of devices, but also to assess proper tourniquet placement in trainees and trauma care providers, thus making it a versatile low-cost device.


Subject(s)
Manikins , Tourniquets , Hemorrhage/therapy , Humans , Lower Extremity
8.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 5043-5046, 2021 11.
Article in English | MEDLINE | ID: mdl-34892340

ABSTRACT

The first minute of life, the Golden Minute, has been defined as a critical window in which fundamental physiological processes occur for establishing spontaneous ventilation in a newborn. Resuscitation is more likely to succeed if it is performed properly and at the right time. In this scenario, simulation is an appropriate tool for training and evaluating the abilities of all staff working in the delivery room, as well as students. As simulations require a high degree of immersivity in order to be effective, the use of technologies like Virtual (VR) and mixed reality (MR) have garnered more interest in training. Currently, some VR and MR applications have been developed for adult life support training, but neonatal tools are still missing. To overcome this limitation, we present RiNeo MR, a prototype of a MR simulator for neonatal resuscitation training. The simulator consists of (i) a sensorized physical model of the newborn that allows monitoring chest compressions; (ii) a VR head mounted display that allows visualizing a virtual 3D model of the manikin and scenarios of the delivery and operating rooms. This enables students, and healthcare providers to be immersed in realistic hospital settings while performing life support procedures on the newborn manikin. Clinical Relevance-The newborn life support training (NLS) in facilities reduces term intrapartum-related deaths by 30%.


Subject(s)
Augmented Reality , Virtual Reality , Adult , Computer Simulation , Humans , Infant, Newborn , Manikins , Resuscitation
9.
Cells ; 10(10)2021 10 07.
Article in English | MEDLINE | ID: mdl-34685661

ABSTRACT

Metabolic disorders are very common in the population worldwide and are among the diseases with the highest health utilization and costs per person. Despite the ongoing efforts to develop new treatments, currently, for many of these disorders, there are no approved therapies, resulting in a huge economic hit and tension for society. In this review, we recapitulate the recent advancements in stem cell (gene) therapy as potential tools for the long-term treatment of both inherited (lysosomal storage diseases) and acquired (diabetes mellitus, obesity) metabolic disorders, focusing on the main promising results observed in human patients and discussing the critical hurdles preventing the definitive jump of this approach from the bench to the clinic.


Subject(s)
Metabolic Diseases/therapy , Stem Cell Research , Genetic Therapy , Humans , Stem Cell Transplantation
10.
Front Neurosci ; 15: 707828, 2021.
Article in English | MEDLINE | ID: mdl-34335178

ABSTRACT

We have previously demonstrated that, in rested subjects, extensive practice in a motor learning task increased both electroencephalographic (EEG) theta power in the areas involved in learning and improved the error rate in a motor test that shared similarities with the task. A nap normalized both EEG and performance changes. We now ascertain whether extensive visual declarative learning produces results similar to motor learning. Thus, during the morning, we recorded high-density EEG in well rested young healthy subjects that learned the order of different visual sequence task (VSEQ) for three one-hour blocks. Afterward, a group of subjects took a nap and another rested quietly. Between each VSEQ block, we recorded spontaneous EEG (sEEG) at rest and assessed performance in a motor test and a visual working memory test that shares similarities with VSEQ. We found that after the third block, VSEQ induced local theta power increases in the sEEG over a right temporo-parietal area that was engaged during the task. This local theta increase was preceded by increases in alpha and beta power over the same area and was paralleled by performance decline in the visual working memory test. Only after the nap, VSEQ learning rate improved and performance in the visual working memory test was restored, together with partial normalization of the local sEEG changes. These results suggest that intensive learning, like motor learning, produces local theta power increases, possibly reflecting local neuronal fatigue. Sleep may be necessary to resolve neuronal fatigue and its effects on learning and performance.

11.
Sleep ; 44(1)2021 01 21.
Article in English | MEDLINE | ID: mdl-32745192

ABSTRACT

Do brain circuits become fatigued due to intensive neural activity or plasticity? Is sleep necessary for recovery? Well-rested subjects trained extensively in a visuo-motor rotation learning task (ROT) or a visuo-motor task without rotation learning (MOT), followed by sleep or quiet wake. High-density electroencephalography showed that ROT training led to broad increases in EEG power over a frontal cluster of electrodes, with peaks in the theta (mean ± SE: 24% ± 6%, p = 0.0013) and beta ranges (10% ± 3%, p = 0.01). These traces persisted in the spontaneous EEG (sEEG) between sessions (theta: 42% ± 8%, p = 0.0001; beta: 35% ± 7%, p = 0.002) and were accompanied by increased errors in a motor test with kinematic characteristics and neural substrates similar to ROT (81.8% ± 0.8% vs. 68.2% ± 2.3%; two-tailed paired t-test: p = 0.00001; Cohen's d = 1.58), as well as by score increases of subjective task-specific fatigue (4.00 ± 0.39 vs. 5.36 ± 0.39; p = 0.0007; Cohen's d = 0.60). Intensive practice with MOT did not affect theta sEEG or the motor test. A nap, but not quiet wake, induced a local sEEG decrease of theta power by 33% (SE: 8%, p = 0.02), renormalized test performance (70.9% ± 2.9% vs 79.1% ± 2.7%, p = 0.018, Cohen's d = 0.85), and improved learning ability in ROT (adaptation rate: 71.2 ± 1.2 vs. 73.4 ± 0.9, p = 0.024; Cohen's d = 0.60). Thus, sleep is necessary to restore plasticity-induced fatigue and performance.


Subject(s)
Electroencephalography , Sleep , Fatigue/etiology , Humans , Learning , Rest
12.
Front Syst Neurosci ; 14: 61, 2020.
Article in English | MEDLINE | ID: mdl-33013332

ABSTRACT

Beta oscillations (13.5-25 Hz) over the sensorimotor areas are characterized by a power decrease during movement execution (event-related desynchronization, ERD) and a sharp rebound after the movement end (event-related synchronization, ERS). In previous studies, we demonstrated that movement-related beta modulation depth (peak ERS-ERD) during reaching increases within 1-h practice. This increase may represent plasticity processes within the sensorimotor network. If so, beta modulation during a reaching test should be affected by previous learning activity that engages the sensorimotor system but not by learning involving other systems. We thus recorded high-density EEG activity in a group of healthy subjects performing three 45-min blocks of motor adaptation task to a visually rotated display (ROT) and in another performing three blocks of visual sequence-learning (VSEQ). Each block of either ROT or VSEQ was followed by a simple reaching test (mov) without rotation. We found that beta modulation depth increased with practice across mov tests. However, such an increase was greater in the group performing ROT over both the left and frontal areas previously involved in ROT. Importantly, beta modulation values returned to baseline values after a 90-min of either nap or quiet wake. These results show that previous practice leaves a trace in movement-related beta modulation and therefore such increases are cumulative. Furthermore, as sleep is not necessary to bring beta modulation values to baseline, they could reflect local increases of neuronal activity and decrease of energy and supplies.

13.
Front Neurol ; 11: 494, 2020.
Article in English | MEDLINE | ID: mdl-32625162

ABSTRACT

Stroke survivors show greater postural oscillations and altered muscular activation compared to healthy controls. This results in difficulties in walking and standing, and in an increased risk of falls. A proper control of the trunk is related to a stable walk and to a lower falling risk; to this extent, rehabilitative protocols are currently working on core stability. The main objective of this work was to evaluate the effectiveness of trunk and balance training performed with a new robotic device designed for evaluation and training of balance and core stability, in improving the recovery of chronic stroke patients compared with a traditional physical therapy program. Thirty chronic stroke patients, randomly divided in two groups, either underwent a traditional rehabilitative protocol, or a robot-based program. Each patient was assessed before and after the rehabilitation and at 3-months follow-up with clinical and robot-based evaluation exercises focused on static and dynamic balance and trunk control. Results from clinical scores showed an improvement in both groups in balance and trunk control. Robot-based indices analysis indicated that the experimental group showed greater improvements in proprioceptive control, reactive balance and postural control in unstable conditions, compared to the control group, showing an improved trunk control with reduced compensatory strategies at the end of the training. Moreover, the experimental group had an increased retention of the benefits obtained with training at 3 months follow up. These results support the idea that such robotic device is a promising tool for stroke rehabilitation.

14.
IEEE Int Conf Rehabil Robot ; 2019: 1254-1259, 2019 06.
Article in English | MEDLINE | ID: mdl-31374801

ABSTRACT

Movement is associated with power changes over sensory-motor areas in different frequency ranges, including beta (15-30 Hz). In fact, beta power starts decreasing before the movement onset (event-related desynchronization, ERD) and rebounds after its end (event-related synchronization, ERS). There is increasing evidence that beta modulation depth (measured as ERD-ERS difference) increases with practice in a planar reaching task, suggesting that this measure may reflect plasticity processes. In the present work, we analyzed beta ERD, ERS and modulation depth in healthy subjects to determine their changes over three regions of interest (ROIs): right and left sensorimotor and frontal areas, during a reaching task with the right arm. We found that ERD, ERS and modulation depth increased with practice with lower values over the right sensory-motor area. Timing of peak ERD and ERS were similar across ROIs, with ERS peak occurring earlier in later sets. Finally, we found that beta ERS of the frontal ROI involved higher beta range (23-29 Hz) than the sensory-motor ROIs (15-18 Hz). Altogether these results suggest that practice in a reaching task is associated with modification of beta power and timing. Additionally, beta ERS may have different functional meaning in the three ROIs, as suggested by the involvement of upper and lower beta bands in the frontal and sensorimotor ROIs, respectively.


Subject(s)
Motor Cortex/physiopathology , Adult , Electroencephalography , Electromyography , Female , Humans , Male , Middle Aged , Movement/physiology , Psychomotor Performance/physiology , Young Adult
15.
IEEE Int Conf Rehabil Robot ; 2019: 1260-1265, 2019 06.
Article in English | MEDLINE | ID: mdl-31374802

ABSTRACT

Movement is accompanied by modulation of oscillatory activity in different ranges over the sensorimotor areas. This increase is more evident in normal subjects and less in patients with Parkinson's Disease (PD), a disorder associated with deficits in the formation of new motor skills. Here, we investigated whether such EEG changes improved in a group of PD patients, after two different treatments and whether this relates to performance. Subjects underwent either a session of 5 Hz repetitive Transcranial Magnetic Stimulation (rTMS) over the right posterior parietal cortex or a 4-week Multidisciplinary Intensive Rehabilitation Treatment (MIRT). We used a reaching task with visuo-motor adaptation to a rotated display in incremental 10° steps up to 60°. Retention of the learned rotation was tested before and after either intervention over two consecutive days. High-density EEG was recorded throughout the testing. We found that patients adapted their movements to the rotated display similarly to controls, although retention was poorer. Both rTMS and MIRT lead to improvement in retention of the learned rotation. Mean beta modulation levels changed significantly after MIRT and not after rTMS. These results suggest that rTMS produced local improvement reflected in enhanced short-term skill retention; on the other hand, MIRT determined changes across the contralateral sensorimotor area, reflected in beta EEG changes.


Subject(s)
Learning/physiology , Parkinson Disease/rehabilitation , Transcranial Direct Current Stimulation/methods , Aged , Female , Humans , Male , Middle Aged
16.
Nat Commun ; 10(1): 3545, 2019 08 07.
Article in English | MEDLINE | ID: mdl-31391467

ABSTRACT

Tens of millions suffer from insulin deficiency (ID); a defect leading to severe metabolic imbalance and death. The only means for management of ID is insulin therapy; yet, this approach is sub-optimal and causes life-threatening hypoglycemia. Hence, ID represents a great medical and societal challenge. Here we report that S100A9, also known as Calgranulin B or Myeloid-Related Protein 14 (MRP14), is a leptin-induced circulating cue exerting beneficial anti-diabetic action. In murine models of ID, enhanced expression of S100A9 alone (i.e. without administered insulin and/or leptin) slightly improves hyperglycemia, and normalizes key metabolic defects (e.g. hyperketonemia, hypertriglyceridemia, and increased hepatic fatty acid oxidation; FAO), and extends lifespan by at least a factor of two. Mechanistically, we report that Toll-Like Receptor 4 (TLR4) is required, at least in part, for the metabolic-improving and pro-survival effects of S100A9. Thus, our data identify the S100A9/TLR4 axis as a putative target for ID care.


Subject(s)
Calgranulin B/metabolism , Diabetes Mellitus, Experimental/metabolism , Hyperglycemia/metabolism , Longevity/physiology , Toll-Like Receptor 4/metabolism , Animals , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/etiology , Diphtheria Toxin/toxicity , Fatty Acids/metabolism , Humans , Hyperglycemia/blood , Hyperglycemia/etiology , Insulin/deficiency , Leptin/administration & dosage , Liver/metabolism , Male , Mice , Mice, Knockout , Oxidation-Reduction , Signal Transduction/drug effects , Signal Transduction/physiology , Streptozocin/toxicity , Toll-Like Receptor 4/genetics
17.
Neural Plast ; 2019: 1619290, 2019.
Article in English | MEDLINE | ID: mdl-31223306

