Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
1.
Brain Commun ; 6(3): fcae157, 2024.
Article in English | MEDLINE | ID: mdl-38764776

ABSTRACT

Adults with Down syndrome are less likely to have hypertension than neurotypical adults. However, whether blood pressure measures are associated with brain health and clinical outcomes in this population has not been studied in detail. Here, we assessed whether pulse pressure is associated with markers of cerebrovascular disease and is linked to a diagnosis of dementia in adults with Down syndrome via structural imaging markers of cerebrovascular disease and atrophy. The study included participants with Down syndrome from the Alzheimer's Disease - Down Syndrome study (n = 195, age = 50.6 ± 7.2 years, 44% women, 18% diagnosed with dementia). Higher pulse pressure was associated with greater global, parietal and occipital white matter hyperintensity volume but not with enlarged perivascular spaces, microbleeds or infarcts. Using a structural equation model, we found that pulse pressure was associated with greater white matter hyperintensity volume, which in turn was related to increased neurodegeneration, and subsequent dementia diagnosis. Pulse pressure is an important determinant of brain health and clinical outcomes in individuals with Down syndrome despite the low likelihood of frank hypertension.

2.
Alzheimers Dement (Amst) ; 16(2): e12582, 2024.
Article in English | MEDLINE | ID: mdl-38623384

ABSTRACT

INTRODUCTION: People with Down syndrome (DS) have a 75% to 90% lifetime risk of Alzheimer's disease (AD). AD pathology begins a decade or more prior to onset of clinical AD dementia in people with DS. It is not clear if plasma biomarkers of AD pathology are correlated with early cognitive and functional impairments in DS, and if these biomarkers could be used to track the early stages of AD in DS or to inform inclusion criteria for clinical AD treatment trials. METHODS: This large cross-sectional cohort study investigated the associations between plasma biomarkers of amyloid beta (Aß)42/40, total tau, and neurofilament light chain (NfL) and cognitive (episodic memory, visual-motor integration, and visuospatial abilities) and functional (adaptive behavior) impairments in 260 adults with DS without dementia (aged 25-81 years). RESULTS: In general linear models lower plasma Aß42/40 was related to lower visuospatial ability, higher total tau was related to lower episodic memory, and higher NfL was related to lower visuospatial ability and lower episodic memory. DISCUSSION: Plasma biomarkers may have utility in tracking AD pathology associated with early stages of cognitive decline in adults with DS, although associations were modest. Highlights: Plasma Alzheimer's disease (AD) biomarkers correlate with cognition prior to dementia in Down syndrome.Lower plasma amyloid beta 42/40 was related to lower visuospatial abilities.Higher plasma total tau and neurofilament light chain were associated with lower cognitive performance.Plasma biomarkers show potential for tracking early stages of AD symptomology.

3.
Lancet Neurol ; 23(5): 500-510, 2024 May.
Article in English | MEDLINE | ID: mdl-38631766

ABSTRACT

BACKGROUND: In people with genetic forms of Alzheimer's disease, such as in Down syndrome and autosomal-dominant Alzheimer's disease, pathological changes specific to Alzheimer's disease (ie, accumulation of amyloid and tau) occur in the brain at a young age, when comorbidities related to ageing are not present. Studies including these cohorts could, therefore, improve our understanding of the early pathogenesis of Alzheimer's disease and be useful when designing preventive interventions targeted at disease pathology or when planning clinical trials. We compared the magnitude, spatial extent, and temporal ordering of tau spread in people with Down syndrome and autosomal-dominant Alzheimer's disease. METHODS: In this cross-sectional observational study, we included participants (aged ≥25 years) from two cohort studies. First, we collected data from the Dominantly Inherited Alzheimer's Network studies (DIAN-OBS and DIAN-TU), which include carriers of autosomal-dominant Alzheimer's disease genetic mutations and non-carrier familial controls recruited in Australia, Europe, and the USA between 2008 and 2022. Second, we collected data from the Alzheimer Biomarkers Consortium-Down Syndrome study, which includes people with Down syndrome and sibling controls recruited from the UK and USA between 2015 and 2021. Controls from the two studies were combined into a single group of familial controls. All participants had completed structural MRI and tau PET (18F-flortaucipir) imaging. We applied Gaussian mixture modelling to identify regions of high tau PET burden and regions with the earliest changes in tau binding for each cohort separately. We estimated regional tau PET burden as a function of cortical amyloid burden for both cohorts. Finally, we compared the temporal pattern of tau PET burden relative to that of amyloid. FINDINGS: We included 137 people with Down syndrome (mean age 38·5 years [SD 8·2], 74 [54%] male, and 63 [46%] female), 49 individuals with autosomal-dominant Alzheimer's disease (mean age 43·9 years [11·2], 22 [45%] male, and 27 [55%] female), and 85 familial controls, pooled from across both studies (mean age 41·5 years [12·1], 28 [33%] male, and 57 [67%] female), who satisfied the PET quality-control procedure for tau-PET imaging processing. 134 (98%) people with Down syndrome, 44 (90%) with autosomal-dominant Alzheimer's disease, and 77 (91%) controls also completed an amyloid PET scan within 3 years of tau PET imaging. Spatially, tau PET burden was observed most frequently in subcortical and medial temporal regions in people with Down syndrome, and within the medial temporal lobe in people with autosomal-dominant Alzheimer's disease. Across the brain, people with Down syndrome had greater concentrations of tau for a given level of amyloid compared with people with autosomal-dominant Alzheimer's disease. Temporally, increases in tau were more strongly associated with increases in amyloid for people with Down syndrome compared with autosomal-dominant Alzheimer's disease. INTERPRETATION: Although the general progression of amyloid followed by tau is similar for people Down syndrome and people with autosomal-dominant Alzheimer's disease, we found subtle differences in the spatial distribution, timing, and magnitude of the tau burden between these two cohorts. These differences might have important implications; differences in the temporal pattern of tau accumulation might influence the timing of drug administration in clinical trials, whereas differences in the spatial pattern and magnitude of tau burden might affect disease progression. FUNDING: None.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Down Syndrome , Male , Female , Humans , Adult , Alzheimer Disease/genetics , Cross-Sectional Studies , Amyloid beta-Peptides/metabolism , tau Proteins/metabolism , Amyloid , Magnetic Resonance Imaging/methods , Positron-Emission Tomography/methods , Cognitive Dysfunction/pathology
4.
Alzheimers Dement (Amst) ; 16(1): e12542, 2024.
Article in English | MEDLINE | ID: mdl-38348178

