Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Front Immunol ; 15: 1401738, 2024.
Article in English | MEDLINE | ID: mdl-38774869

ABSTRACT

A balance between pro-inflammatory decidual CD4+ T cells and FOXP3+ regulatory T cells (FOXP3+ Tregs) is important for maintaining fetomaternal tolerance. Using single-cell RNA-sequencing and T cell receptor repertoire analysis, we determined that diversity and clonality of decidual CD4+ T cell subsets depend on gestational age. Th1/Th2 intermediate and Th1 subsets of CD4+ T cells were clonally expanded in both early and late gestation, whereas FOXP3+ Tregs were clonally expanded in late gestation. Th1/Th2 intermediate and FOXP3+ Treg subsets showed altered gene expression in preeclampsia (PE) compared to healthy late gestation. The Th1/Th2 intermediate subset exhibited elevated levels of cytotoxicity-related gene expression in PE. Moreover, increased Treg exhaustion was observed in the PE group, and FOXP3+ Treg subcluster analysis revealed that the effector Treg like subset drove the Treg exhaustion signatures in PE. The Th1/Th2 intermediate and effector Treg like subsets are possible inflammation-driving subsets in PE.


Subject(s)
Forkhead Transcription Factors , Gestational Age , Pre-Eclampsia , Single-Cell Analysis , T-Lymphocytes, Regulatory , Humans , Female , Pre-Eclampsia/immunology , Pre-Eclampsia/genetics , Pregnancy , Single-Cell Analysis/methods , Adult , T-Lymphocytes, Regulatory/immunology , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , CD4-Positive T-Lymphocytes/immunology , Sequence Analysis, RNA , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Th1 Cells/immunology , Decidua/immunology
2.
bioRxiv ; 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38464256

ABSTRACT

Acute cellular rejection (ACR) affects >80% of pediatric liver transplant recipients within 5 years, and late ACR is associated with graft failure. Traditional anti-rejection therapy for late ACR is ineffective and has remained unchanged for six decades. Although CD8+ T cells promote late ACR, little has been done to define their specificity and gene expression. Here, we used single-cell sequencing and immune repertoire profiling (10X Genomics) on 30 cryopreserved 16G liver biopsies from 14 patients (5 pre-transplant or with no ACR, 9 with ACR). We identified expanded intragraft CD8+ T cell clonotypes (CD8EXP) and their gene expression profiles in response to anti-rejection treatment. Notably, we found that expanded CD8+ clonotypes (CD8EXP) bore markers of effector and CD56hiCD161- 'NK-like' T cells, retaining their clonotype identity and phenotype in subsequent biopsies from the same patients despite histologic ACR resolution. CD8EXP clonotypes localized to portal infiltrates during active ACR, and persisted in the lobule after histologic ACR resolution. CellPhoneDB analysis revealed differential crosstalk between KC and CD8EXP during late ACR, with activation of the LTB-LTBR pathway and downregulation of TGFß signaling. Therefore, persistently-detected intragraft CD8EXP clones remain active despite ACR treatment and may contribute to long-term allograft fibrosis and failure of operational tolerance.

3.
bioRxiv ; 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-35547855

ABSTRACT

Clinical diagnosis typically incorporates physical examination, patient history, and various laboratory tests and imaging studies, but makes limited use of the human system's own record of antigen exposures encoded by receptors on B cells and T cells. We analyzed immune receptor datasets from 593 individuals to develop MAchine Learning for Immunological Diagnosis (Mal-ID) , an interpretive framework to screen for multiple illnesses simultaneously or precisely test for one condition. This approach detects specific infections, autoimmune disorders, vaccine responses, and disease severity differences. Human-interpretable features of the model recapitulate known immune responses to SARS-CoV-2, Influenza, and HIV, highlight antigen-specific receptors, and reveal distinct characteristics of Systemic Lupus Erythematosus and Type-1 Diabetes autoreactivity. This analysis framework has broad potential for scientific and clinical interpretation of human immune responses.