ABSTRACT

During movement, modulation of beta power occurs over the sensorimotor areas, with a decrease just before its start (event-related desynchronization, ERD) and a rebound after its end (event-related synchronization, ERS). We have recently found that the depth of ERD-to-ERS modulation increases during practice in a reaching task and the following day decreases to baseline levels. Importantly, the magnitude of the beta modulation increase during practice is highly correlated with the retention of motor skill tested the following day. Together with other evidence, this suggests that the increase of practice-related modulation depth may be the expression of sensorimotor cortex's plasticity. Here, we determine whether the practice-related increase of beta modulation depth is equally present in a group of younger and a group of older subjects during the performance of a 30-minute block of reaching movements. We focused our analyses on two regions of interest (ROIs): the left sensorimotor and the frontal region. Performance indices were significantly different in the two groups, with the movements of older subjects being slower and less accurate. Importantly, both groups presented a similar increase of the practice-related beta modulation depth in both ROIs in the course of the task. Peak latency analysis revealed a progressive delay of the ERS peak that correlated with the total movement time. Altogether, these findings support the notion that the depth of beta modulation in a reaching movement task does not depend on age and confirm previous findings that only ERS peak latency but not ERS magnitude is related to performance indices.


Subject(s)
Aging/physiology , Beta Rhythm/physiology , Brain/physiology , Psychomotor Performance/physiology , Adult , Age Factors , Aged , Biomechanical Phenomena/physiology , Electroencephalography , Female , Humans , Male , Middle Aged , Young Adult
18.
Front Behav Neurosci ; 13: 49, 2019.
Article in English | MEDLINE | ID: mdl-30923498

ABSTRACT

Beta power over the sensorimotor areas starts decreasing just before movement execution (event-related desynchronization, ERD) and increases post-movement (event-related synchronization, ERS). In this study, we determined whether the magnitude of beta ERD, ERS and modulation depth are linked to movement characteristics, such as movement length and velocity. Brain activity was recorded with a 256-channels EEG system in 35 healthy subjects performing fast, uncorrected reaching movements to targets located at three distances. We found that the temporal profiles of velocity were bell-shaped and scaled to the appropriate target distance. However, the magnitude of beta ERD, ERS and modulation depth, as well as their timing, did not significantly change and were not related to movement features.

19.
J Cell Biochem ; 120(5): 6813-6819, 2019 May.
Article in English | MEDLINE | ID: mdl-30714188

ABSTRACT

The most prevalent malignancy in the oral cavity is represented by oral squamous cell carcinoma, an aggressive disease mostly detected in low-income communities. This neoplasia is mostly diffused in older men particularly exposed to risk factors such as tobacco, alcohol, and a diet rich in fatty foods and poor in vegetables. In oral squamous cell carcinoma, a wide range of matrix-cleaving proteinases are involved in extracellular matrix remodeling of cancer microenvironment. In particular, matrix metalloproteinases (MMPs) represent the major and most investigated protagonists. Owing to their strong involvement in malignant pathologies, MMPs are considered the most promising new biomarkers in cancer diagnosis and prognosis. The interest in studying MMPs in oral cancer biology is also owing to their prominent role in epithelial-to-mesenchymal transition (EMT). EMT is an intricate process involving different complex pathways. EMT-related proteins are attractive diagnostic biomarkers that characterize the activation of biological events that promote cancer's aggressive expansion. Different antioncogenic natural compounds have been investigated to counteract oral carcinogenesis, with the scope of obtaining better clinical results and lower morbidity. In particular, we describe the role of different nutraceuticals used for the regulation of MMP-related invasion and proliferation of oral cancer cells.

20.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 4182-4185, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31946791

ABSTRACT

During spontaneous and operative deliveries it is important to correctly estimate the position and orientation of the fetus in the birth canal. In fact, incorrect evaluations can lead to errors in ventouse extraction, forceps application, and increased use of cesarean section. In this scenario, simulation is an appropriate tool for training and evaluating the abilities of gynecologists and midwives, because it allows student to practice both common situations and unlikely or risky events.Here we present eBSim, a prototype of a low-cost birth simulator that allows for precise identification of the fetal position, orientation, and station. The simulator consists on a sensorized physical model of the fetus and the pelvis, a corresponding virtual model, and an application, which allows students, instructors, and doctors to use the simulator for training and assessment of gynecological skills.


Subject(s)
Cesarean Section , Delivery, Obstetric , Obstetrics , Simulation Training , Vacuum Extraction, Obstetrical , Delivery, Obstetric/education , Female , Fetus , Humans , Obstetrics/education , Parturition , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL
...