ABSTRACT

INTRODUCTION: Virtually all people with Down syndrome (DS) develop neuropathology associated with Alzheimer's disease (AD). Atrophy of the hippocampus and entorhinal cortex (EC), as well as elevated plasma concentrations of neurofilament light chain (NfL) protein, are markers of neurodegeneration associated with late-onset AD. We hypothesized that hippocampus and EC gray matter loss and increased plasma NfL concentrations are associated with memory in adults with DS. METHODS: T1-weighted structural magnetic resonance imaging (MRI) data were collected from 101 participants with DS. Hippocampus and EC volume, as well as EC subregional cortical thickness, were derived. In a subset of participants, plasma NfL concentrations and modified Cued Recall Test scores were obtained. Partial correlation and mediation were used to test relationships between medial temporal lobe (MTL) atrophy, plasma NfL, and episodic memory. RESULTS: Hippocampus volume, left anterolateral EC (alEC) thickness, and plasma NfL were correlated with each other and were associated with memory. Plasma NfL mediated the relationship between left alEC thickness and memory as well as hippocampus volume and memory. DISCUSSION: The relationship between MTL gray matter and memory is mediated by plasma NfL levels, suggesting a link between neurodegenerative processes underlying axonal injury and frank gray matter loss in key structures supporting episodic memory in people with DS.

5.
medRxiv ; 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38076904

ABSTRACT

Importance: By age 40 years over 90% of adults with Down syndrome (DS) have Alzheimer's disease (AD) pathology and most progress to dementia. Despite having few systemic vascular risk factors, individuals with DS have elevated cerebrovascular disease (CVD) markers that track with the clinical progression of AD, suggesting a role for CVD that is hypothesized to be mediated by inflammatory factors. Objective: To examine the pathways through which small vessel CVD contributes to AD-related pathophysiology and neurodegeneration in adults with DS. Design: Cross sectional analysis of neuroimaging, plasma, and clinical data. Setting: Participants were enrolled in Alzheimer's Biomarker Consortium - Down Syndrome (ABC-DS), a multisite study of AD in adults with DS. Participants: One hundred eighty-five participants (mean [SD] age=45.2 [9.3] years) with available MRI and plasma biomarker data were included. White matter hyperintensity (WMH) volumes were derived from T2-weighted FLAIR MRI scans and plasma biomarker concentrations of amyloid beta (Aß42/Aß40), phosphorylated tau (p-tau217), astrocytosis (glial fibrillary acidic protein, GFAP), and neurodegeneration (neurofilament light chain, NfL) were measured with ultrasensitive immunoassays. Main Outcomes and Measures: We examined the bivariate relationships of WMH, Aß42/Aß40, p-tau217, and GFAP with age-residualized NfL across AD diagnostic groups. A series of mediation and path analyses examined causal pathways linking WMH and AD pathophysiology to promote neurodegeneration in the total sample and groups stratified by clinical diagnosis. Results: There was a direct and indirect bidirectional effect through GFAP of WMH on p-tau217 concentration, which was associated with NfL concentration in the entire sample. Among cognitively stable participants, WMH was directly and indirectly, through GFAP, associated with p-tau217 concentration, and in those with MCI, there was a direct effect of WMH on p-tau217 and NfL concentrations. There were no associations of WMH with biomarker concentrations among those diagnosed with dementia. Conclusions and Relevance: The findings suggest that among individuals with DS, CVD promotes neurodegeneration by increasing astrocytosis and tau pathophysiology in the presymptomatic phases of AD. This work joins an emerging literature that implicates CVD and its interface with neuroinflammation as a core pathological feature of AD in adults with DS.