4.
Sci Rep ; 13(1): 12433, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37528157

ABSTRACT

Low-grade and secondary high-grade gliomas frequently contain mutations in the IDH1 or IDH2 metabolic enzymes that are hypothesized to drive tumorigenesis by inhibiting many of the chromatin-regulating enzymes that regulate DNA structure. Histone deacetylase inhibitors are promising anti-cancer agents and have already been used in clinical trials. However, a clear understanding of their mechanism or gene targets is lacking. In this study, the authors genetically dissect patient-derived IDH1 mutant cultures to determine which HDAC enzymes drive growth in IDH1 mutant gliomas. A panel of patient-derived gliomasphere cell lines (2 IDH1 mutant lines, 3 IDH1 wildtype lines) were subjected to a drug-screen of epigenetic modifying drugs from different epigenetic classes. The effect of LBH (panobinostat) on gene expression and chromatin structure was tested on patient-derived IDH1 mutant lines. The role of each of the highly expressed HDAC enzymes was molecularly dissected using lentiviral RNA interference knock-down vectors and a patient-derived IDH1 mutant in vitro model of glioblastoma (HK252). These results were then confirmed in an in vivo xenotransplant model (BT-142). The IDH1 mutation leads to gene down-regulation, DNA hypermethylation, increased DNA accessibility and H3K27 hypo-acetylation in two distinct IDH1 mutant over-expression models. The drug screen identified histone deacetylase inhibitors (HDACi) and panobinostat (LBH) more specifically as the most selective compounds to inhibit growth in IDH1 mutant glioma lines. Of the eleven annotated HDAC enzymes (HDAC1-11) only six are expressed in IDH1 mutant glioma tissue samples and patient-derived gliomasphere lines (HDAC1-4, HDAC6, and HDAC9). Lentiviral knock-down experiments revealed that HDAC1 and HDAC6 are the most consistently essential for growth both in vitro and in vivo and target very different gene modules. Knock-down of HDAC1 or HDAC6 in vivo led to a more circumscribed less invasive tumor. The gene dysregulation induced by the IDH1 mutation is wide-spread and only partially reversible by direct IDH1 inhibition. This study identifies HDAC1 and HDAC6 as important and drug-targetable enzymes that are necessary for growth and invasiveness in IDH1 mutant gliomas.


Subject(s)
Antineoplastic Agents , Brain Neoplasms , Glioma , Humans , Panobinostat/pharmacology , Panobinostat/therapeutic use , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Glioma/metabolism , Antineoplastic Agents/therapeutic use , Chromatin , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/metabolism , Mutation , Brain Neoplasms/pathology , Histone Deacetylase 1/genetics , Histone Deacetylase 6/genetics
5.
G3 (Bethesda) ; 13(10)2023 09 30.
Article in English | MEDLINE | ID: mdl-37531635

ABSTRACT

Much of the host antiviral response is mediated through changes to host gene expression levels. Likewise, viruses induce changes to host gene expression levels in order to promote the viral life cycle and evade the host immune system. However, there is no resource that specifically collects human gene expression levels pre- and post-virus infection. Further, public gene expression repositories do not contain enough specialized metadata to easily find relevant experiments. Here, we present the Virus Expression Database (VExD), a freely available website and database, that collects human gene expression datasets in response to viral infection. VExD contains ∼8,000 uniformly processed samples obtained from 289 studies examining 51 distinct human viruses. We show that the VExD processing pipeline captures known antiviral responses in the form of interferon-stimulated genes. We further show that the datasets collected in VExD can be used to quickly identify supporting data for experiments performed in human cells or model organisms. VExD is freely available at https://vexd.cchmc.org/.


Subject(s)
Virus Diseases , Viruses , Humans , Gene Expression Regulation , Antiviral Agents/pharmacology , Virus Diseases/genetics , Viruses/genetics , Gene Expression
6.
J Clin Invest ; 133(14)2023 07 17.
Article in English | MEDLINE | ID: mdl-37227784

ABSTRACT

Bulk analysis of renal allograft biopsies (rBx) identified RNA transcripts associated with acute cellular rejection (ACR); however, these lacked cellular context critical to mechanistic understanding of how rejection occurs despite immunosuppression (IS). We performed combined single-cell RNA transcriptomic and TCR-α/ß sequencing on rBx from patients with ACR under differing IS drugs: tacrolimus, iscalimab, and belatacept. We found distinct CD8+ T cell phenotypes (e.g., effector, memory, exhausted) depending upon IS type, particularly within expanded CD8+ T cell clonotypes (CD8EXP). Gene expression of CD8EXP identified therapeutic targets that were influenced by IS type. TCR analysis revealed a highly restricted number of CD8EXP, independent of HLA mismatch or IS type. Subcloning of TCR-α/ß cDNAs from CD8EXP into Jurkat 76 cells (TCR-/-) conferred alloreactivity by mixed lymphocyte reaction. Analysis of sequential rBx samples revealed persistence of CD8EXP that decreased, but were not eliminated, after successful antirejection therapy. In contrast, CD8EXP were maintained in treatment-refractory rejection. Finally, most rBx-derived CD8EXP were also observed in matching urine samples, providing precedent for using urine-derived CD8EXP as a surrogate for those found in the rejecting allograft. Overall, our data define the clonal CD8+ T cell response to ACR, paving the next steps for improving detection, assessment, and treatment of rejection.


Subject(s)
Kidney Transplantation , Transcriptome , Receptors, Antigen, T-Cell, alpha-beta/genetics , RNA , Allografts , Graft Rejection/genetics
7.
Am J Transplant ; 23(6): 759-775, 2023 06.
Article in English | MEDLINE | ID: mdl-36871629

ABSTRACT

To date, plasma cell (PC)-targeted therapies have been limited by suboptimal PC depletion and antibody rebound. We hypothesized this is partly because of PC residence in protective bone marrow (BM) microenvironments. The purpose of this proof-of-concept study was to examine the effects of the CXCR4 antagonist, plerixafor, on PC BM residence; its safety profile (alone and in combination with a proteasome inhibitor, bortezomib); and the transcriptional effect on BMPCs in HLA-sensitized kidney transplant candidates. Participants were enrolled into 3 groups: group A (n = 4), plerixafor monotherapy; and groups B (n = 4) and C (n = 4), plerixafor and bortezomib combinations. CD34+ stem cell and PC levels increased in the blood after plerixafor treatment. PC recovery from BM aspirates varied depending on the dose of plerixafor and bortezomib. Single-cell RNA sequencing on BMPCs from 3 group C participants pretreatment and posttreatment revealed multiple populations of PCs, with a posttreatment enrichment of oxidative phosphorylation, proteasome assembly, cytoplasmic translation, and autophagy-related genes. Murine studies demonstrated dually inhibiting the proteasome and autophagy resulted in greater BMPC death than did monotherapies. In conclusion, this pilot study revealed anticipated effects of combined plerixafor and bortezomib on BMPCs, an acceptable safety profile, and suggests the potential for autophagy inhibitors in desensitization regimens.


Subject(s)
Heterocyclic Compounds , Kidney Transplantation , Humans , Animals , Mice , Bortezomib/pharmacology , Bortezomib/therapeutic use , Plasma Cells , Bone Marrow , Proteasome Endopeptidase Complex , Boronic Acids/pharmacology , Boronic Acids/therapeutic use , Pyrazines/pharmacology , Pyrazines/therapeutic use , Hematopoietic Stem Cell Mobilization , Pilot Projects , Heterocyclic Compounds/pharmacology , Proteasome Inhibitors/pharmacology , Proteasome Inhibitors/therapeutic use , Receptors, CXCR4
8.
bioRxiv ; 2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36778284

ABSTRACT

The skin is a major immune organ and skin barrier dysfunction is a major risk factor for the development of the inappropriate immune response seen in allergic disease. Skin barrier disruption alters the landscape of antigens experienced by the immune system and the downstream impacts on the antibody repertoire remain poorly characterized, particularly for the IgE isotype responsible for allergic specificity and in early life, when allergic disease is developing. In this study, we sequenced antibody gene repertoires from a large and well-characterized cohort of children with atopic dermatitis and found that food sensitization was associated with lower mutation frequencies in the IgE compartment. This trend was abrogated in children living with pets during the first year of life. These results elucidate potential molecular mechanisms underlying the protective effects of pet ownership and non-antiseptic environs reported for allergic disease, and the hygiene hypothesis more broadly. We also observed increased IgE diversity and increased isotype-switching to the IgE isotype, suggesting that B cell development, particularly isotype-switching, is heavily altered in the those with food allergen sensitizations relative to those without food allergen sensitizations. Unlike for food antigens, aeroallergen sensitization exhibited no effect on IgE mutation or diversity. Consistent patterns of antibody rearrangement were associated with food allergen sensitization in subjects with atopic dermatitis. Thus, we propose the Immune Repertoire in Atopic Disease (IRAD) score, to quantify this repertoire shift and to aid clinically in patient diagnosis and risk stratification.

9.
bioRxiv ; 2023 Feb 13.
Article in English | MEDLINE | ID: mdl-36798151

ABSTRACT

Bulk analysis of renal allograft biopsies (rBx) identified RNA transcripts associated with acute cellular rejection (ACR); however, these lacked cellular context critical to mechanistic understanding. We performed combined single cell RNA transcriptomic and TCRα/ß sequencing on rBx from patients with ACR under differing immunosuppression (IS): tacrolimus, iscalimab, and belatacept. TCR analysis revealed a highly restricted CD8 + T cell clonal expansion (CD8 EXP ), independent of HLA mismatch or IS type. Subcloning of TCRα/ß cDNAs from CD8 EXP into Jurkat76 cells (TCR -/- ) conferred alloreactivity by mixed lymphocyte reaction. scRNAseq analysis of CD8 EXP revealed effector, memory, and exhausted phenotypes that were influenced by IS type. Successful anti-rejection treatment decreased, but did not eliminate, CD8 EXP , while CD8 EXP were maintained during treatment-refractory rejection. Finally, most rBx-derived CD8 EXP were also observed in matching urine samples. Overall, our data define the clonal CD8 + T cell response to ACR, providing novel insights to improve detection, assessment, and treatment of rejection.

10.
Respir Res ; 23(1): 181, 2022 Jul 09.
Article in English | MEDLINE | ID: mdl-35804409

ABSTRACT

RATIONALE: While nasal brushing transcriptomics can identify disease subtypes in chronic pulmonary diseases, it is unknown whether this is true in pediatric acute respiratory distress syndrome (PARDS). OBJECTIVES: Determine whether nasal transcriptomics and methylomics can identify clinically meaningful PARDS subgroups that reflect important pathobiological processes. METHODS: Nasal brushings and serum were collected on days 1, 3, 7, and 14 from control and PARDS subjects from two centers. PARDS duration was the primary endpoint. MEASUREMENTS AND MAIN RESULTS: Twenty-four control and 39 PARDS subjects were enrolled. Two nasal methylation patterns were identified. Compared to Methyl Subgroup 1, Subgroup 2 had hypomethylation of inflammatory genes and was enriched for immunocompromised subjects. Four transcriptomic patterns were identified with temporal patterns indicating injury, repair, and regeneration. Over time, both inflammatory (Subgroup B) and cell injury (Subgroup D) patterns transitioned to repair (Subgroup A) and eventually homeostasis (Subgroup C). When control specimens were included, they were largely Subgroup C. In comparison with 17 serum biomarkers, the nasal transcriptome was more predictive of prolonged PARDS. Subjects with initial Transcriptomic Subgroup B or D assignment had median PARDS duration of 8 days compared to 2 in A or C (p = 0.02). For predicting PARDS duration ≥ 3 days, nasal transcriptomics was more sensitive and serum biomarkers more specific. CONCLUSIONS: PARDS nasal transcriptome may reflect distal lung injury, repair, and regeneration. A combined nasal PCR and serum biomarker assay could be useful for predictive and diagnostic enrichment. Trial registration Clinicaltrials.gov NCT03539783 May 29, 2018.


