Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Science ; 384(6692): eadk6200, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38574174

ABSTRACT

Males and females exhibit profound differences in immune responses and disease susceptibility. However, the factors responsible for sex differences in tissue immunity remain poorly understood. Here, we uncovered a dominant role for type 2 innate lymphoid cells (ILC2s) in shaping sexual immune dimorphism within the skin. Mechanistically, negative regulation of ILC2s by androgens leads to a reduction in dendritic cell accumulation and activation in males, along with reduced tissue immunity. Collectively, our results reveal a role for the androgen-ILC2-dendritic cell axis in controlling sexual immune dimorphism. Moreover, this work proposes that tissue immune set points are defined by the dual action of sex hormones and the microbiota, with sex hormones controlling the strength of local immunity and microbiota calibrating its tone.


Subject(s)
Androgens , Dendritic Cells , Immunity, Innate , Lymphocytes , Sex Characteristics , Skin , Female , Male , Androgens/metabolism , Dendritic Cells/immunology , Gonadal Steroid Hormones/metabolism , Lymphocytes/immunology , Skin/immunology , Animals , Mice , Mice, Inbred C57BL , Microbiota
2.
Semin Cell Dev Biol ; 150-151: 50-57, 2023 12.
Article in English | MEDLINE | ID: mdl-36635104

ABSTRACT

The intestine comprises the largest proportion of immune cells in the body. It is continuously exposed to new antigens and immune stimuli from the diet, microbiota but also from intestinal pathogens. In this review, we describe the main populations of immune cells present along the intestine, both from the innate and adaptive immune system. We later discuss how intestinal niches significantly impact the phenotype and function of gut immune populations at steady state and upon infection.


Subject(s)
Immunity, Mucosal , Intestinal Mucosa , Intestinal Mucosa/cytology , Intestinal Mucosa/immunology , Immunity, Innate , Adaptive Immunity
3.
Immunity ; 55(6): 965-967, 2022 06 14.
Article in English | MEDLINE | ID: mdl-35704996

ABSTRACT

The relevance of cross-dressing as an antigen presentation mechanism in antitumor responses is not fully understood. In this issue of Immunity, MacNabb et al. (2022) report that dendritic cells use cross-dressing as an effective mechanism to trigger CD8+ T cell antitumor immunity.


Subject(s)
Antigen Presentation , Dendritic Cells , CD8-Positive T-Lymphocytes , Cross-Priming
4.
Subcell Biochem ; 98: 85-102, 2022.
Article in English | MEDLINE | ID: mdl-35378704

ABSTRACT

Macropinocytosis is a nonspecific mechanism by which cells compulsively "drink" the surrounding extracellular fluids in order to feed themselves or sample the molecules therein, hence gaining information about their environment. This process is cell-intrinsically incompatible with the migration of many cells, implying that the two functions are antagonistic. The migrating cell uses a molecular switch to stop and explore its surrounding fluid by macropinocytosis, after which it employs the same molecular machinery to start migrating again to examine another location. This cycle of migration/macropinocytosis allows cells to explore tissues, and it is key to a range of physiological processes. Evidence of this evolutionarily conserved antagonism between the two processes can be found in several cell types-immune cells, for example, being particularly adept-and ancient organisms (e.g., the social amoeba Dictyostelium discoideum). How macropinocytosis and migration are negatively coupled is the subject of this chapter.


Subject(s)
Dictyostelium , Cell Movement , Dictyostelium/metabolism , Pinocytosis/physiology
5.
Immunity ; 55(1): 129-144.e8, 2022 01 11.
Article in English | MEDLINE | ID: mdl-34910930

ABSTRACT

Dendritic cells (DCs) patrol tissues and transport antigens to lymph nodes to initiate adaptive immune responses. Within tissues, DCs constitute a complex cell population composed of distinct subsets that can exhibit different activation states and functions. How tissue-specific cues orchestrate DC diversification remains elusive. Here, we show that the small intestine included two pools of cDC2s originating from common pre-DC precursors: (1) lamina propria (LP) CD103+CD11b+ cDC2s that were mature-like proinflammatory cells and (2) intraepithelial cDC2s that exhibited an immature-like phenotype as well as tolerogenic properties. These phenotypes resulted from the action of food-derived retinoic acid (ATRA), which enhanced actomyosin contractility and promoted LP cDC2 transmigration into the epithelium. There, cDC2s were imprinted by environmental cues, including ATRA itself and the mucus component Muc2. Hence, by reaching distinct subtissular niches, DCs can exist as immature and mature cells within the same tissue, revealing an additional mechanism of DC functional diversification.