6.
medRxiv ; 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37961444

ABSTRACT

Individuals with Down syndrome (DS) are less likely to have hypertension than neurotypical adults. However, whether blood pressure measures are associated with brain health and clinical outcomes in this population has not been studied in detail. Here, we assessed whether pulse pressure is associated with markers of cerebrovascular disease, entorhinal cortical atrophy, and diagnosis of dementia in adults with DS. Participants with DS from the Biomarkers of Alzheimer's Disease in Adults with Down Syndrome study (ADDS; n=195, age=50.6±7.2 years, 44% women, 18% diagnosed with dementia) were included. Higher pulse pressure was associated with greater global, parietal, and occipital WMH volume. Pulse pressure was not related to enlarged PVS, microbleeds, infarcts, entorhinal cortical thickness, or dementia diagnosis. However, in a serial mediation model, we found that pulse pressure was indirectly related to dementia diagnosis through parieto-occipital WMH and, subsequently through entorhinal cortical thickness. Higher pulse pressure may be a risk factor for dementia in people with DS by promoting cerebrovascular disease, which in turn affects neurodegeneration. Pulse pressure is an important determinant of brain health and clinical outcomes in individuals with Down syndrome despite the low likelihood of frank hypertension.

7.
J Huntingtons Dis ; 12(3): 267-281, 2023.
Article in English | MEDLINE | ID: mdl-37694372

ABSTRACT

BACKGROUND: To date, it is still controversial whether tau phosphorylation plays a role in Huntington's disease (HD), as previous studies demonstrated either no alterations or increases in phosphorylated tau (pTau) in HD postmortem brain and mouse models. OBJECTIVE: The goal of this study was to determine whether total tau and pTau levels are altered in HD. METHODS: Immunohistochemistry, cellular fractionations, and western blots were used to measure total tau and pTau levels in a large cohort of HD and control postmortem prefrontal cortex (PFC). Furthermore, western blots were performed to assess tau, and pTau levels in HD and control isogenic embryonic stem cell (ESC)-derived cortical neurons and neuronal stem cells (NSCs). Similarly, western blots were used to assess tau and pTau levels in HttQ111 and transgenic R6/2 mice. Lastly, total tau levels were assessed in HD and healthy control plasma using Quanterix Simoa assay. RESULTS: Our results revealed that, while there was no difference in total tau or pTau levels in HD PFC compared to controls, the levels of tau phosphorylated at S396 were increased in PFC samples from HD patients 60 years or older at time of death. Additionally, tau and pTau levels were not changed in HD ESC-derived cortical neurons and NSCs. Similarly, total tau or pTau levels were not altered in HttQ111 and transgenic R6/2 mice compared to wild-type littermates. Lastly, tau levels were not changed in plasma from a small cohort of HD patients compared to controls. CONCLUSIONS: Together these findings demonstrate that pTau-S396 levels increase significantly with age in HD PFC.


Subject(s)
Huntington Disease , Mice , Animals , Humans , Huntington Disease/metabolism , Phosphorylation , Serine/metabolism , Mice, Transgenic , Prefrontal Cortex/metabolism , Disease Models, Animal
8.
J Alzheimers Dis ; 95(1): 213-225, 2023.
Article in English | MEDLINE | ID: mdl-37482997

ABSTRACT

BACKGROUND: Trisomy 21 causes Down syndrome (DS) and is a recognized cause of early-onset Alzheimer's disease (AD). OBJECTIVE: The current study sought to determine if premorbid intellectual disability level (ID) was associated with variability in age-trajectories of AD biomarkers and cognitive impairments. General linear mixed models compared the age-trajectory of the AD biomarkers PET Aß and tau and cognitive decline across premorbid ID levels (mild, moderate, and severe/profound), in models controlling trisomy type, APOE status, biological sex, and site. METHODS: Analyses involved adults with DS from the Alzheimer's Biomarkers Consortium-Down Syndrome. Participants completed measures of memory, mental status, and visuospatial ability. Premorbid ID level was based on IQ or mental age scores prior to dementia concerns. PET was acquired using [11C] PiB for Aß, and [18F] AV-1451 for tau. RESULTS: Cognitive data was available for 361 participants with a mean age of 45.22 (SD = 9.92) and PET biomarker data was available for 154 participants. There was not a significant effect of premorbid ID level by age on cognitive outcomes. There was not a significant effect of premorbid ID by age on PET Aß or on tau PET. There was not a significant difference in age at time of study visit of those with mild cognitive impairment-DS or dementia by premorbid ID level. CONCLUSION: Findings provide robust evidence of a similar time course in AD trajectory across premorbid ID levels, laying the groundwork for the inclusion of individuals with DS with a variety of IQ levels in clinical AD trials.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Down Syndrome , Intellectual Disability , Humans , Alzheimer Disease/complications , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/psychology , Down Syndrome/complications , Down Syndrome/diagnostic imaging , Down Syndrome/psychology , Intellectual Disability/complications , Intellectual Disability/diagnostic imaging , Intellectual Disability/psychology , Cognitive Dysfunction/psychology , Biomarkers , Amyloid beta-Peptides , tau Proteins , Positron-Emission Tomography
9.
medRxiv ; 2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37333415

