Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
Add more filters











Publication year range
1.
Nat Commun ; 15(1): 1502, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38374076

ABSTRACT

D-myo-inositol 1,4,5-trisphosphate (InsP3) is a fundamental second messenger in cellular Ca2+ mobilization. InsP3 3-kinase, a highly specific enzyme binding InsP3 in just one mode, phosphorylates InsP3 specifically at its secondary 3-hydroxyl group to generate a tetrakisphosphate. Using a chemical biology approach with both synthetised and established ligands, combining synthesis, crystallography, computational docking, HPLC and fluorescence polarization binding assays using fluorescently-tagged InsP3, we have surveyed the limits of InsP3 3-kinase ligand specificity and uncovered surprisingly unforeseen biosynthetic capacity. Structurally-modified ligands exploit active site plasticity generating a helix-tilt. These facilitated uncovering of unexpected substrates phosphorylated at a surrogate extended primary hydroxyl at the inositol pseudo 3-position, applicable even to carbohydrate-based substrates. Crystallization experiments designed to allow reactions to proceed in situ facilitated unequivocal characterization of the atypical tetrakisphosphate products. In summary, we define features of InsP3 3-kinase plasticity and substrate tolerance that may be more widely exploitable.


Subject(s)
Inositol 1,4,5-Trisphosphate , Phosphotransferases (Alcohol Group Acceptor) , Inositol 1,4,5-Trisphosphate/metabolism , Catalytic Domain , Ligands , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Inositol Phosphates/metabolism , Calcium/metabolism , Inositol 1,4,5-Trisphosphate Receptors/metabolism
2.
Cardiovasc Res ; 120(8): 954-970, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38252884

ABSTRACT

AIMS: Adiponectin is an adipocyte-derived circulating protein that exerts cardiovascular and metabolic protection. Due to the futile degradation of endogenous adiponectin and the challenges of exogenous administration, regulatory mechanisms of adiponectin biosynthesis are of significant pharmacological interest. METHODS AND RESULTS: Here, we report that 5-diphosphoinositol 1,2,3,4,6-pentakisphosphate (5-InsP7) generated by inositol hexakisphosphate kinase 1 (IP6K1) governed circulating adiponectin levels via thiol-mediated protein quality control in the secretory pathway. IP6K1 bound to adiponectin and DsbA-L and generated 5-InsP7 to stabilize adiponectin/ERp44 and DsbA-L/Ero1-Lα interactions, driving adiponectin intracellular degradation. Depleting 5-InsP7 by either IP6K1 deletion or pharmacological inhibition blocked intracellular adiponectin degradation. Whole-body and adipocyte-specific deletion of IP6K1 boosted plasma adiponectin levels, especially its high molecular weight forms, and activated AMPK-mediated protection against myocardial ischaemia-reperfusion injury. Pharmacological inhibition of 5-InsP7 biosynthesis in wild-type but not adiponectin knockout mice attenuated myocardial ischaemia-reperfusion injury. CONCLUSION: Our findings revealed that 5-InsP7 is a physiological regulator of adiponectin biosynthesis that is amenable to pharmacological intervention for cardioprotection.


Subject(s)
Adiponectin , Mice, Inbred C57BL , Mice, Knockout , Myocardial Reperfusion Injury , Animals , Adiponectin/metabolism , Adiponectin/genetics , Adiponectin/blood , Myocardial Reperfusion Injury/prevention & control , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/genetics , Myocardial Reperfusion Injury/blood , Myocardial Reperfusion Injury/enzymology , Phosphotransferases (Phosphate Group Acceptor)/metabolism , Phosphotransferases (Phosphate Group Acceptor)/genetics , Inositol Phosphates/metabolism , Adipocytes/metabolism , Adipocytes/enzymology , Adipocytes/drug effects , AMP-Activated Protein Kinases/metabolism , AMP-Activated Protein Kinases/genetics , Male , Mice , Disease Models, Animal , Signal Transduction , Proteolysis , Humans
3.
Biochemistry ; 63(1): 42-52, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38146842

