Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38659841

ABSTRACT

Background: Heart rhythm relies on complex interactions between the electrogenic membrane proteins and intracellular Ca 2+ signaling in sinoatrial node (SAN) myocytes; however, the mechanisms underlying the functional organization of the proteins involved in SAN pacemaking and its structural foundation remain elusive. Caveolae are nanoscale, plasma membrane pits that compartmentalize various ion channels and transporters, including those involved in SAN pacemaking, via binding with the caveolin-3 scaffolding protein, however the precise role of caveolae in cardiac pacemaker function is unknown. Our objective was to determine the role of caveolae in SAN pacemaking and dysfunction (SND). Methods: In vivo electrocardiogram monitoring, ex vivo optical mapping, in vitro confocal Ca 2+ imaging, immunofluorescent and electron microscopy analysis were performed in wild type, cardiac-specific caveolin-3 knockout, and 8-weeks post-myocardial infarction heart failure (HF) mice. SAN tissue samples from donor human hearts were used for biochemical studies. We utilized a novel 3-dimensional single SAN cell mathematical model to determine the functional outcomes of protein nanodomain-specific localization and redistribution in SAN pacemaking. Results: In both mouse and human SANs, caveolae compartmentalized HCN4, Ca v 1.2, Ca v 1.3, Ca v 3.1 and NCX1 proteins within discrete pacemaker signalosomes via direct association with caveolin-3. This compartmentalization positioned electrogenic sarcolemmal proteins near the subsarcolemmal sarcoplasmic reticulum (SR) membrane and ensured fast and robust activation of NCX1 by subsarcolemmal local SR Ca 2+ release events (LCRs), which diffuse across ∼15-nm subsarcolemmal cleft. Disruption of caveolae led to the development of SND via suppression of pacemaker automaticity through a 50% decrease of the L-type Ca 2+ current, a negative shift of the HCN current ( I f ) activation curve, and 40% reduction of Na + /Ca 2+ -exchanger function. These changes significantly decreased the SAN depolarizing force, both during diastolic depolarization and upstroke phase, leading to bradycardia, sinus pauses, recurrent development of SAN quiescence, and significant increase in heart rate lability. Computational modeling, supported by biochemical studies, identified NCX1 redistribution to extra-caveolar membrane as the primary mechanism of SAN pauses and quiescence due to the impaired ability of NCX1 to be effectively activated by LCRs and trigger action potentials. HF remodeling mirrored caveolae disruption leading to NCX1-LCR uncoupling and SND. Conclusions: SAN pacemaking is driven by complex protein interactions within a nanoscale caveolar pacemaker signalosome. Disruption of caveolae leads to SND, potentially representing a new dimension of SAN remodeling and providing a newly recognized target for therapy.

2.
Biophys J ; 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38219015

ABSTRACT

Slow deactivation is a critical property of voltage-gated K+ channels encoded by the human Ether-à-go-go-Related Gene 1 (hERG). hERG1 channel deactivation is modulated by interactions between intracellular N-terminal Per-Arnt-Sim (PAS) and C-terminal cyclic nucleotide-binding homology (CNBh) domains. The PAS domain is multipartite, comprising a globular domain (gPAS; residues 26-135) and an N-terminal PAS-cap that is further subdivided into an initial unstructured "tip" (residues 1-12) and an amphipathic α-helical region (residues 13-25). Although the PAS-cap tip has long been considered the effector of slow deactivation, how its position near the gating machinery is controlled has not been elucidated. Here, we show that a triad of hydrophobic interactions among the gPAS, PAS-cap α helix, and the CNBh domains is required to support slow deactivation in hERG1. The primary sequence of this "hydrophobic nexus" is highly conserved among mammalian ERG channels but shows key differences to fast-deactivating Ether-à-go-go 1 (EAG1) channels. Combining sequence analysis, structure-directed mutagenesis, electrophysiology, and molecular dynamics simulations, we demonstrate that polar serine substitutions uncover an intermediate deactivation mode that is also mimicked by deletion of the PAS-cap α helix. Molecular dynamics simulation analyses of the serine-substituted channels show an increase in distance among the residues of the hydrophobic nexus, a rotation of the intracellular gating ring, and a retraction of the PAS-cap tip from its receptor site near the voltage sensor domain and channel gate. These findings provide compelling evidence that the hydrophobic nexus coordinates the respective components of the intracellular gating ring and positions the PAS-cap tip to control hERG1 deactivation gating.