ABSTRACT

Background: To date, it is still controversial whether tau phosphorylation plays a role in Huntington's disease (HD), as previous studies demonstrated either no alterations or increases in phosphorylated tau (pTau) in HD post-mortem brain and mouse models. Objectives: The goal of this study was to determine whether total tau and pTau levels are altered in HD. Methods: Immunohistochemistry, cellular fractionations, and western blots were used to measure tau and pTau levels in a large cohort of HD and control post-mortem prefrontal cortex (PFC). Furthermore, western blots were performed to assess tau, and pTau levels in HD and control isogenic embryonic stem cell (ESC)-derived cortical neurons and neuronal stem cells (NSCs). Similarly, western blots were used to assess tau and pTau in Htt Q111 and transgenic R6/2 mice. Lastly, total tau levels were assessed in HD and healthy control plasma using Quanterix Simoa assay. Results: Our results revealed that, while there was no difference in tau or pTau levels in HD PFC compared to controls, tau phosphorylated at S396 levels were increased in PFC samples from HD patients 60 years or older at time of death. Additionally, tau and pTau levels were not changed in HD ESC-derived cortical neurons and NSCs. Similarly, tau or pTau levels were not altered in Htt Q111 and transgenic R6/2 mice compared to wild-type littermates. Lastly, tau levels were not changed in plasma from a small cohort of HD patients compared to controls. Conclusion: Together these findings demonstrate that pTau-S396 levels increase significantly with age in HD PFC.

10.
Neuroimage Rep ; 3(2)2023 Jun.
Article in English | MEDLINE | ID: mdl-37388455

ABSTRACT

The corpus callosum (CC) is one of the most important interhemispheric white matter tracts that connects interrelated regions of the cerebral cortex. Its disruption has been investigated in previous studies and has been found to play an important role in several neurodegenerative disorders. Currently available methods to assess the interhemispheric connectivity of the CC have several limitations: i) they require the a priori identification of specific cortical regions as targets or seeds, ii) they are limited by the characterization of only small components of the structure, primarily voxels that constitute the mid-sagittal slice, and iii) they use global measures of microstructural integrity, which provide only limited characterization. In order to address some of these limitations, we developed a novel method that enables the characterization of white matter tracts covering the structure of CC, from the mid-sagittal plane to corresponding regions of cortex, using directional tract density patterns (dTDPs). We demonstrate that different regions of CC have distinctive dTDPs that reflect a unique regional topology. We conducted a pilot study using this approach to evaluate two different datasets collected from healthy subjects, and we demonstrate that this method is reliable, reproducible, and independent of diffusion acquisition parameters, suggesting its potential applicability to clinical applications.

11.
Parkinsonism Relat Disord ; 109: 105289, 2023 04.
Article in English | MEDLINE | ID: mdl-36948112

ABSTRACT

INTRODUCTION: Early non-motor symptoms in Huntington's disease (HD), including visual perceptual difficulties, can have profound negative impacts on quality of life. In particular, deficits in emotion recognition may contribute to misinterpretation of social cues, and may adversely affect interpersonal relationships, work relationships and/or general well-being. This may be particularly salient during the pre-manifest period, a period prior to the onset of motor symptoms. We sought to evaluate impairments in emotion recognition in gene-positive individuals who did not meet criterial for a diagnosis of HD; we also sought to determine associations between emotion recognition processing and altered cortico-striatal circuitry. METHODS: We used a standardized battery to evaluate performance on a facial expression recognition task in a cohort of motor pre-manifest HD (Pre-HD) individuals (N = 21). Functional MRI (fMRI) was then used to assess the face processing network in a subset (N = 15). RESULTS: We found significantly decreased response accuracy to certain facial expressions, particularly of negative emotions (p < 0.001) in Pre-HDs. When Pre-HDs viewed faces with different emotions, activation within the Superior Temporal Sulcus (fSTS) was reduced compared to controls; in contrast, the level of evoked response within other face-selective cortical regions was comparable. CONCLUSION: Early deficits in emotion recognition in Pre-HD appear to be associated with alterations in the fSTS response, a distinctly different pathway from that involved in face perception and provide support for early cognitive and behavioral interventions.