ABSTRACT

Inositol phosphates and their pyrophosphorylated derivatives are responsive to the phosphate supply and are agents of phosphate homeostasis and other aspects of physiology. It seems likely that the enzymes that interconvert these signals work against the prevailing milieu of mixed populations of competing substrates and products. The synthesis of inositol pyrophosphates is mediated in plants by two classes of ATP-grasp fold kinase: PPIP5 kinases, known as VIH, and members of the inositol tris/tetrakisphosphate kinase (ITPK) family, specifically ITPK1/2. A molecular explanation of the contribution of ITPK1/2 to inositol pyrophosphate synthesis and turnover in plants is incomplete: the absence of nucleotide in published crystal structures limits the explanation of phosphotransfer reactions, and little is known of the affinity of potential substrates and competitors for ITPK1. Herein, we describe a complex of ADP and StITPK1 at 2.26 Å resolution and use a simple fluorescence polarization approach to compare the affinity of binding of diverse inositol phosphates, inositol pyrophosphates, and analogues. By simple HPLC, we reveal the novel catalytic capability of ITPK1 for different inositol pyrophosphates and show Ins(3,4,5,6)P4 to be a potent inhibitor of the inositol pyrophosphate-synthesizing activity of ITPK1. We further describe the exquisite specificity of ITPK1 for the myo-isomer among naturally occurring inositol hexakisphosphates.


Subject(s)
Diphosphates , Solanum tuberosum , Inositol Phosphates , Phytic Acid
4.
Chemistry ; 29(67): e202302426, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37773020

ABSTRACT

Inositol pyrophosphates (PP-IPs) are densely phosphorylated messenger molecules involved in numerous biological processes. PP-IPs contain one or two pyrophosphate group(s) attached to a phosphorylated myo-inositol ring. 5PP-IP5 is the most abundant PP-IP in human cells. To investigate the function and regulation by PP-IPs in biological contexts, metabolically stable analogs have been developed. Here, we report the synthesis of a new fluorinated phosphoramidite reagent and its application for the synthesis of a difluoromethylene bisphosphonate analog of 5PP-IP5 . Subsequently, the properties of all currently reported analogs were benchmarked using a number of biophysical and biochemical methods, including co-crystallization, ITC, kinase activity assays and chromatography. Together, the results showcase how small structural alterations of the analogs can have notable effects on their properties in a biochemical setting and will guide in the choice of the most suitable analog(s) for future investigations.


Subject(s)
Diphosphates , Inositol Phosphates , Humans , Inositol Phosphates/chemistry , Halogenation , Phosphorylation
5.
Sci Signal ; 16(789): eadd3184, 2023 06 13.
Article in English | MEDLINE | ID: mdl-37311034

ABSTRACT

The activation of at least 23 different mammalian kinases requires the phosphorylation of their hydrophobic motifs by the kinase PDK1. A linker connects the phosphoinositide-binding PH domain to the catalytic domain, which contains a docking site for substrates called the PIF pocket. Here, we used a chemical biology approach to show that PDK1 existed in equilibrium between at least three distinct conformations with differing substrate specificities. The inositol polyphosphate derivative HYG8 bound to the PH domain and disrupted PDK1 dimerization by stabilizing a monomeric conformation in which the PH domain associated with the catalytic domain and the PIF pocket was accessible. In the absence of lipids, HYG8 potently inhibited the phosphorylation of Akt (also termed PKB) but did not affect the intrinsic activity of PDK1 or the phosphorylation of SGK, which requires docking to the PIF pocket. In contrast, the small-molecule valsartan bound to the PIF pocket and stabilized a second distinct monomeric conformation. Our study reveals dynamic conformations of full-length PDK1 in which the location of the linker and the PH domain relative to the catalytic domain determines the selective phosphorylation of PDK1 substrates. The study further suggests new approaches for the design of drugs to selectively modulate signaling downstream of PDK1.