3.
Proc Natl Acad Sci U S A ; 120(42): e2305295120, 2023 10 17.
Article in English | MEDLINE | ID: mdl-37816059

ABSTRACT

Coordinated expression of ion channels is crucial for cardiac rhythms, neural signaling, and cell cycle progression. Perturbation of this balance results in many disorders including cardiac arrhythmias. Prior work revealed association of mRNAs encoding cardiac NaV1.5 (SCN5A) and hERG1 (KCNH2), but the functional significance of this association was not established. Here, we provide a more comprehensive picture of KCNH2, SCN5A, CACNA1C, and KCNQ1 transcripts collectively copurifying with nascent hERG1, NaV1.5, CaV1.2, or KCNQ1 channel proteins. Single-molecule fluorescence in situ hybridization (smFISH) combined with immunofluorescence reveals that the channel proteins are synthesized predominantly as heterotypic pairs from discrete molecules of mRNA, not as larger cotranslational complexes. Puromycin disrupted colocalization of mRNA with its encoded protein, as expected, but remarkably also pairwise mRNA association, suggesting that transcript association relies on intact translational machinery or the presence of the nascent protein. Targeted depletion of KCHN2 by specific shRNA resulted in concomitant reduction of all associated mRNAs, with a corresponding reduction in the encoded channel currents. This co-knockdown effect, originally described for KCNH2 and SCN5A, thus appears to be a general phenomenon among transcripts encoding functionally related proteins. In multielectrode array recordings, proarrhythmic behavior arose when IKr was reduced by the selective blocker dofetilide at IC50 concentrations, but not when equivalent reductions were mediated by shRNA, suggesting that co-knockdown mitigates proarrhythmic behavior expected from the selective reduction of a single channel species. We propose that coordinated, cotranslational association of functionally related ion channel mRNAs confers electrical stability by co-regulating complementary ion channels in macromolecular complexes.


Subject(s)
Arrhythmias, Cardiac , KCNQ1 Potassium Channel , Humans , KCNQ1 Potassium Channel/genetics , ERG1 Potassium Channel/genetics , In Situ Hybridization, Fluorescence , Arrhythmias, Cardiac/genetics , Arrhythmias, Cardiac/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Small Interfering , NAV1.5 Voltage-Gated Sodium Channel/genetics , NAV1.5 Voltage-Gated Sodium Channel/metabolism
4.
Biophys J ; 122(8): E1-E3, 2023 04 18.
Article in English | MEDLINE | ID: mdl-36990087
5.
Proc Natl Acad Sci U S A ; 118(44)2021 11 02.
Article in English | MEDLINE | ID: mdl-34716268

ABSTRACT

The human ERG (hERG) K+ channel has a crucial function in cardiac repolarization, and mutations or channel block can give rise to long QT syndrome and catastrophic ventricular arrhythmias. The cytosolic assembly formed by the Per-Arnt-Sim (PAS) and cyclic nucleotide binding homology (CNBh) domains is the defining structural feature of hERG and related KCNH channels. However, the molecular role of these two domains in channel gating remains unclear. We have previously shown that single-chain variable fragment (scFv) antibodies can modulate hERG function by binding to the PAS domain. Here, we mapped the scFv2.12 epitope to a site overlapping with the PAS/CNBh domain interface using NMR spectroscopy and mutagenesis and show that scFv binding in vitro and in the cell is incompatible with the PAS interaction with CNBh. By generating a fluorescently labeled scFv2.12, we demonstrate that association with the full-length hERG channel is state dependent. We detect Förster resonance energy transfer (FRET) with scFv2.12 when the channel gate is open but not when it is closed. In addition, state dependence of scFv2.12 FRET signal disappears when the R56Q mutation, known to destabilize the PAS-CNBh interaction, is introduced in the channel. Altogether, these data are consistent with an extensive structural alteration of the PAS/CNBh assembly when the cytosolic gate opens, likely favoring PAS domain dissociation from the CNBh domain.