Subject(s)
Dendritic Cells/immunology , Inflammation/immunology , Intestinal Mucosa/pathology , T-Lymphocytes/immunology , Actomyosin/metabolism , Animals , Antigen Presentation , Antigens, CD/metabolism , CD11b Antigen/metabolism , Cell Differentiation , Cell Movement , Cells, Cultured , Immune Tolerance , Integrin alpha Chains/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Mucin-2/immunology , Tretinoin/metabolism
7.
Mol Ther ; 29(5): 1862-1882, 2021 05 05.
Article in English | MEDLINE | ID: mdl-33545358

ABSTRACT

Alteration to endoplasmic reticulum (ER) proteostasis is observed in a variety of neurodegenerative diseases associated with abnormal protein aggregation. Activation of the unfolded protein response (UPR) enables an adaptive reaction to recover ER proteostasis and cell function. The UPR is initiated by specialized stress sensors that engage gene expression programs through the concerted action of the transcription factors ATF4, ATF6f, and XBP1s. Although UPR signaling is generally studied as unique linear signaling branches, correlative evidence suggests that ATF6f and XBP1s may physically interact to regulate a subset of UPR target genes. In this study, we designed an ATF6f/XBP1s fusion protein termed UPRplus that behaves as a heterodimer in terms of its selective transcriptional activity. Cell-based studies demonstrated that UPRplus has a stronger effect in reducing the abnormal aggregation of mutant huntingtin and α-synuclein when compared to XBP1s or ATF6 alone. We developed a gene transfer approach to deliver UPRplus into the brain using adeno-associated viruses (AAVs) and demonstrated potent neuroprotection in vivo in preclinical models of Parkinson's disease and Huntington's disease. These results support the concept in which directing UPR-mediated gene expression toward specific adaptive programs may serve as a possible strategy to optimize the beneficial effects of the pathway in different disease conditions.


Subject(s)
Activating Transcription Factor 6/metabolism , Neurodegenerative Diseases/prevention & control , Unfolded Protein Response , X-Box Binding Protein 1/metabolism , Activating Transcription Factor 6/genetics , Animals , Disease Models, Animal , HEK293 Cells , Humans , Huntingtin Protein/genetics , Male , Mice , Multiprotein Complexes/genetics , Multiprotein Complexes/metabolism , Mutation , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/metabolism , X-Box Binding Protein 1/genetics , alpha-Synuclein/genetics
8.
Front Immunol ; 9: 2875, 2018.
Article in English | MEDLINE | ID: mdl-30581437

ABSTRACT

The Human Respiratory Syncytial Virus (hRSV) and the Human Metapneumovirus (hMPV) are two pneumoviruses that are leading agents causing acute lower respiratory tract infections (ALRTIs) affecting young infants, the elderly, and immunocompromised patients worldwide. Since these pathogens were first discovered, many approaches for the licensing of safe and effective vaccines have been explored being unsuccessful to date. We have previously described that immunization with recombinant strains of Mycobacterium bovis Bacillus Calmette-Guérin (rBCG) expressing the hRSV nucleoprotein (rBCG-N) or the hMPV phosphoprotein (rBCG-P) induced immune protection against each respective virus. These vaccines efficiently promoted viral clearance without significant lung damage, mainly through the induction of a T helper 1 cellular immunity. Here we show that upon viral challenge, rBCG-immunized mice developed a protective humoral immunity, characterized by production of antibodies specific for most hRSV and hMPV proteins. Further, isotype switching from IgG1 to IgG2a was observed in mice immunized with rBCG vaccines and correlated with an increased viral clearance, as compared to unimmunized animals. Finally, sera obtained from animals immunized with rBCG vaccines and infected with their respective viruses exhibited virus neutralizing capacity and protected naïve mice from viral replication and pulmonary disease. These results support the notion that the use of rBCG strains could be considered as an effective vaccination approach against other respiratory viruses with similar biology as hRSV and hMPV.