Subject(s)
Mammals , Polyphosphates , Animals , Substrate Specificity , Phosphorylation , Catalytic Domain , Dimerization
6.
Chem Sci ; 14(19): 4979-4985, 2023 May 17.
Article in English | MEDLINE | ID: mdl-37206391

ABSTRACT

Inositol pyrophosphates are important biomolecules associated with apoptosis, cell growth and kinase regulation, yet their exact biological roles are still emerging and probes do not exist for their selective detection. We report the first molecular probe for the selective and sensitive detection of the most abundant cellular inositol pyrophosphate 5-PP-InsP5, as well as an efficient new synthesis. The probe is based on a macrocyclic Eu(iii) complex bearing two quinoline arms providing a free coordination site at the Eu(iii) metal centre. Bidentate binding of the pyrophosphate group of 5-PP-InsP5 to the Eu(iii) ion is proposed, supported by DFT calculations, giving rise to a selective enhancement in Eu(iii) emission intensity and lifetime. We demonstrate the use of time-resolved luminescence as a bioassay tool for monitoring enzymatic processes in which 5-PP-InsP5 is consumed. Our probe offers a potential screening methodology to identify drug-like compounds that modulate the activity of enzymes of inositol pyrophosphate metabolism.

7.
Biochem J ; 480(6): 433-453, 2023 03 29.
Article in English | MEDLINE | ID: mdl-36896917

ABSTRACT

Myo-inositol tris/tetrakisphosphate kinases (ITPKs) catalyze diverse phosphotransfer reactions with myo-inositol phosphate and myo-inositol pyrophosphate substrates. However, the lack of structures of nucleotide-coordinated plant ITPKs thwarts a rational understanding of phosphotransfer reactions of the family. Arabidopsis possesses a family of four ITPKs of which two isoforms, ITPK1 and ITPK4, control inositol hexakisphosphate and inositol pyrophosphate levels directly or by provision of precursors. Here, we describe the specificity of Arabidopsis ITPK4 to pairs of enantiomers of diverse inositol polyphosphates and show how substrate specificity differs from Arabidopsis ITPK1. Moreover, we provide a description of the crystal structure of ATP-coordinated AtITPK4 at 2.11 Šresolution that, along with a description of the enantiospecificity of the enzyme, affords a molecular explanation for the diverse phosphotransferase activity of this enzyme. That Arabidopsis ITPK4 has a KM for ATP in the tens of micromolar range, potentially explains how, despite the large-scale abolition of InsP6, InsP7 and InsP8 synthesis in Atitpk4 mutants, Atitpk4 lacks the phosphate starvation responses of Atitpk1 mutants. We further demonstrate that Arabidopsis ITPK4 and its homologues in other plants possess an N-terminal haloacid dehalogenase-like fold not previously described. The structural and enzymological information revealed will guide elucidation of ITPK4 function in diverse physiological contexts, including InsP8-dependent aspects of plant biology.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Diphosphates , Inositol Phosphates , Arabidopsis Proteins/genetics , Arabidopsis Proteins/chemistry , Phytic Acid , Adenosine Triphosphate
8.
Biomed Pharmacother ; 161: 114449, 2023 May.
Article in English | MEDLINE | ID: mdl-36857911

ABSTRACT

The antifungal drug itraconazole has been repurposed to anti-angiogenic agent, but the mechanisms of action have been elusive. Here we report that itraconazole disrupts focal adhesion dynamics and cytoskeletal remodeling, which requires 5-diphosphoinositol 1,2,3,4,6-pentakisphosphate (5-InsP7). We find that inositol hexakisphosphate kinase 1 (IP6K1) binds Arp2 and generates 5-InsP7 to recruit coronin, a negative regulator of the Arp2/3 complex. IP6K1 also produces focal adhesion-enriched 5-InsP7, which binds focal adhesion kinase (FAK) at the FERM domain to promote its dimerization and phosphorylation. Itraconazole treatment elicits displacement of IP6K1/5-InsP7, thus augments 5-InsP7-mediated inhibition of Arp2/3 complex and reduces 5-InsP7-mediated FAK dimerization. Itraconazole-treated cells display reduced focal adhesion dynamics and actin cytoskeleton remodeling. Accordingly, itraconazole severely disrupts cell motility, an essential component of angiogenesis. These results demonstrate critical roles of IP6K1-generated 5-InsP7 in regulating focal adhesion dynamics and actin cytoskeleton remodeling and reveal functional mechanisms by which itraconazole inhibits cell motility.