Subject(s)
ERG1 Potassium Channel/metabolism , Cyclic Nucleotide-Gated Cation Channels/metabolism , Cytosol/metabolism , ERG1 Potassium Channel/genetics , ERG1 Potassium Channel/immunology , Ether-A-Go-Go Potassium Channels/immunology , Ether-A-Go-Go Potassium Channels/metabolism , Fluorescence Resonance Energy Transfer , HEK293 Cells , Humans , Ion Channel Gating , Long QT Syndrome/genetics , Molecular Conformation , Mutation , Protein Conformation , Protein Domains/genetics , Protein Domains/immunology , Protein Serine-Threonine Kinases/metabolism , Structure-Activity Relationship
6.
J Pharmacol Toxicol Methods ; 110: 107081, 2021.
Article in English | MEDLINE | ID: mdl-34058320

ABSTRACT

Heterologously expressed hERG channels represent a mainstay of in vitro drug safety screens intended to mitigate risk of cardiac IKr block and sudden cardiac death. This is true even as more channel types are adopted as part of the Comprehensive in vitro Proarrhythmia Assay (CiPA) intended to elevate specificity and thus enhance throughput of promising lead drugs. Until now, hERG1a homomeric channels have been used as a proxy for IKr despite a wealth of evidence showing that hERG1a/1b heteromers better represent native channels in terms of protein abundance and channel biophysical and pharmacological properties. Past efforts to create a stable hERG1a/1b cell line were met with unpredictable silencing of hERG1b expression despite stable integration of the gene into the HEK293 cell genome. Here we report a new cell line stably expressing hERG1a, with hERG1b reliably controlled by an inducible promoter sensitive to doxycycline. Co-immunoprecipitation, Western blot analysis and patch-clamp electrophysiology confirm the heteromeric composition of the expressed channels. Association with hERG1b was found to promote hERG1a protein levels and enhance membrane current levels. Optimal conditions for drug screening and experimental investigation were achieved at 24 h exposure to 100 ng/ml doxycycline. Differences in pharmacological sensitivity between homomeric and heteromeric channels were observed for dofetilide and ebastine, but not fluoxetine, as evaluated by their IC50 values. Using these values in the O'Hara-Rudy-CiPA in silico model revealed discrepancies in pro-arrhythmia risk, implying the hERG1a homomeric platform overestimates risk for these two drugs. Dofetilide block was use-dependent and faster for hERG1a/1b than hERG1a channels, whereas ebastine showed considerable block at rest and had a slower progression for hERG1a/1b channels. The hERG1a/1b cell line thus represents an advanced model for contemporary drug safety screening assays such as CiPA that employ IC50 values to estimate risk of proarrhythmia in computational models of ventricular cardiomyocytes. This novel technology fulfills an unmet need to enhance specificity and foster a safe yet expanded drug development pipeline.


Subject(s)
Arrhythmias, Cardiac , Ether-A-Go-Go Potassium Channels , ERG1 Potassium Channel/genetics , Ether-A-Go-Go Potassium Channels/genetics , HEK293 Cells , Humans , Myocytes, Cardiac
8.
Biophys J ; 118(4): 790-797, 2020 02 25.
Article in English | MEDLINE | ID: mdl-31669064

ABSTRACT

The human ether-a-go-go-related gene1 (hERG) ion channel has been the subject of fascination since it was identified as a target of long QT syndrome more than 20 years ago. In this Biophysical Perspective, we look at what makes hERG intriguing and vexingly unique. By probing recent high-resolution structures in the context of functional and biochemical data, we attempt to summarize new insights into hERG-specific function and articulate important unanswered questions. X-ray crystallography and cryo-electron microscopy have revealed features not previously on the radar-the "nonswapped" transmembrane architecture, an "intrinsic ligand," and hydrophobic pockets off a pore cavity that is surprisingly small. Advances in our understanding of drug block and inactivation mechanisms are noted, but a full picture will require more investigation.


Subject(s)
ERG1 Potassium Channel , Long QT Syndrome , Cryoelectron Microscopy , Crystallography, X-Ray , Humans
9.
Elife ; 82019 10 31.
Article in English | MEDLINE | ID: mdl-31670657

ABSTRACT

Catastrophic arrhythmias and sudden cardiac death can occur with even a small imbalance between inward sodium currents and outward potassium currents, but mechanisms establishing this critical balance are not understood. Here, we show that mRNA transcripts encoding INa and IKr channels (SCN5A and hERG, respectively) are associated in defined complexes during protein translation. Using biochemical, electrophysiological and single-molecule fluorescence localization approaches, we find that roughly half the hERG translational complexes contain SCN5A transcripts. Moreover, the transcripts are regulated in a way that alters functional expression of both channels at the membrane. Association and coordinate regulation of transcripts in discrete 'microtranslatomes' represents a new paradigm controlling electrical activity in heart and other excitable tissues.


Subject(s)
ERG1 Potassium Channel/metabolism , Gene Expression Regulation , Heart/physiology , NAV1.5 Voltage-Gated Sodium Channel/metabolism , Potassium/metabolism , Sodium/metabolism , ERG1 Potassium Channel/genetics , HEK293 Cells , Humans , NAV1.5 Voltage-Gated Sodium Channel/genetics , Protein Biosynthesis , RNA, Messenger/metabolism , Transfection
10.
J Mol Biol ; 430(24): 5029-5049, 2018 12 07.
Article in English | MEDLINE | ID: mdl-30381148

ABSTRACT

The Drosophila EAG (dEAG) potassium channel is the founding member of the superfamily of KNCH channels, which are involved in cardiac repolarization, neuronal excitability and cellular proliferation. In flies, dEAG is involved in regulation of neuron firing and assembles with CaMKII to form a complex implicated in memory formation. We have characterized the interaction between the kinase domain of CaMKII and a 53-residue fragment of the dEAG channel that includes a canonical CaMKII recognition sequence. Crystal structures together with biochemical/biophysical analysis show a substrate-kinase complex with an unusually tight and extensive interface that appears to be strengthened by phosphorylation of the channel fragment. Electrophysiological recordings show that catalytically active CaMKII is required to observe active dEAG channels. A previously identified phosphorylation site in the recognition sequence is not the substrate for this crucial kinase activity, but rather contributes importantly to the tight interaction of the kinase with the channel. The available data suggest that the dEAG channel is a docking platform for the kinase and that phosphorylation of the channel's kinase recognition sequence modulates the strength of the interaction between the channel and the kinase.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 2/chemistry , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Drosophila Proteins/chemistry , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Ether-A-Go-Go Potassium Channels/chemistry , Ether-A-Go-Go Potassium Channels/metabolism , Animals , Binding Sites , Catalytic Domain , Crystallography, X-Ray , Drosophila melanogaster/chemistry , Electrophysiological Phenomena , Models, Molecular , Molecular Docking Simulation , Phosphorylation , Protein Binding , Protein Conformation
11.
J Cell Sci ; 131(6)2018 03 22.
Article in English | MEDLINE | ID: mdl-29507111