Subject(s)
Lung Injury , Respiratory Distress Syndrome , Biomarkers , Child , Humans , Nose , Respiratory Distress Syndrome/diagnosis , Respiratory Distress Syndrome/genetics
11.
Sci Rep ; 12(1): 8221, 2022 05 17.
Article in English | MEDLINE | ID: mdl-35581287

ABSTRACT

The pathological changes in epigenetics and gene regulation that accompany the progression of low-grade to high-grade gliomas are under-studied. The authors use a large set of paired atac-seq and RNA-seq data from surgically resected glioma specimens to infer gene regulatory relationships in glioma. Thirty-eight glioma patient samples underwent atac-seq sequencing and 16 samples underwent additional RNA-seq analysis. Using an atac-seq/RNA-seq correlation matrix, atac-seq peaks were paired with genes based on high correlation values (|r2| > 0.6). Samples clustered by IDH1 status but not by grade. Surprisingly there was a trend for IDH1 mutant samples to have more peaks. The majority of peaks are positively correlated with survival and positively correlated with gene expression. Constructing a model of the top six atac-seq peaks created a highly accurate survival prediction model (r2 = 0.68). Four of these peaks were still significant after controlling for age, grade, pathology, IDH1 status and gender. Grade II, III, and IV (primary) samples have similar transcription factors and gene modules. However, grade IV (recurrent) samples have strikingly few peaks. Patient-derived glioma cultures showed decreased peak counts following radiation indicating that this may be radiation-induced. This study supports the notion that IDH1 mutant and IDH1 wildtype gliomas have different epigenetic landscapes and that accessible chromatin sites mapped by atac-seq peaks tend to be positively correlated with expression. The data in this study leads to a new model of treatment response wherein glioma cells respond to radiation therapy by closing open regions of DNA.


Subject(s)
Glioma , Chromatin/genetics , Chromatin Immunoprecipitation Sequencing , DNA/genetics , Glioma/genetics , Glioma/pathology , Humans , Transcription Factors/genetics
12.
Sci Immunol ; 7(67): eabk0182, 2022 01 21.
Article in English | MEDLINE | ID: mdl-35061504

ABSTRACT

Cytokine storm and sterile inflammation are common features of T cell-mediated autoimmune diseases and T cell-targeted cancer immunotherapies. Although blocking individual cytokines can mitigate some pathology, the upstream mechanisms governing overabundant innate inflammatory cytokine production remain unknown. Here, we have identified a critical signaling node that is engaged by effector memory T cells (TEM) to mobilize a broad proinflammatory program in the innate immune system. Cognate interactions between TEM and myeloid cells led to induction of an inflammatory transcriptional profile that was reminiscent, yet entirely independent, of classical pattern recognition receptor (PRR) activation. This PRR-independent "de novo" inflammation was driven by preexisting TEM engagement of both CD40 and tumor necrosis factor receptor (TNFR) on myeloid cells. Cytokine toxicity and autoimmune pathology could be completely rescued by ablating these pathways genetically or pharmacologically in multiple models of T cell-driven inflammation, indicating that TEM instruction of the innate immune system is a primary driver of associated immunopathology. Thus, we have identified a previously unknown trigger of cytokine storm and autoimmune pathology that is amenable to therapeutic interventions.


Subject(s)
Autoimmune Diseases/immunology , CD4-Positive T-Lymphocytes/immunology , CD40 Antigens/immunology , Inflammation/immunology , Myeloid Cells/immunology , Receptors, Tumor Necrosis Factor/immunology , Animals , Immunity, Innate/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Mutant Strains
13.
Front Immunol ; 12: 750754, 2021.
Article in English | MEDLINE | ID: mdl-34721421

ABSTRACT

Solid organ transplant recipients require long-term immunosuppression for prevention of rejection. Calcineurin inhibitor (CNI)-based immunosuppressive regimens have remained the primary means for immunosuppression for four decades now, yet little is known about their effects on graft resident and infiltrating immune cell populations. Similarly, the understanding of rejection biology under specific types of immunosuppression remains to be defined. Furthermore, development of innovative, rationally designed targeted therapeutics for mitigating or preventing rejection requires a fundamental understanding of the immunobiology that underlies the rejection process. The established use of microarray technologies in transplantation has provided great insight into gene transcripts associated with allograft rejection but does not characterize rejection on a single cell level. Therefore, the development of novel genomics tools, such as single cell sequencing techniques, combined with powerful bioinformatics approaches, has enabled characterization of immune processes at the single cell level. This can provide profound insights into the rejection process, including identification of resident and infiltrating cell transcriptomes, cell-cell interactions, and T cell receptor α/ß repertoires. In this review, we discuss genomic analysis techniques, including microarray, bulk RNAseq (bulkSeq), single-cell RNAseq (scRNAseq), and spatial transcriptomic (ST) techniques, including considerations of their benefits and limitations. Further, other techniques, such as chromatin analysis via assay for transposase-accessible chromatin sequencing (ATACseq), bioinformatic regulatory network analyses, and protein-based approaches are also examined. Application of these tools will play a crucial role in redefining transplant rejection with single cell resolution and likely aid in the development of future immunomodulatory therapies in solid organ transplantation.