Subject(s)
Inositol Phosphates , Itraconazole , Itraconazole/pharmacology , Inositol Phosphates/metabolism , Focal Adhesions , Diphosphates/metabolism , Cell Movement , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Phosphorylation , Endothelial Cells/metabolism , Cell Adhesion
9.
Nat Commun ; 13(1): 2231, 2022 04 25.
Article in English | MEDLINE | ID: mdl-35468885

ABSTRACT

Structural snapshots of protein/ligand complexes are a prerequisite for gaining atomic level insight into enzymatic reaction mechanisms. An important group of enzymes has been deprived of this analytical privilege: members of the protein tyrosine phosphatase (PTP) superfamily with catalytic WPD-loops lacking the indispensable general-acid/base within a tryptophan-proline-aspartate/glutamate context. Here, we provide the ligand/enzyme crystal complexes for one such PTP outlier: Arabidopsis thaliana Plant and Fungi Atypical Dual Specificity Phosphatase 1 (AtPFA-DSP1), herein unveiled as a regioselective and efficient phosphatase towards inositol pyrophosphate (PP-InsP) signaling molecules. Although the WPD loop is missing its canonical tripeptide motif, this structural element contributes to catalysis by assisting PP-InsP delivery into the catalytic pocket, for a choreographed exchange with phosphate reaction product. Subsequently, an intramolecular proton donation by PP-InsP substrate is posited to substitute functionally for the absent aspartate/glutamate general-acid. Overall, we expand mechanistic insight into adaptability of the conserved PTP structural elements.


Subject(s)
Aspartic Acid , Protein Tyrosine Phosphatases , Glutamates , Ligands , Models, Molecular , Protein Conformation , Protein Tyrosine Phosphatases/metabolism
10.
Cell Rep ; 37(5): 109932, 2021 11 02.
Article in English | MEDLINE | ID: mdl-34731613

ABSTRACT

Inositol 1,4,5-trisphosphate receptors (IP3Rs) are intracellular Ca2+ channels that link extracellular stimuli to Ca2+ signals. Ca2+ release from intracellular stores is "quantal": low IP3 concentrations rapidly release a fraction of the stores. Ca2+ release then slows or terminates without compromising responses to further IP3 additions. The mechanisms are unresolved. Here, we synthesize a high-affinity partial agonist of IP3Rs and use it to demonstrate that quantal responses do not require heterogenous Ca2+ stores. IP3Rs respond incrementally to IP3 and close after the initial response to low IP3 concentrations. Comparing functional responses with IP3 binding shows that only a tiny fraction of a cell's IP3Rs mediate incremental Ca2+ release; inactivation does not therefore affect most IP3Rs. We conclude, and test by simulations, that Ca2+ signals evoked by IP3 pulses arise from rapid activation and then inactivation of very few IP3Rs. This allows IP3Rs to behave as increment detectors mediating graded Ca2+ release.