ABSTRACT

Reduced levels of the cardiac human (h)ERG ion channel protein and the corresponding repolarizing current IKr can cause arrhythmia and sudden cardiac death, but the underlying cellular mechanisms controlling hERG surface expression are not well understood. Here, we identified TRIOBP-1, an F-actin-binding protein previously associated with actin polymerization, as a putative hERG-interacting protein in a yeast-two hybrid screen of a cardiac library. We corroborated this interaction by performing Förster resonance energy transfer (FRET) in HEK293 cells and co-immunoprecipitation in HEK293 cells and native cardiac tissue. TRIOBP-1 overexpression reduced hERG surface expression and current density, whereas reducing TRIOBP-1 expression via shRNA knockdown resulted in increased hERG protein levels. Immunolabeling in rat cardiomyocytes showed that native TRIOBP-1 colocalized predominantly with myosin-binding protein C and secondarily with rat ERG. In human stem cell-derived cardiomyocytes, TRIOBP-1 overexpression caused intracellular co-sequestration of hERG signal, reduced native IKr and disrupted action potential repolarization. Ca2+ currents were also somewhat reduced and cell capacitance was increased. These findings establish that TRIOBP-1 interacts directly with hERG and can affect protein levels, IKr magnitude and cardiac membrane excitability.


Subject(s)
Microfilament Proteins/metabolism , Myocytes, Cardiac/metabolism , Animals , Calcium/metabolism , HEK293 Cells , Humans , Male , Microfilament Proteins/genetics , Protein Binding , Protein Transport , Rats , Transcriptional Regulator ERG/genetics , Transcriptional Regulator ERG/metabolism
12.
J Gen Physiol ; 149(2): 249-260, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28122815

ABSTRACT

Channels in the ether-à-go-go or KCNH family of potassium channels are characterized by a conserved, C-terminal domain with homology to cyclic nucleotide-binding homology domains (CNBhDs). Instead of cyclic nucleotides, two amino acid residues, Y699 and L701, occupy the binding pocket, forming an "intrinsic ligand." The role of the CNBhD in KCNH channel gating is still unclear, however, and a detailed characterization of the intrinsic ligand is lacking. In this study, we show that mutating both Y699 and L701 to alanine, serine, aspartate, or glycine impairs human EAG1 channel function. These mutants slow channel activation and shift the conductance-voltage (G-V) relation to more depolarized potentials. The mutations affect activation and the G-V relation progressively, indicating that the gating machinery is sensitive to multiple conformations of the CNBhD. Substitution with glycine at both sites (GG), which eliminates the side chains that interact with the binding pocket, also reduces the ability of voltage prepulses to populate more preactivated states along the activation pathway (i.e., the Cole-Moore effect), as if stabilizing the voltage sensor in deep resting states. Notably, deletion of the entire CNBhD (577-708, ΔCNBhD) phenocopies the GG mutant, suggesting that GG is a loss-of-function mutation and the CNBhD requires an intrinsic ligand to exert its functional effects. We developed a kinetic model for both wild-type and ΔCNBhD mutant channels that describes all our observations on activation kinetics, the Cole-Moore shift, and G-V relations. These findings support a model in which the CNBhD both promotes voltage sensor activation and stabilizes the open pore. The intrinsic ligand is critical for these functional effects.


Subject(s)
Ether-A-Go-Go Potassium Channels/chemistry , Ion Channel Gating , Amino Acid Substitution , Animals , Binding Sites , Ether-A-Go-Go Potassium Channels/genetics , Ether-A-Go-Go Potassium Channels/metabolism , Humans , Loss of Function Mutation , Mutation, Missense , Protein Binding , Xenopus
14.
Clin Cancer Res ; 23(1): 73-80, 2017 Jan 01.
Article in English | MEDLINE | ID: mdl-27635088