Subject(s)
BCG Vaccine/immunology , Immunity, Humoral , Mycobacterium bovis/immunology , Respiratory Tract Infections/prevention & control , Animals , BCG Vaccine/administration & dosage , Cell Line, Tumor , Disease Models, Animal , Humans , Metapneumovirus/genetics , Metapneumovirus/immunology , Mice , Mice, Inbred BALB C , Nucleoproteins/administration & dosage , Nucleoproteins/genetics , Nucleoproteins/immunology , Recombinant Proteins/administration & dosage , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Respiratory Syncytial Virus, Human/genetics , Respiratory Syncytial Virus, Human/immunology , Respiratory Tract Infections/immunology , Respiratory Tract Infections/virology , Th1 Cells/immunology , Th1 Cells/metabolism , Vaccination/methods , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/immunology , Viral Proteins/administration & dosage , Viral Proteins/genetics , Viral Proteins/immunology , Virus Replication/immunology
10.
Nat Cell Biol ; 20(8): 942-953, 2018 08.
Article in English | MEDLINE | ID: mdl-30013108

ABSTRACT

Maintenance of endoplasmic reticulum (ER) proteostasis is controlled by a signalling network known as the unfolded protein response (UPR). Here, we identified filamin A as a major binding partner of the ER stress transducer IRE1α. Filamin A is an actin crosslinking factor involved in cytoskeleton remodelling. We show that IRE1α controls actin cytoskeleton dynamics and affects cell migration upstream of filamin A. The regulation of cytoskeleton dynamics by IRE1α is independent of its canonical role as a UPR mediator, serving instead as a scaffold that recruits and regulates filamin A. Targeting IRE1α expression in mice affected normal brain development, generating a phenotype resembling periventricular heterotopia, a disease linked to the loss of function of filamin A. IRE1α also modulated cell movement and cytoskeleton dynamics in fly and zebrafish models. This study unveils an unanticipated biological function of IRE1α in cell migration, whereby filamin A operates as an interphase between the UPR and the actin cytoskeleton.


Subject(s)
Actin Cytoskeleton/metabolism , Cell Movement , Endoribonucleases/metabolism , Fibroblasts/metabolism , Filamins/metabolism , Neurons/metabolism , Protein Serine-Threonine Kinases/metabolism , Animals , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Endoribonucleases/deficiency , Endoribonucleases/genetics , Evolution, Molecular , Female , Filamins/genetics , HEK293 Cells , Humans , Kinetics , Male , Mice , Mice, Knockout , Neurons/pathology , Periventricular Nodular Heterotopia/genetics , Periventricular Nodular Heterotopia/metabolism , Periventricular Nodular Heterotopia/pathology , Phosphorylation , Protein Binding , Protein Interaction Domains and Motifs , Protein Serine-Threonine Kinases/deficiency , Protein Serine-Threonine Kinases/genetics , Signal Transduction , Unfolded Protein Response , Zebrafish/genetics , Zebrafish/metabolism , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
11.
Vaccine ; 35(5): 757-766, 2017 02 01.
Article in English | MEDLINE | ID: mdl-28065474

ABSTRACT

Human respiratory syncytial virus (hRSV) is a major health burden worldwide, causing the majority of hospitalizations in children under two years old due to bronchiolitis and pneumonia. HRSV causes year-to-year outbreaks of disease, which also affects the elderly and immunocompromised adults. Furthermore, both hRSV morbidity and epidemics are explained by a consistently high rate of re-infections that take place throughout the patient life. Although significant efforts have been invested worldwide, currently there are no licensed vaccines to prevent hRSV infection. Here, we describe that a recombinant Bacillus Calmette-Guerin (BCG) vaccine expressing the nucleoprotein (N) of hRSV formulated under current good manufacture practices (cGMP rBCG-N-hRSV) confers protective immunity to the virus in mice. Our results show that a single dose of the GMP rBCG-N-hRSV vaccine retains its capacity to protect mice against a challenge with a disease-causing infection of 1×107 plaque-forming units (PFUs) of the hRSV A2 clinical strain 13018-8. Compared to unimmunized infected controls, vaccinated mice displayed reduced weight loss and less infiltration of neutrophils within the airways, as well as reduced viral loads in bronchoalveolar lavages, parameters that are characteristic of hRSV infection in mice. Also, ex vivo re-stimulation of splenic T cells at 28days post-immunization activated a repertoire of T cells secreting IFN-γ and IL-17, which further suggest that the rBCG-N-hRSV vaccine induced a mixed, CD8+ and CD4+ T cell response capable of both restraining viral spread and preventing damage of the lungs. All these features support the notion that rBCG-N-hRSV is a promising candidate vaccine to be used in humans to prevent the disease caused by hRSV in the susceptible population.