Subject(s)
Calcium Signaling/drug effects , Calcium/metabolism , Endoplasmic Reticulum/drug effects , Inositol 1,4,5-Trisphosphate Receptors/agonists , Inositol 1,4,5-Trisphosphate/pharmacology , Animals , Chickens , Drug Partial Agonism , Endoplasmic Reticulum/metabolism , HEK293 Cells , Humans , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Inositol Phosphates/pharmacology , Time Factors
11.
Sci Adv ; 7(17)2021 04.
Article in English | MEDLINE | ID: mdl-33893105

ABSTRACT

The yeast diadenosine and diphosphoinositol polyphosphate phosphohydrolase DDP1 is a Nudix enzyme with pyrophosphatase activity on diphosphoinositides, dinucleotides, and polyphosphates. These substrates bind to diverse protein targets and participate in signaling and metabolism, being essential for energy and phosphate homeostasis, ATPase pump regulation, or protein phosphorylation. An exhaustive structural study of DDP1 in complex with multiple ligands related to its three diverse substrate classes is reported. This allowed full characterization of the DDP1 active site depicting the molecular basis for endowing multisubstrate abilities to a Nudix enzyme, driven by phosphate anchoring following a defined path. This study, combined with multiple enzyme variants, reveals the different substrate binding modes, preferences, and selection. Our findings expand current knowledge on this important structural superfamily with implications extending beyond inositide research. This work represents a valuable tool for inhibitor/substrate design for ScDDP1 and orthologs as potential targets to address fungal infections and other health concerns.

12.
J Med Chem ; 64(7): 3813-3826, 2021 04 08.
Article in English | MEDLINE | ID: mdl-33724834

ABSTRACT

Src homology 2 domain-containing inositol phosphate phosphatase 2 (SHIP2) is one of the 10 human inositol phosphate 5-phosphatases. One of its physiological functions is dephosphorylation of phosphatidylinositol 3,4,5-trisphosphate, PtdIns(3,4,5)P3. It is therefore a therapeutic target for pathophysiologies dependent on PtdIns(3,4,5)P3 and PtdIns(3,4)P2. Therapeutic interventions are limited by the dearth of crystallographic data describing ligand/inhibitor binding. An active site-directed fluorescent probe facilitated screening of compound libraries for SHIP2 ligands. With two additional orthogonal assays, several ligands including galloflavin were identified as low micromolar Ki inhibitors. One ligand, an oxo-linked ethylene-bridged dimer of benzene 1,2,4-trisphosphate, was shown to be an uncompetitive inhibitor that binds to a regulatory site on the catalytic domain. We posit that binding of ligands to this site restrains L4 loop motions that are key to interdomain communications that accompany high catalytic activity with phosphoinositide substrate. This site may, therefore, be a future druggable target for medicinal chemistry.


Subject(s)
Fluoresceins/metabolism , Fluorescent Dyes/metabolism , Inositol Phosphates/metabolism , Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/antagonists & inhibitors , Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/metabolism , Allosteric Site , Amino Acid Sequence , Animals , Catalytic Domain , Cell Line, Tumor , Crystallography, X-Ray , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacology , Humans , Ligands , Mice , Molecular Docking Simulation , NIH 3T3 Cells , Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/chemistry , Protein Binding
13.
Sci Adv ; 6(44)2020 10.
Article in English | MEDLINE | ID: mdl-33115740

ABSTRACT

Sodium/potassium-transporting adenosine triphosphatase (Na+/K+-ATPase) is one of the most abundant cell membrane proteins and is essential for eukaryotes. Endogenous negative regulators have long been postulated to play an important role in regulating the activity and stability of Na+/K+-ATPase, but characterization of these regulators has been elusive. Mechanisms of regulating Na+/K+-ATPase homeostatic turnover are unknown. Here, we report that 5-diphosphoinositol 1,2,3,4,6-pentakisphosphate (5-InsP7), generated by inositol hexakisphosphate kinase 1 (IP6K1), promotes physiological endocytosis and downstream degradation of Na+/K+-ATPase-α1. Deletion of IP6K1 elicits a twofold enrichment of Na+/K+-ATPase-α1 in plasma membranes of multiple tissues and cell types. Using a suite of synthetic chemical biology tools, we found that 5-InsP7 binds the RhoGAP domain of phosphatidylinositol 3-kinase (PI3K) p85α to disinhibit its interaction with Na+/K+-ATPase-α1. This recruits adaptor protein 2 (AP2) and triggers the clathrin-mediated endocytosis of Na+/K+-ATPase-α1. Our study identifies 5-InsP7 as an endogenous negative regulator of Na+/K+-ATPase-α1.