Subject(s)
Facial Recognition , Huntington Disease , Humans , Quality of Life , Emotions/physiology , Huntington Disease/complications , Huntington Disease/diagnostic imaging , Recognition, Psychology , Facial Expression
12.
Lancet Neurol ; 22(1): 55-65, 2023 01.
Article in English | MEDLINE | ID: mdl-36517172

ABSTRACT

BACKGROUND: Important insights into the early pathogenesis of Alzheimer's disease can be provided by studies of autosomal dominant Alzheimer's disease and Down syndrome. However, it is unclear whether the timing and spatial distribution of amyloid accumulation differs between people with autosomal dominant Alzheimer's disease and those with Down syndrome. We aimed to directly compare amyloid changes between these two groups of people. METHODS: In this cross-sectional study, we included participants (aged ≥25 years) with Down syndrome and sibling controls who had MRI and amyloid PET scans in the first data release (January, 2020) of the Alzheimer's Biomarker Consortium-Down Syndrome (ABC-DS) study. We also included carriers of autosomal dominant Alzheimer's disease genetic mutations and non-carrier familial controls who were within a similar age range to ABC-DS participants (25-73 years) and had MRI and amyloid PET scans at the time of a data freeze (December, 2020) of the Dominantly Inherited Alzheimer Network (DIAN) study. Controls from the two studies were combined into a single group. All DIAN study participants had genetic testing to determine PSEN1, PSEN2, or APP mutation status. APOE genotype was determined from blood samples. CSF samples were collected in a subset of ABC-DS and DIAN participants and the ratio of amyloid ß42 (Aß42) to Aß40 (Aß42/40) was measured to evaluate its Spearman's correlation with amyloid PET. Global PET amyloid burden was compared with regards to cognitive status, APOE ɛ4 status, sex, age, and estimated years to symptom onset. We further analysed amyloid PET deposition by autosomal dominant mutation type. We also assessed regional patterns of amyloid accumulation by estimated number of years to symptom onset. Within a subset of participants the relationship between amyloid PET and CSF Aß42/40 was evaluated. FINDINGS: 192 individuals with Down syndrome and 33 sibling controls from the ABC-DS study and 265 carriers of autosomal dominant Alzheimer's disease mutations and 169 non-carrier familial controls from the DIAN study were included in our analyses. PET amyloid centiloid and CSF Aß42/40 were negatively correlated in carriers of autosomal dominant Alzheimer's disease mutations (n=216; r=-0·565; p<0·0001) and in people with Down syndrome (n=32; r=-0·801; p<0·0001). There was no difference in global PET amyloid burden between asymptomatic people with Down syndrome (mean 18·80 centiloids [SD 28·33]) versus asymptomatic mutation carriers (24·61 centiloids [30·27]; p=0·11) and between symptomatic people with Down syndrome (77·25 centiloids [41·76]) versus symptomatic mutation carriers (69·15 centiloids [51·10]; p=0·34). APOE ɛ4 status and sex had no effect on global amyloid PET deposition. Amyloid deposition was elevated significantly earlier in mutation carriers than in participants with Down syndrome (estimated years to symptom onset -23·0 vs -17·5; p=0·0002). PSEN1 mutations primarily drove this difference. Early amyloid accumulation occurred in striatal and cortical regions for both mutation carriers (n=265) and people with Down syndrome (n=128). Although mutation carriers had widespread amyloid accumulation in all cortical regions, the medial occipital regions were spared in people with Down syndrome. INTERPRETATION: Despite minor differences, amyloid PET changes were similar between people with autosomal dominant Alzheimer's disease versus Down syndrome and strongly supported early amyloid dysregulation in individuals with Down syndrome. Individuals with Down syndrome aged at least 35 years might benefit from early intervention and warrant future inclusion in clinical trials, particularly given the relatively high incidence of Down syndrome. FUNDING: The National Institute on Aging, Riney and Brennan Funds, the Eunice Kennedy Shriver National Institute of Child Health and Human Development, the German Center for Neurodegenerative Diseases, and the Japan Agency for Medical Research and Development.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Cerebral Cortex , Down Syndrome , Adult , Aged , Humans , Middle Aged , Alzheimer Disease/blood , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/genetics , Amyloid beta-Peptides/analysis , Apolipoproteins E/genetics , Biomarkers/analysis , Cross-Sectional Studies , Down Syndrome/blood , Down Syndrome/diagnostic imaging , Down Syndrome/genetics , Positron-Emission Tomography , Cerebral Cortex/chemistry , Cerebral Cortex/diagnostic imaging
13.
J Alzheimers Dis ; 91(3): 1215-1227, 2023.
Article in English | MEDLINE | ID: mdl-36565120

ABSTRACT

BACKGROUND: Virtually all adults with Down syndrome (DS) develop Alzheimer's disease (AD) pathology, but research gaps remain in understanding early signs of AD in DS. OBJECTIVE: The goal of the present study was to determine if unintentional weight loss is part of AD in DS. The specific aims were to: 1) examine relation between chronological age, weight, AD pathology, and AD-related cognitive decline were assessed in a large cohort of adults with DS, and 2) determine if baseline PET amyloid-ß (Aß) and tau PET status (-versus+) and/or decline in memory and mental status were associated with weight loss prior to AD progression. METHODS: Analyses included 261 adults with DS. PET data were acquired using [11C] PiB for Aß and [18F] AV-1451 for tau. Body mass index (BMI) was calculated from weight and height. Direct measures assessed dementia and memory. Clinical AD status was determined using a case consensus process. Percent weight decline across 16-20 months was assessed in a subset of participants (n = 77). RESULTS: Polynomial regressions indicated an 0.23 kg/m2 decrease in BMI per year beginning at age 36.5 years, which occurs alongside the period during which Aß and tau increase and memory and mental status decline. At a within-person level, elevated Aß, decline in memory and mental status were associated with higher percent weight loss across 16-20 months. CONCLUSION: Unintentional weight loss occurs alongside Aß deposition and prior to onset of AD dementia, and thus may be a useful sign of AD in DS.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Down Syndrome , Humans , Alzheimer Disease/complications , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , Down Syndrome/complications , Down Syndrome/diagnostic imaging , tau Proteins , Amyloid beta-Peptides , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/etiology , Weight Loss , Positron-Emission Tomography , Biomarkers
14.
Neurology ; 99(7 Suppl 1): 1-9, 2022 08 16.
Article in English | MEDLINE | ID: mdl-36219787

ABSTRACT

Parkinson disease (PD) is a chronic progressive neurodegenerative disease with increasing worldwide prevalence. Despite many trials of neuroprotective therapies in manifest PD, no disease-modifying therapy has been established. Over the past several decades, a series of breakthroughs have identified discrete populations at substantially increased risk of developing PD. Based on this knowledge, now is the time to design and implement PD prevention trials. This endeavor builds on experience gained from early prevention trials in Alzheimer disease and Huntington disease. This article first reviews prevention trial precedents in these other neurodegenerative diseases before focusing on the critical design elements for PD prevention trials, including whom to enroll for these trials, what therapeutics to test, and how to measure outcomes in prevention trials. Our perspective reflects progress and remaining challenges that motivated a 2021 conference, "Planning for Prevention of Parkinson: A Trial Design Symposium and Workshop."


Subject(s)
Alzheimer Disease , Huntington Disease , Neurodegenerative Diseases , Parkinson Disease , Humans , Parkinson Disease/epidemiology , Parkinson Disease/prevention & control , Research Design
15.
JAMA Neurol ; 79(8): 797-807, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35789365

ABSTRACT

Importance: Novel plasma biomarkers, especially phosphorylated tau (p-tau), can detect brain tau aggregates in Alzheimer disease. Objective: To determine which plasma biomarker combinations can accurately detect tau pathological brain changes in Down syndrome (DS). Design, Setting, and Participants: The cross-sectional, multicenter Alzheimer's Biomarker Consortium-Down Syndrome study included adults with DS and a control group of siblings without DS. All participants with plasma, positron emission tomography (PET), and cognitive measures available by the time of data freeze 1.0 were included. Participants were enrolled between 2016 and 2019, and data were analyzed from August 2021 to April 2022. Exposures: Plasma p-tau217, glial fibrillary acidic protein (GFAP), amyloid ß42/40 (Aß42/Aß40), neurofilament light (NfL), and total tau (t-tau); tau positron emission tomography (tau-PET) and Aß-PET. Main Outcomes and Measures: The primary outcome was tau-PET status. Secondary outcomes included Aß-PET status and cognitive performance. Results: Among 300 participants with DS and a control group of 37 non-DS siblings, mean (SD) age was 45.0 (10.1) years, and 167 (49.6%) were men. Among participants with DS who all underwent plasma p-tau217 and GFAP analyses, 258 had other plasma biomarker data available and 119, 213, and 288 participants had tau-PET, Aß-PET, and cognitive assessments, respectively. Plasma p-tau217 and t-tau were significantly increased in Aß-PET-positive tau-PET-positive (A+T+) DS and A+T- DS compared with A-T- DS while GFAP was only increased in A+T+ DS. Plasma p-tau217 levels were also significantly higher in A+T+ DS than A+T- DS. In participants with DS, plasma p-tau217 and GFAP (but not other plasma biomarkers) were consistently associated with abnormal tau-PET and Aß-PET status in models covaried for age (odds ratio range, 1.59 [95% CI, 1.05-2.40] to 2.32 [95% CI, 1.36-3.96]; P < .03). A combination of p-tau217 and age performed best when detecting tau-PET abnormality in temporal and neocortical regions (area under the curve [AUC] range, 0.96-0.99). The most parsimonious model for Aß-PET status included p-tau217, t-tau, and age (AUC range, 0.93-0.95). In multivariable models, higher p-tau217 levels but not other biomarkers were associated with worse performance on DS Mental Status Examination (ß, -0.24, 95% CI, -0.36 to -0.12; P < .001) and Cued Recall Test (ß, -0.40; 95% CI, -0.53 to -0.26; P < .001). Conclusions and Relevance: Plasma p-tau217 is a very accurate blood-based biomarker of both tau and Aß pathological brain changes in DS that could help guide screening and enrichment strategies for inclusion of individuals with DS in future AD clinical trials, especially when it is combined with age as a covariate.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Down Syndrome , Adult , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Biomarkers , Brain/diagnostic imaging , Brain/metabolism , Cognitive Dysfunction/metabolism , Cross-Sectional Studies , Down Syndrome/diagnostic imaging , Female , Humans , Male , Middle Aged , Positron-Emission Tomography , tau Proteins/metabolism
16.
Neurol Clin Pract ; 12(2): 131-138, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35747889

ABSTRACT

Background and Objectives: Suicidality is a common concern in the routine care of persons with Huntington disease (HD) and for the many participants in HD clinical trials. In a previous analysis, we identified baseline and time-dependent factors associated with suicidal ideation and attempts from 2CARE, a large, randomized, double-blind clinical trial. Methods: The present analysis extends our prior methodology to 2 other large interventional HD clinical trials, CARE-HD and CREST-E. Results: We observed relationships across studies between suicidality events and prior suicidal ideation at baseline, antidepressant/anxiolytic use, chorea, increasing age, and several domains in the Unified Huntington Disease Rating Scale (UHDRS) Behavioral Assessment (depressed mood, low self-esteem, aggression, and active suicidality). Discussion: These data may form the basis for a subscale of demographic and UHDRS items with the potential for prospectively identifying suicidality risk in HD clinics and clinical trials. Trial Registration Information: 2CARE and CREST are registered at clinicaltrials.gov. 2CARE NCT00608881, registered February 6, 2008; first enrollment March 2008. CREST-E NCT00712426, registered July 10, 2008; first enrollment September 2009. CARE-HD, not registered; first enrollment July 1997.

17.
Alzheimers Dement ; 18(10): 1744-1753, 2022 10.
Article in English | MEDLINE | ID: mdl-35212182

ABSTRACT

Cerebrovascular disease is associated with symptoms and pathogenesis of Alzheimer's disease (AD) among adults with Down syndrome (DS). The cause of increased dementia-related cerebrovascular disease in DS is unknown. We explored whether protein markers of neuroinflammation are associated with markers of cerebrovascular disease among adults with DS. Participants from the Alzheimer's disease in Down syndrome (ADDS) study with magnetic resonance imaging (MRI) scans and blood biomarker data were included. Support vector machine (SVM) analyses examined the relationship of blood-based proteomic biomarkers with MRI-defined cerebrovascular disease among participants characterized as having cognitive decline (n = 36, mean age ± SD = 53 ± 6.2) and as being cognitively stable (n = 78, mean age = 49 ± 6.4). Inflammatory and AD markers were associated with cerebrovascular disease, particularly among symptomatic individuals. The pattern suggested relatively greater inflammatory involvement among cognitively stable individuals and greater AD involvement among those with cognitively decline. The findings help to generate hypotheses that both inflammatory and AD markers are implicated in cerebrovascular disease among those with DS and point to potential mechanistic pathways for further examination.


Subject(s)
Alzheimer Disease , Cerebrovascular Disorders , Down Syndrome , Adult , Humans , Middle Aged , Alzheimer Disease/pathology , Down Syndrome/pathology , Proteome , Proteomics , Cerebrovascular Disorders/complications , Biomarkers
18.
Lancet Neurol ; 20(8): 615-626, 2021 08.
Article in English | MEDLINE | ID: mdl-34302786