Subject(s)
BCG Vaccine/administration & dosage , CD8-Positive T-Lymphocytes/drug effects , Immunity, Cellular/drug effects , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Virus Vaccines/administration & dosage , Respiratory Syncytial Virus, Human/drug effects , Th17 Cells/drug effects , Animals , BCG Vaccine/genetics , BCG Vaccine/immunology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/virology , Humans , Immunization Schedule , Immunogenicity, Vaccine , Interferon-gamma/biosynthesis , Interferon-gamma/immunology , Interleukin-17/biosynthesis , Interleukin-17/immunology , Lung/drug effects , Lung/immunology , Lung/virology , Lymphocyte Activation/drug effects , Mice , Mice, Inbred BALB C , Nucleoproteins/genetics , Nucleoproteins/immunology , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Virus Vaccines/genetics , Respiratory Syncytial Virus Vaccines/immunology , Respiratory Syncytial Virus, Human/immunology , Respiratory Syncytial Virus, Human/pathogenicity , Th1 Cells/drug effects , Th1 Cells/immunology , Th1 Cells/virology , Th17 Cells/immunology , Th17 Cells/virology , Vaccines, Synthetic , Viral Proteins/genetics , Viral Proteins/immunology
12.
Virulence ; 8(6): 685-704, 2017 08 18.
Article in English | MEDLINE | ID: mdl-27911218

ABSTRACT

Human Respiratory syncytial virus (hRSV) and human metapneumovirus (hMPV) are the two major etiological viral agents of lower respiratory tract diseases, affecting mainly infants, young children and the elderly. Although the infection of both viruses trigger an antiviral immune response that mediate viral clearance and disease resolution in immunocompetent individuals, the promotion of long-term immunity appears to be deficient and reinfection are common throughout life. A possible explanation for this phenomenon is that hRSV and hMPV, can induce aberrant T cell responses, which leads to exacerbated lung inflammation and poor T and B cell memory immunity. The modulation of immune response exerted by both viruses include different strategies such as, impairment of immunological synapse mediated by viral proteins or soluble factors, and the induction of pro-inflammatory cytokines by epithelial cells, among others. All these viral strategies contribute to the alteration of the adaptive immunity in order to increase the susceptibility to reinfections. In this review, we discuss current research related to the mechanisms underlying the impairment of T and B cell immune responses induced by hRSV and hMPV infection. In addition, we described the role each virulence factor involved in immune modulation caused by these viruses.


Subject(s)
Metapneumovirus/pathogenicity , Paramyxoviridae Infections/immunology , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus, Human/pathogenicity , Respiratory Tract Infections/immunology , T-Lymphocytes/immunology , Adaptive Immunity , Aged , Animals , B-Lymphocytes/immunology , Child , Cytokines , Humans , Immune Evasion , Infant , Metapneumovirus/immunology , Metapneumovirus/physiology , Paramyxoviridae Infections/virology , Pneumonia/virology , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Virus, Human/immunology , Respiratory Syncytial Virus, Human/physiology , Respiratory Tract Infections/virology , Virus Replication
13.
Expert Opin Investig Drugs ; 24(12): 1613-30, 2015.
Article in English | MEDLINE | ID: mdl-26457559

ABSTRACT

INTRODUCTION: Human respiratory syncytial virus (hRSV) is the leading cause of acute lower respiratory tract infections worldwide in infants, as well as an important pathogen affecting the elderly and immunocompromised individuals. Despite more than a half a century of research, no licensed vaccines are available and only palivizumab has been approved to use in humans, mostly recommended or limited to high risk infants. Therefore, novel therapeutic and preventive drugs need to be developed to fight this major human pathogen. AREAS COVERED: This review discusses current therapeutic approaches in preclinical and clinical stages, aimed at controlling or preventing hRSV infection. These methods include passive immunization, experimental drugs, vaccine candidates and maternal immunization. EXPERT OPINION: Based on the results of various immunization strategies and therapeutic approaches, it is likely that the most effective strategy against hRSV will be a prophylactic tool aimed at developing a strong antiviral T-cell response capable of both, promoting the generation of hRSV-specific high affinity antibodies and leading the protective immunity required to prevent the disease caused by this virus. Alternatively, if prophylactic strategies fail, antiviral drugs and novel passive immunity strategies could significantly contribute to reducing hospitalization rates in susceptible individuals.


Subject(s)
Antiviral Agents/administration & dosage , Respiratory Syncytial Virus Infections/drug therapy , Respiratory Syncytial Virus Vaccines/administration & dosage , Aged , Animals , Antiviral Agents/therapeutic use , Drug Design , Humans , Immunocompromised Host , Infant , Palivizumab/administration & dosage , Palivizumab/therapeutic use , Respiratory Syncytial Virus Infections/epidemiology , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Virus, Human/isolation & purification , Respiratory Tract Infections/drug therapy , Respiratory Tract Infections/prevention & control , Respiratory Tract Infections/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...