14.
Biochem J ; 477(14): 2621-2638, 2020 07 31.
Article in English | MEDLINE | ID: mdl-32706850

ABSTRACT

Inositol polyphosphates are ubiquitous molecular signals in metazoans, as are their pyrophosphorylated derivatives that bear a so-called 'high-energy' phosphoanhydride bond. A structural rationale is provided for the ability of Arabidopsis inositol tris/tetrakisphosphate kinase 1 to discriminate between symmetric and enantiomeric substrates in the production of diverse symmetric and asymmetric myo-inositol phosphate and diphospho-myo-inositol phosphate (inositol pyrophosphate) products. Simple tools are applied to chromatographic resolution and detection of known and novel diphosphoinositol phosphates without resort to radiolabeling approaches. It is shown that inositol tris/tetrakisphosphate kinase 1 and inositol pentakisphosphate 2-kinase comprise a reversible metabolic cassette converting Ins(3,4,5,6)P4 into 5-InsP7 and back in a nucleotide-dependent manner. Thus, inositol tris/tetrakisphosphate kinase 1 is a nexus of bioenergetics status and inositol polyphosphate/diphosphoinositol phosphate metabolism. As such, it commands a role in plants that evolution has assigned to a different class of enzyme in mammalian cells. The findings and the methods described will enable a full appraisal of the role of diphosphoinositol phosphates in plants and particularly the relative contribution of reversible inositol phosphate hydroxykinase and inositol phosphate phosphokinase activities to plant physiology.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Inositol Phosphates/metabolism , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Adenosine Triphosphate/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Chromatography, High Pressure Liquid , Chromatography, Ion Exchange/methods , Inositol Phosphates/analysis , Mesylates/chemistry , Mutation , Phosphorus Radioisotopes , Phosphorylation , Phosphotransferases (Alcohol Group Acceptor)/chemistry , Phosphotransferases (Alcohol Group Acceptor)/genetics , Substrate Specificity
15.
J Med Chem ; 63(10): 5442-5457, 2020 05 28.
Article in English | MEDLINE | ID: mdl-32286062

ABSTRACT

Chiral sugar derivatives are potential cyclitol surrogates of the Ca2+-mobilizing intracellular messenger d-myo-inositol 1,4,5-trisphosphate [Ins(1,4,5)P3]. Six novel polyphosphorylated analogues derived from both d- and l-glucose were synthesized. Binding to Ins(1,4,5)P3 receptors [Ins(1,4,5)P3R] and the ability to release Ca2+ from intracellular stores via type 1 Ins(1,4,5)P3Rs were investigated. ß-d-Glucopyranosyl 1,3,4-tris-phosphate, with similar phosphate regiochemistry and stereochemistry to Ins(1,4,5)P3, and α-d-glucopyranosyl 1,3,4-tris-phosphate are full agonists, being equipotent and 23-fold less potent than Ins(1,4,5)P3, respectively, in Ca2+-release assays and similar to Ins(1,4,5)P3 and 15-fold weaker in binding assays. They can be viewed as truncated analogues of adenophostin A and refine understanding of structure-activity relationships for this Ins(1,4,5)P3R agonist. l-Glucose-derived ligands, methyl α-l-glucopyranoside 2,3,6-trisphosphate and methyl α-l-glucopyranoside 2,4,6-trisphosphate, are also active, while their corresponding d-enantiomers, methyl α-d-glucopyranoside 2,3,6-trisphosphate and methyl α-d-glucopyranoside 2,4,6-trisphosphate, are inactive. Interestingly, both l-glucose-derived ligands are partial agonists: they are among the least efficacious agonists of Ins(1,4,5)P3R yet identified, providing new leads for antagonist development.