ABSTRACT

PURPOSE: Glioblastoma is the most malignant primary brain tumor, with a median survival of less than 2 years. More effective therapeutic approaches are needed to improve clinical outcomes. EXPERIMENTAL DESIGN: Glioblastoma patient-derived cells (GPDC) were isolated from patient glioblastomas and implanted in mice to form xenografts. IHC was performed for human Ether-à-go-go-Related Gene (hERG) expression and tumor proliferation. Sphere-forming assays with the hERG blocker E-4031 were performed on a high and low hERG-expressing lines. A glioblastoma tissue microarray (TMA; 115 patients) was used to correlate hERG expression with patient survival. Clinical data were analyzed to determine whether patient survival was affected by incidental administration of hERG inhibitory drugs and the correlative effect of patient glioblastoma hERG expression levels. RESULTS: hERG expression was upregulated in glioblastoma xenografts with higher proliferative indices. High hERG-expressing GPDCs showed a reduction in sphere formation when treated with hERG inhibitors compared with low hERG-expressing GPDCs. Glioblastoma TMA analysis showed worse survival for glioblastoma patients with high hERG expression versus low expression-43.5 weeks versus 60.9 weeks, respectively (P = 0.022). Furthermore, patients who received at least one hERG blocker had a better survival rate compared with patients who did not (P = 0.0015). Subgroup analysis showed that glioblastoma patients with high hERG expression who received hERG blockers had improved survival (P = 0.0458). There was no difference in survival for low hERG-expressing glioblastoma patients who received hERG blockers (P = 0.4136). CONCLUSIONS: Our findings suggest that hERG is a potential glioblastoma survival marker, and that already approved drugs with non-torsadogenic hERG inhibitory activity may potentially be repurposed as adjuvant glioblastoma therapy in high hERG-expressing glioblastoma patients. Clin Cancer Res; 23(1); 73-80. ©2016 AACRSee related commentary by Arcangeli and Becchetti, p. 3.


Subject(s)
Antineoplastic Agents/administration & dosage , Brain Neoplasms/metabolism , Brain Neoplasms/mortality , Ether-A-Go-Go Potassium Channels/antagonists & inhibitors , Ether-A-Go-Go Potassium Channels/metabolism , Glioblastoma/metabolism , Glioblastoma/mortality , Piperidines/administration & dosage , Pyridines/administration & dosage , Animals , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Brain Neoplasms/diagnosis , Brain Neoplasms/drug therapy , Cell Proliferation/drug effects , Disease Models, Animal , Ether-A-Go-Go Potassium Channels/genetics , Gene Expression , Glioblastoma/diagnosis , Glioblastoma/drug therapy , Humans , Immunohistochemistry , Kaplan-Meier Estimate , Mice , Molecular Targeted Therapy , Spheroids, Cellular , Tissue Array Analysis , Tumor Burden/drug effects , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
15.
16.
Proc Natl Acad Sci U S A ; 113(35): 9916-21, 2016 08 30.
Article in English | MEDLINE | ID: mdl-27516548

ABSTRACT

The human human ether-à-go-go-related gene (hERG) potassium channel plays a critical role in the repolarization of the cardiac action potential. Changes in hERG channel function underlie long QT syndrome (LQTS) and are associated with cardiac arrhythmias and sudden death. A striking feature of this channel and KCNH channels in general is the presence of an N-terminal Per-Arnt-Sim (PAS) domain. In other proteins, PAS domains bind ligands and modulate effector domains. However, the PAS domains of KCNH channels are orphan receptors. We have uncovered a family of positive modulators of hERG that specifically bind to the PAS domain. We generated two single-chain variable fragments (scFvs) that recognize different epitopes on the PAS domain. Both antibodies increase the rate of deactivation but have different effects on channel activation and inactivation. Importantly, we show that both antibodies, on binding to the PAS domain, increase the total amount of current that permeates the channel during a ventricular action potential and significantly reduce the action potential duration recorded in human cardiomyocytes. Overall, these molecules constitute a previously unidentified class of positive modulators and establish that allosteric modulation of hERG channel function through ligand binding to the PAS domain can be attained.