Subject(s)
Graft Rejection/genetics , Single-Cell Analysis , Allografts , Animals , Gene Expression Profiling , Genomics , Humans , Sequence Analysis, RNA
14.
Blood Adv ; 5(17): 3492-3496, 2021 09 14.
Article in English | MEDLINE | ID: mdl-34505882

ABSTRACT

The basis for acquired resistance to JAK inhibition in patients with JAK2-driven hematologic malignancies is not well understood. We report a patient with a myeloproliferative neoplasm (MPN) with a BCR activator of RhoGEF and GTPase (BCR)-JAK2 fusion with initial hematologic response to ruxolitinib who rapidly developed B-lymphoid blast transformation. We analyzed pre-ruxolitinib and blast transformation samples using genome sequencing, DNA mate-pair sequencing (MPseq), RNA sequencing (RNA-seq), and chromosomal microarray to characterize possible mechanisms of resistance. No resistance mutations in the BCR-JAK2 fusion gene or transcript were identified, and fusion transcript expression levels remained stable. However, at the time of blast transformation, MPseq detected a new IKZF1 copy-number loss, which is predicted to result in loss of normal IKZF1 protein translation. RNA-seq revealed significant upregulation of genes negatively regulated by IKZF1, including IL7R and CRLF2. Disease progression was also characterized by adaptation to an activated B-cell receptor (BCR)-like signaling phenotype, with marked upregulation of genes such as CD79A, CD79B, IGLL1, VPREB1, BLNK, ZAP70, RAG1, and RAG2. In summary, IKZF1 deletion and a switch from cytokine dependence to activated BCR-like signaling phenotype represent putative mechanisms of ruxolitinib resistance in this case, recapitulating preclinical data on resistance to JAK inhibition in CRLF2-rearranged Philadelphia chromosome-like acute lymphoblastic leukemia.


Subject(s)
Lymphocyte Activation , Myeloproliferative Disorders , Humans , Janus Kinase 2/genetics , Nitriles , Pyrazoles/therapeutic use , Pyrimidines , Receptors, Antigen, B-Cell
15.
Science ; 372(6543): 738-741, 2021 05 14.
Article in English | MEDLINE | ID: mdl-33846272

ABSTRACT

Vaccination and infection promote the formation, tissue distribution, and clonal evolution of B cells, which encode humoral immune memory. We evaluated pediatric and adult blood and deceased adult organ donor tissues to determine convergent antigen-specific antibody genes of similar sequences shared between individuals. B cell memory varied for different pathogens. Polysaccharide antigen-specific clones were not exclusive to the spleen. Adults had higher clone frequencies and greater class switching in lymphoid tissues than blood, while pediatric blood had abundant class-switched convergent clones. Consistent with reported serology, prepandemic children had class-switched convergent clones to severe acute respiratory syndrome coronavirus 2 with weak cross-reactivity to other coronaviruses, while adult blood or tissues showed few such clones. These results highlight the prominence of early childhood B cell clonal expansions and cross-reactivity for future responses to novel pathogens.


Subject(s)
Antibodies, Viral/immunology , B-Lymphocytes/immunology , Coronavirus/immunology , Immunologic Memory , SARS-CoV-2/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Aging , Child, Preschool , Cross Reactions , Ebolavirus/immunology , Female , Fetal Blood/immunology , Genes, Immunoglobulin , Humans , Immunoglobulin Class Switching , Immunoglobulin D/genetics , Immunoglobulin D/immunology , Immunoglobulin Heavy Chains/immunology , Immunoglobulin M/genetics , Immunoglobulin M/immunology , Infant , Lymph Nodes/immunology , Male , Middle Aged , Receptors, Antigen, B-Cell/immunology , Somatic Hypermutation, Immunoglobulin , Spleen/immunology , Young Adult
16.
Nat Med ; 27(1): 125-135, 2021 01.
Article in English | MEDLINE | ID: mdl-33432170

ABSTRACT

Most of what we know about adaptive immunity has come from inbred mouse studies, using methods that are often difficult or impossible to confirm in humans. In addition, vaccine responses in mice are often poorly predictive of responses to those same vaccines in humans. Here we use human tonsils, readily available lymphoid organs, to develop a functional organotypic system that recapitulates key germinal center features in vitro, including the production of antigen-specific antibodies, somatic hypermutation and affinity maturation, plasmablast differentiation and class-switch recombination. We use this system to define the essential cellular components necessary to produce an influenza vaccine response. We also show that it can be used to evaluate humoral immune responses to two priming antigens, rabies vaccine and an adenovirus-based severe acute respiratory syndrome coronavirus 2 vaccine, and to assess the effects of different adjuvants. This system should prove useful for studying critical mechanisms underlying adaptive immunity in much greater depth than previously possible and to rapidly test vaccine candidates and adjuvants in an entirely human system.


Subject(s)
Influenza Vaccines/immunology , Palatine Tonsil/immunology , Adjuvants, Immunologic , B-Lymphocytes/cytology , B-Lymphocytes/immunology , COVID-19 Vaccines/immunology , Germinal Center/cytology , Hemagglutinin Glycoproteins, Influenza Virus , Humans , In Vitro Techniques , Lymphoid Tissue/immunology , Measles-Mumps-Rubella Vaccine/immunology , Organoids/cytology , Organoids/immunology , Rabies Vaccines/immunology , T-Lymphocytes/immunology
17.
Retrovirology ; 17(1): 35, 2020 11 19.
Article in English | MEDLINE | ID: mdl-33213476

ABSTRACT

BACKGROUND: HIV associated neurocognitive disorders cause significant morbidity and mortality despite the advent of highly active antiretroviral therapy. A deeper understanding of fundamental mechanisms underlying HIV infection and pathogenesis in the central nervous system is warranted. Microglia are resident myeloid cells of the brain that are readily infected by HIV and may constitute a CNS reservoir. We evaluated two microglial model cell lines (C20, HMC3) and two sources of primary cell-derived microglia (monocyte-derived microglia [MMG] and induced pluripotent stem cell-derived microglia [iPSC-MG]) as potential model systems for studying HIV-microglia interactions. RESULTS: All four microglial model cells expressed typical myeloid markers with the exception of low or absent CD45 and CD11b expression by C20 and HMC3, and all four expressed the microglia-specific markers P2RY12 and TMEM119. Marked differences were observed upon gene expression profiling, however, indicating that MMG and iPSC-MG cluster closely together with primary human microglial cells, while C20 and HMC3 were similar to each other but very different from primary microglia. Expression of HIV-relevant genes also revealed important differences, with iPSC-MG and MMG expressing relevant genes at levels more closely resembling primary microglia. iPSC-MG and MMG were readily infected with R5-tropic HIV, while C20 and HMC3 lack CD4 and require pseudotyping for infection. Despite many similarities, HIV replication dynamics and HIV-1 particle capture by Siglec-1 differed markedly between the MMG and iPSC-MG. CONCLUSIONS: MMG and iPSC-MG appear to be viable microglial models that are susceptible to HIV infection and bear more similarities to authentic microglia than two transformed microglia cell lines. The observed differences in HIV replication and particle capture between MMG and iPSC-MG warrant further study.


Subject(s)
HIV-1/physiology , HIV-1/pathogenicity , Microglia/virology , Models, Biological , AIDS Dementia Complex/virology , Biomarkers/metabolism , Cell Differentiation , Cell Line, Transformed , Gene Expression Profiling , Host-Pathogen Interactions , Humans , Induced Pluripotent Stem Cells/cytology , Microglia/cytology , Microglia/metabolism , Monocytes/cytology , Virion/metabolism , Virus Replication/genetics
18.
Am J Transplant ; 20 Suppl 4: 33-41, 2020 06.
Article in English | MEDLINE | ID: mdl-32538532

ABSTRACT

Plasma cells (PCs) are the major source of pathogenic allo- and autoantibodies and have historically demonstrated resistance to therapeutic targeting. However, significant recent clinical progress has been made with the use of second-generation proteasome inhibitors (PIs). PIs provide efficient elimination of plasmablast-mediated humoral responses; however, long-lived bone marrow (BM) resident PCs (LLPCs) demonstrate therapeutic resistance, particularly to first-generation PIs. In addition, durability of antibody (Ab) reduction still requires improvement. More recent clinical trials have focused on conditions mediated by LLPCs and have included mechanistic studies of LLPCs from PI-treated patients. A recent clinical trial of carfilzomib (a second-generation irreversible PI) demonstrated improved efficacy in eliminating BM PCs and reducing anti-HLA Abs in chronically HLA-sensitized patients; however, Ab rebound was observed over several weeks to months following PI therapy. Importantly, recent murine studies have provided substantial insights into PC biology, thereby further enhancing our understanding of PC populations. It is now clear that BMPC populations, where LLPCs are thought to primarily reside, are heterogeneous and have distinct gene expression, metabolic, and survival signatures that enable identification and characterization of PC subsets. This review highlights recent advances in PC biology and clinical trials in transplant populations.


Subject(s)
Plasma Cells , Proteasome Inhibitors , Animals , Autoantibodies , Humans , Mice , Proteasome Inhibitors/therapeutic use
19.
Sci Immunol ; 5(45)2020 03 06.
Article in English | MEDLINE | ID: mdl-32139586

ABSTRACT

B cells in human food allergy have been studied predominantly in the blood. Little is known about IgE+ B cells or plasma cells in tissues exposed to dietary antigens. We characterized IgE+ clones in blood, stomach, duodenum, and esophagus of 19 peanut-allergic patients, using high-throughput DNA sequencing. IgE+ cells in allergic patients are enriched in stomach and duodenum, and have a plasma cell phenotype. Clonally related IgE+ and non-IgE-expressing cell frequencies in tissues suggest local isotype switching, including transitions between IgA and IgE isotypes. Highly similar antibody sequences specific for peanut allergen Ara h 2 are shared between patients, indicating that common immunoglobulin genetic rearrangements may contribute to pathogenesis. These data define the gastrointestinal tract as a reservoir of IgE+ B lineage cells in food allergy.


Subject(s)
2S Albumins, Plant/immunology , Antigens, Plant/immunology , B-Lymphocytes/immunology , Gastrointestinal Tract/immunology , Immunoglobulin E/immunology , Peanut Hypersensitivity/immunology , Adult , Female , High-Throughput Nucleotide Sequencing , Humans , Immobilized Nucleic Acids/analysis , Immobilized Nucleic Acids/immunology , Male , Middle Aged
20.
Nat Immunol ; 21(2): 199-209, 2020 02.
Article in English | MEDLINE | ID: mdl-31959979

ABSTRACT

A goal of HIV vaccine development is to elicit antibodies with neutralizing breadth. Broadly neutralizing antibodies (bNAbs) to HIV often have unusual sequences with long heavy-chain complementarity-determining region loops, high somatic mutation rates and polyreactivity. A subset of HIV-infected individuals develops such antibodies, but it is unclear whether this reflects systematic differences in their antibody repertoires or is a consequence of rare stochastic events involving individual clones. We sequenced antibody heavy-chain repertoires in a large cohort of HIV-infected individuals with bNAb responses or no neutralization breadth and uninfected controls, identifying consistent features of bNAb repertoires, encompassing thousands of B cell clones per individual, with correlated T cell phenotypes. These repertoire features were not observed during chronic cytomegalovirus infection in an independent cohort. Our data indicate that the development of numerous B cell lineages with antibody features associated with autoreactivity may be a key aspect in the development of HIV neutralizing antibody breadth.


Subject(s)
AIDS Vaccines/immunology , B-Lymphocytes/immunology , Broadly Neutralizing Antibodies/immunology , HIV Antibodies/immunology , HIV Infections/immunology , HIV-1/immunology , Humans , Immunoglobulin Heavy Chains/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...