Subject(s)
Drug Partial Agonism , Glucose/chemistry , Inositol 1,4,5-Trisphosphate Receptors/agonists , Inositol 1,4,5-Trisphosphate Receptors/chemistry , Inositol 1,4,5-Trisphosphate/chemistry , Molecular Mimicry/drug effects , Polyphosphates/chemistry , Animals , Dose-Response Relationship, Drug , Glucose/pharmacology , HEK293 Cells , Humans , Inositol 1,4,5-Trisphosphate/pharmacology , Molecular Docking Simulation/methods , Molecular Mimicry/physiology , Polyphosphates/pharmacology , Protein Structure, Secondary , Rats , Rats, Wistar
16.
ACS Med Chem Lett ; 11(3): 309-315, 2020 Mar 12.
Article in English | MEDLINE | ID: mdl-32184962

ABSTRACT

SHIP2 (SH2-domain containing inositol 5-phosphatase type 2) is a canonical 5-phosphatase, which, through its catalytic action on PtdInsP3, regulates the PI3K/Akt pathway and metabolic action of insulin. It is a drug target, but there is limited evidence of inhibition of SHIP2 by small molecules in the literature. With the goal to investigate inhibition, we report a homologous family of synthetic, chromophoric benzene phosphate substrates of SHIP2 that display the headgroup regiochemical hallmarks of the physiological inositide substrates that have proved difficult to crystallize with 5-phosphatases. Using time-dependent density functional theory (TD-DFT), we explore the intrinsic fluorescence of these novel substrates and show how fluorescence can be used to assay enzyme activity. The TD-DFT approach promises to inform rational design of enhanced active site probes for the broadest family of inositide-binding/metabolizing proteins, while maintaining the regiochemical properties of bona fide inositide substrates.

17.
Medchemcomm ; 10(7): 1165-1172, 2019 Jul 01.
Article in English | MEDLINE | ID: mdl-31391889

ABSTRACT

Diphosphoinositol phosphates (PP-InsPs) are an evolutionarily ancient group of signalling molecules that are essential to cellular and organismal homeostasis. As the detailed mechanisms of PP-InsP signalling begin to emerge, synthetic analogues of PP-InsPs containing stabilised mimics of the labile diphosphate group can provide valuable investigational tools. We synthesised 5-PCF2Am-InsP5 (1), a novel fluorinated phosphonate analogue of 5-PP-InsP5, and obtained an X-ray crystal structure of 1 in complex with diphosphoinositol pentakisphosphate kinase 2 (PPIP5K2). 5-PCF2Am-InsP5 binds to the kinase domain of PPIP5K2 in a similar orientation to that of the natural substrate 5-PP-InsP5 and the PCF2Am structure can mimic many aspects of the diphosphate group in 5-PP-InsP5. We propose that 1, the structural and electronic properties of which are in some ways complementary to those of existing phosphonoacetate and methylenebisphosphonate analogues of 5-PP-InsP5, may be a useful addition to the expanding array of chemical tools for the investigation of signalling by PP-InsPs. The PCF2Am group may also deserve attention for wider application as a diphosphate mimic.

18.
Biochem Pharmacol ; 161: 14-25, 2019 03.
Article in English | MEDLINE | ID: mdl-30557554

ABSTRACT

The inositol phosphates, InsP5 and InsP6, have recently been identified as binding partners of fibrinogen, which is critically involved in hemostasis by crosslinking activated platelets at sites of vascular injury. Here, we investigated the putative physiological role of this interaction and found that platelets increase their InsP6 concentration upon stimulation with the PLC-activating agonists thrombin, collagen I and ADP and present a fraction of it at the outer plasma membrane. Cone and plate analysis in whole blood revealed that InsP6 specifically increases platelet aggregate size. This effect is fibrinogen-dependent, since it is inhibited by an antibody that blocks fibrinogen binding to platelets. Furthermore, InsP6 has only an effect on aggregate size of washed platelets when fibrinogen is present, while it has no influence in presence of von Willebrand factor or collagen. By employing blind docking studies we predicted the binding site for InsP6 at the bundle between the γ and ß helical subunit of fibrinogen. Since InsP6 is unable to directly activate platelets and it did not exhibit an effect on thrombin formation or fibrin structure, our data indicate that InsP6 might be a hemostatic agent that is produced by platelets upon stimulation with PLC-activating agonists to promote platelet aggregation by supporting crosslinking of fibrinogen and activated platelets.