Subject(s)
Action Potentials/drug effects , Ether-A-Go-Go Potassium Channels/physiology , Ion Channel Gating/drug effects , Single-Chain Antibodies/pharmacology , Animals , Binding Sites/genetics , Binding Sites/immunology , Cells, Cultured , Chickens , Electric Stimulation/methods , Epitopes/genetics , Epitopes/immunology , Ether-A-Go-Go Potassium Channels/genetics , Ether-A-Go-Go Potassium Channels/immunology , HEK293 Cells , Humans , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/physiology , Patch-Clamp Techniques , Single-Chain Antibodies/immunology
17.
Proc Natl Acad Sci U S A ; 113(17): 4859-64, 2016 Apr 26.
Article in English | MEDLINE | ID: mdl-27078096

ABSTRACT

Oligomers of homomeric voltage-gated potassium channels associate early in biogenesis as the nascent proteins emerge from the polysome. Less is known about how proteins emerging from different polysomes associate to form hetero-oligomeric channels. Here, we report that alternate mRNA transcripts encoding human ether-à-go-go-related gene (hERG) 1a and 1b subunits, which assemble to produce ion channels mediating cardiac repolarization, are physically associated during translation. We show that shRNA specifically targeting either hERG 1a or 1b transcripts reduced levels of both transcripts, but only when they were coexpressed heterologously. Both transcripts could be copurified with an Ab against the nascent hERG 1a N terminus. This interaction occurred even when translation of 1b was prevented, indicating the transcripts associate independent of their encoded proteins. The association was also demonstrated in cardiomyocytes, where levels of both hERG transcripts were reduced by either 1a or 1b shRNA, but native KCNE1 and ryanodine receptor 2 (RYR2) transcripts were unaffected. Changes in protein levels and membrane currents mirrored changes in transcript levels, indicating the targeted transcripts were undergoing translation. The physical association of transcripts encoding different subunits provides the spatial proximity required for nascent proteins to interact during biogenesis, and may represent a general mechanism facilitating assembly of heteromeric protein complexes involved in a range of biological processes.


Subject(s)
Ether-A-Go-Go Potassium Channels/genetics , Protein Biosynthesis , RNA, Messenger/metabolism , Cells, Cultured , HEK293 Cells , Humans , Immunoprecipitation , Induced Pluripotent Stem Cells/cytology , Membrane Potentials , Myocytes, Cardiac/metabolism , Potassium Channels, Voltage-Gated/genetics , Protein Subunits , RNA, Messenger/genetics , RNA, Small Interfering/metabolism , RNA, Small Interfering/pharmacology , Ryanodine Receptor Calcium Release Channel/genetics , Transfection
18.
Prog Biophys Mol Biol ; 120(1-3): 67-76, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26772437

ABSTRACT

The human ether-a-go-go related gene (hERG) encodes two subunits, hERG 1a and hERG 1b, that combine in vivo to conduct the rapid delayed rectifier potassium current (IKr). Reduced IKr slows cardiac action potential (AP) repolarization and is an underlying cause of cardiac arrhythmias associated with long QT syndrome (LQTS). Although the physiological importance of hERG 1b has been elucidated, the effects of hERG 1b disease mutations on cardiac IKr and AP behavior have not been described. To explore the disease mechanism of a 1b-specific mutation associated with a case of intrauterine fetal death, we examined the effects of the 1b-R25W mutation on total protein, trafficking and membrane current levels in HEK293 cells at physiological temperatures. By all measures the 1b-R25W mutation conferred diminished expression, and exerted a temperature-sensitive, dominant-negative effect over the WT hERG 1a protein with which it was co-expressed. Membrane currents were reduced by 60% with no apparent effect on voltage dependence or deactivation kinetics. The dominant-negative effects of R25W were demonstrated in iPSC-CMs, where 1b-R25W transfection diminished native IKr compared to controls. R25W also slowed AP repolarization, and increased AP triangulation and variability in iPSC-CMs, reflecting cellular manifestations of pro-arrhythmia. These data demonstrate that R25W is a dominant-negative mutation with significant pathophysiological consequences, and provide the first direct link between hERG 1b mutation and cardiomyocyte dysfunction.


Subject(s)
Ether-A-Go-Go Potassium Channels/genetics , Fetal Death , Mutation , Action Potentials/genetics , Cell Membrane/metabolism , Ether-A-Go-Go Potassium Channels/metabolism , Female , HEK293 Cells , Heart/physiopathology , Humans , Potassium/metabolism , Protein Stability , Temperature
19.
J Mol Biol ; 427(1): 67-76, 2015 Jan 16.
Article in English | MEDLINE | ID: mdl-25158096

ABSTRACT

KCNH channels are expressed across a vast phylogenetic and evolutionary spectrum. In humans, they function in a wide range of tissues and serve as biomarkers and targets for diseases such as cancer and cardiac arrhythmias. These channels share a general architecture with other voltage-gated ion channels but are distinguished by the presence of an N-terminal PAS (Per-Arnt-Sim) domain and a C-terminal domain with homology to cyclic nucleotide binding domains (referred to as the CNBh domain). Cytosolic regions outside these domains show little conservation between KCNH families but are strongly conserved across species within a family, likely reflecting variability that confers specificity to individual channel types. PAS and CNBh domains participate in channel gating, but at least twice in evolutionary history, the PAS domain has been lost and it is omitted by alternate transcription to create a distinct channel subunit in one family. In this focused review, we present current knowledge of the structure and function of these cytosolic regions, discuss their evolution as modular domains and provide our perspective on the important questions moving forward.


Subject(s)
Cytoplasm/metabolism , Ether-A-Go-Go Potassium Channels/metabolism , Animals , Ether-A-Go-Go Potassium Channels/chemistry , Humans , Models, Molecular
20.
Proc Natl Acad Sci U S A ; 111(50): 18073-7, 2014 Dec 16.
Article in English | MEDLINE | ID: mdl-25453103

ABSTRACT

The human ether-à-go-go-related gene (hERG; or KCNH2) encodes the voltage-gated potassium channel underlying IKr, a repolarizing current in the heart. Mutations in KCNH2 or pharmacological agents that reduce IKr slow action potential (AP) repolarization and can trigger cardiac arrhythmias associated with long QT syndrome. Two channel-forming subunits encoded by KCNH2 (hERG 1a and 1b) are expressed in cardiac tissue. In heterologous expression systems, these subunits avidly coassemble and exhibit biophysical and pharmacological properties distinct from those of homomeric hERG 1a channels. Despite these findings, adoption of hERG 1a/1b heteromeric channels as a model for cardiac IKr has been hampered by the lack of evidence for a direct functional role for the 1b subunit in native tissue. In this study, we measured IKr and APs at physiological temperature in cardiomyocytes derived from human induced pluripotent stem cells (iPSC-CMs). We found that specific knockdown of the 1b subunit using shRNA caused reductions in 1b mRNA, 1b protein levels, and IKr magnitude by roughly one-half. AP duration was increased and AP variability was enhanced relative to controls. Early afterdepolarizations, considered cellular substrates for arrhythmia, were also observed in cells with reduced 1b expression. Similar behavior was elicited when channels were effectively converted from heteromers to 1a homomers by expressing a fragment corresponding to the 1a-specific N-terminal Per-Arnt-Sim domain, which is omitted from hERG 1b by alternate transcription. These findings establish that hERG 1b is critical for normal repolarization and that loss of 1b is proarrhythmic in human cardiac cells.


Subject(s)
Ether-A-Go-Go Potassium Channels/metabolism , Membrane Potentials/physiology , Myocytes, Cardiac/physiology , Ventricular Function/physiology , Action Potentials/physiology , Analysis of Variance , Cell Polarity/physiology , ERG1 Potassium Channel , Gene Knockdown Techniques , Humans , Immunohistochemistry , RNA, Small Interfering/genetics , Real-Time Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...