ABSTRACT

BACKGROUND: Due to trisomy of chromosome 21 and the resultant extra copy of the amyloid precursor protein gene, nearly all adults with Down syndrome develop Alzheimer's disease pathology by the age of 40 years and are at high risk for dementia given their increased life expectancy compared with adults with Down syndrome in the past. We aimed to compare CSF biomarker patterns in Down syndrome with those of carriers of autosomal dominant Alzheimer's disease mutations to enhance our understanding of disease mechanisms in these two genetic groups at high risk for Alzheimer's disease. METHODS: We did a cross-sectional study using data from adults enrolled in the Alzheimer's Biomarker Consortium-Down Syndrome (ABC-DS) study, a multisite longitudinal study of Alzheimer's disease in Down syndrome, as well as a cohort of carriers of autosomal dominant Alzheimer's disease mutations and non-carrier sibling controls enrolled in the Dominantly Inherited Alzheimer Network (DIAN) study. For ABC-DS, participants with baseline CSF, available clinical diagnosis, and apolipoprotein E genotype as of Jan 31, 2019, were included in the analysis. DIAN participants with baseline CSF, available clinical diagnosis, and apolipoprotein E genotype as of June 30, 2018, were evaluated as comparator groups. CSF samples obtained from adults with Down syndrome, similarly aged carriers of autosomal dominant Alzheimer's disease mutations, and non-carrier siblings (aged 30-61 years) were analysed for markers of amyloid ß (Aß1-40, Aß1-42); tau phosphorylated at threonine 181-related processes; neuronal, axonal, or synaptic injury (total tau, visinin-like protein 1, neurofilament light chain [NfL], synaptosomal-associated protein 25); and astrogliosis and neuroinflammation (chitinase-3-like protein 1 [YKL-40]) via immunoassay. Biomarker concentrations were compared as a function of dementia status (asymptomatic or symptomatic), and linear regression was used to evaluate and compare the relationship between biomarker concentrations and age among groups. FINDINGS: We assessed CSF samples from 341 individuals (178 [52%] women, 163 [48%] men, aged 30-61 years). Participants were adults with Down syndrome (n=41), similarly aged carriers of autosomal dominant Alzheimer's disease mutations (n=192), and non-carrier siblings (n=108). Individuals with Down syndrome had patterns of Alzheimer's disease-related CSF biomarkers remarkably similar to carriers of autosomal dominant Alzheimer's disease mutations, including reductions (all p<0·0080) in Aß1-42 to Aß1-40 ratio and increases in markers of phosphorylated tau-related processes; neuronal, axonal, and synaptic injury (p<0·080); and astrogliosis and neuroinflammation, with greater degrees of abnormality in individuals with dementia. Differences included overall higher concentrations of Aß and YKL-40 (both p<0·0008) in Down syndrome and potential elevations in CSF tau (p<0·010) and NfL (p<0·0001) in the asymptomatic stage (ie, no dementia symptoms). FUNDING: National Institute on Aging, Eunice Kennedy Shriver National Institute of Child Health and Human Development, German Center for Neurodegenerative Diseases, and Japan Agency for Medical Research and Development.


Subject(s)
Alzheimer Disease/cerebrospinal fluid , Down Syndrome/cerebrospinal fluid , Adult , Alzheimer Disease/diagnosis , Alzheimer Disease/genetics , Amyloid beta-Peptides/cerebrospinal fluid , Apolipoproteins E/genetics , Biomarkers/cerebrospinal fluid , Cross-Sectional Studies , Down Syndrome/diagnosis , Down Syndrome/genetics , Encephalitis/cerebrospinal fluid , Female , Genotype , Gliosis/cerebrospinal fluid , Heterozygote , Humans , Longitudinal Studies , Male , Middle Aged , Neurofilament Proteins/cerebrospinal fluid , Peptide Fragments/cerebrospinal fluid , tau Proteins/cerebrospinal fluid
19.
Alzheimers Dement (Amst) ; 13(1): e12105, 2021.
Article in English | MEDLINE | ID: mdl-34027014

ABSTRACT

INTRODUCTION: Most individuals with Down syndrome (DS) have the neuropathological changes of Alzheimer's disease (AD) by age 40 and will have developed dementia by age 60. Alterations of the intrinsic connectivity of the default mode network (DMN) are associated with AD in the neurotypical population. In this study, we sought to determine whether, and how, connectivity between the hubs of the DMN were altered in cognitively stable adults with DS who did not have evidence of either mild cognitive impairment or AD. METHODS: Resting state functional MRI scans were collected from 26 healthy adults with DS and 26 healthy age-matched non-DS controls. Nodes comprising the DMN were generated as ROI's (regions of interest) and inter-nodal correlations estimated. RESULTS: Analysis of intra-network connectivity of the DMN revealed anterior-posterior DMN dissociation and hyper- and hypo-connectivity, suggesting "accelerated aging" in DS. DISCUSSION: Disruption of the DMN may serve as a prelude for AD in DS.

20.
J Clin Med ; 10(9)2021 Apr 28.
Article in English | MEDLINE | ID: mdl-33924960

ABSTRACT

With improved healthcare, the Down syndrome (DS) population is both growing and aging rapidly. However, with longevity comes a very high risk of Alzheimer's disease (AD). The LIFE-DSR study (NCT04149197) is a longitudinal natural history study recruiting 270 adults with DS over the age of 25. The study is designed to characterize trajectories of change in DS-associated AD (DS-AD). The current study reports its cross-sectional analysis of the first 90 subjects enrolled. Plasma biomarkers phosphorylated tau protein (p-tau), neurofilament light chain (NfL), amyloid ß peptides (Aß1-40, Aß1-42), and glial fibrillary acidic protein (GFAP) were undertaken with previously published methods. The clinical data from the baseline visit include demographics as well as the cognitive measures under the Severe Impairment Battery (SIB) and Down Syndrome Mental Status Examination (DS-MSE). Biomarker distributions are described with strong statistical associations observed with participant age. The biomarker data contributes to understanding DS-AD across the spectrum of disease. Collectively, the biomarker data show evidence of DS-AD progression beginning at approximately 40 years of age. Exploring these data across the full LIFE-DSR longitudinal study population will be an important resource in understanding the onset, progression, and clinical profiles of DS-AD pathophysiology.

SELECTION OF CITATIONS
SEARCH DETAIL
...