Subject(s)
Blood Platelets/drug effects , Blood Platelets/metabolism , Phytic Acid/metabolism , Phytic Acid/pharmacology , Platelet Aggregation/drug effects , Blood Platelets/chemistry , Fibrinogen/metabolism , Humans , Phytic Acid/chemistry , Platelet Aggregation/physiology , Protein Structure, Secondary
19.
Medchemcomm ; 9(7): 1105-1113, 2018 Jul 01.
Article in English | MEDLINE | ID: mdl-30079174

ABSTRACT

Diphosphoinositol phosphates (PP-InsPs) are inositol phosphates (InsPs) that contain PP (diphosphate) groups. Converting a phosphate group in an InsP into a diphosphate has been reported to enhance affinity for some binding proteins. We synthesised 1-PP-Ins(4,5)P2, the first diphosphate analogue of the intracellular signalling molecule InsP3, and examined its effects on InsP3 receptors, which are intracellular Ca2+ channels. 1-PP-Ins(4,5)P2 was indistinguishable from InsP3 in its ability to bind to and activate type 1 InsP3 receptors, indicating that the diphosphate modification of InsP3 affected neither affinity nor efficacy. Nevertheless, 1-PP-Ins(4,5)P2 is the most potent 1-phosphate modified analogue of InsP3 yet identified. PP-InsPs are generally hydrolysed by diphosphoinositol phosphate phosphohydrolases (DIPPs), but 1-PP-Ins(4,5)P2 was not readily metabolised by human DIPPs. Differential scanning fluorimetry showed that 1-PP-Ins(4,5)P2 stabilises DIPP proteins, but to a lesser extent than naturally occurring substrates 1-PP-InsP5 and 5-PP-InsP5. The non-hydrolysable InsP7 analogues 1-PCP-InsP5 and 5-PCP-InsP5 showed comparable stabilising abilities to their natural counterparts and may therefore be promising substrate analogues for co-crystallisation with DIPPs.

20.
J Med Chem ; 61(19): 8838-8846, 2018 10 11.
Article in English | MEDLINE | ID: mdl-30160967

ABSTRACT

Inositol pentakisphosphate 2-kinase catalyzes the phosphorylation of the axial 2-OH of myo-inositol 1,3,4,5,6-pentakisphosphate for de novo synthesis of myo-inositol hexakisphosphate. Disruption of inositol pentakisphosphate 2-kinase profoundly influences cellular processes, from nuclear mRNA export and phosphate homeostasis in yeast and plants to establishment of left-right asymmetry in zebrafish. We elaborate an active site fluorescent probe that allows high throughput screening of Arabidopsis inositol pentakisphosphate 2-kinase. We show that the probe has a binding constant comparable to the Km values of inositol phosphate substrates of this enzyme and can be used to prospect for novel substrates and inhibitors of inositol phosphate kinases. We identify several micromolar Ki inhibitors and validate this approach by solving the crystal structure of protein in complex with purpurogallin. We additionally solve structures of protein in complexes with epimeric higher inositol phosphates. This probe may find utility in characterization of a wide family of inositol phosphate kinases.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Fluorescent Dyes/metabolism , Inositol Phosphates/metabolism , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Seedlings/metabolism , Arabidopsis Proteins/chemistry , Catalytic Domain , Fluorescent Dyes/chemistry , Ligands , Phosphorylation , Phosphotransferases (Alcohol Group Acceptor)/chemistry , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL