Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
ACS Omega ; 4(21): 18942-18947, 2019 Nov 19.
Article in English | MEDLINE | ID: mdl-31763515

ABSTRACT

Enantiomerically pure tailor-made amino acids are in extremely high demand in nearly every sector of the health-related industries. In particular, the rapidly growing number of amino-acid-based pharmaceuticals calls for the development of advanced synthetic approaches featuring practicality and commercial viability. Here we provide a brief summary of the development of axially chiral tridentate Hamari ligands and their application for general asymmetric synthesis of various structural types of amino acids. The methodological diversity includes: dynamic kinetic resolution and (S)-/(R)-interconversion of unprotected amino acids and homologation of nucleophilic glycine equivalents via alkyl halide alkylation reactions as well as multiple-step transformations allowing preparation of polyfunctional and cyclic derivatives. The practicality of these methods is critically discussed.

2.
Bioorg Med Chem Lett ; 18(6): 2206-10, 2008 Mar 15.
Article in English | MEDLINE | ID: mdl-18267359

ABSTRACT

Tumor cells extensively utilize the pentose phosphate pathway for the synthesis of ribose. Transketolase is a key enzyme in this pathway and has been suggested as a target for inhibition in the treatment of cancer. In a pharmacodynamic study, nude mice with xenografted HCT-116 tumors were dosed with 1 ('N3'-pyridyl thiamine'; 3-(6-methyl-2-amino-pyridin-3-ylmethyl)-5-(2-hydroxy-ethyl)-4-methyl-thiazol-3-ium chloride hydrochloride), an analog of thiamine, the co-factor of transketolase. Transketolase activity was almost completely suppressed in blood, spleen, and tumor cells, but there was little effect on the activity of the other thiamine-utilizing enzymes alpha-ketoglutarate dehydrogenase or glucose-6-phosphate dehydrogenase. Synthesis and SAR of transketolase inhibitors is described.


Subject(s)
Colonic Neoplasms/drug therapy , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Thiamine/analogs & derivatives , Thiamine/antagonists & inhibitors , Transketolase/antagonists & inhibitors , Animals , Colonic Neoplasms/enzymology , Crystallography, X-Ray , Glucosephosphate Dehydrogenase/metabolism , Humans , In Vitro Techniques , Ketoglutarate Dehydrogenase Complex/metabolism , Magnetic Resonance Spectroscopy , Mice , Mice, Nude , Molecular Structure , Oxythiamine/antagonists & inhibitors , Phosphorylation/drug effects , Spleen/drug effects , Spleen/enzymology , Structure-Activity Relationship , Xenograft Model Antitumor Assays
3.
Bioorg Med Chem Lett ; 18(2): 509-12, 2008 Jan 15.
Article in English | MEDLINE | ID: mdl-18182286

ABSTRACT

Inhibition of the thiamine-utilizing enzyme transketolase (TK) has been linked with diminished tumor cell proliferation. Most thiamine antagonists have a permanent positive charge on the B-ring, and it has been suggested that this charge is required for diphosphorylation by thiamine pyrophosphokinase (TPPK) and binding to TK. We sought to make neutral thiazolium replacements that would be substrates for TPPK, while not necessarily needing thiamine transporters (ThTr1 and ThTr2) for cell penetration. The synthesis, SAR, and structure-based rationale for highly potent non-thiazolium TK antagonists are presented.


Subject(s)
Enzyme Inhibitors/pharmacology , Thiamine/analogs & derivatives , Transketolase/antagonists & inhibitors , Animals , Catalysis , Cell Line , Crystallography, X-Ray , Enzyme Inhibitors/chemistry , Humans , Mice , Protein Conformation , Structure-Activity Relationship , Thiamine/chemistry , Thiamine/pharmacology
4.
Bioorg Med Chem Lett ; 18(2): 505-8, 2008 Jan 15.
Article in English | MEDLINE | ID: mdl-18083562

ABSTRACT

Transketolase, a key enzyme in the pentose phosphate pathway, has been suggested as a target for inhibition in the treatment of cancer. Compound 5a ('N3'-pyridyl thiamine'; 3-(6-methyl-2-amino-pyridin-3-ylmethyl)-5-(2-hydroxy-ethyl)-4-methyl-thiazol-3-ium chloride hydrochloride), an analog of the transketolase cofactor thiamine, is a potent transketolase inhibitor but suffers from poor pharmacokinetics due to high clearance and C(max) linked toxicity. An efficient way of improving the pharmacokinetic profile of 5a is to prepare oxidized prodrugs which are slowly reduced in vivo yielding longer, sustained blood levels of the drug. The synthesis of such prodrugs and their evaluation in rodent models is reported.


Subject(s)
Enzyme Inhibitors/pharmacology , Prodrugs/pharmacology , Thiamine/analogs & derivatives , Transketolase/antagonists & inhibitors , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacokinetics , Molecular Structure , Prodrugs/chemistry , Prodrugs/pharmacokinetics , Thiamine/chemistry , Thiamine/pharmacokinetics , Thiamine/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL