Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Acta Trop ; 164: 402-410, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27693373

ABSTRACT

In previous studies we reported a novel series of organometallic compounds, RuII complexed with clotrimazole, displaying potent trypanosomatid activity with unnoticeable toxicity toward normal mammalian cells. In view of the promising activity of Ru-clotrimazole complexes against Leishmania major (L. major), the present work sought to investigate the anti-leishmanial activity of the AM162 complex in the murine model of cutaneous leishmaniasis. In addition, to facilitate the design of new therapeutic strategies against this disease, we investigated the mode of action of two Ru-clotrimazole complexes in L. major promastigotes. Overall, we demonstrate that AM162 significantly reduced the lesion size in mice exposed to L. major infection. In addition, Ru-clotrimazole compounds are able to induce a mitochondrial dependent apoptotic-like death in the extracellular form of the parasite based on labeling of DNA fragments, mitochondrial depolarization, cell cycle alteration profile and plasma membrane phospholipid externalization. Our findings reveal a promising efficacy of the Ru-clotrimazole AM162 complex for the treatment of cutaneous leishmaniasis, as well as pro-apoptotic activity and thus guarantees further evaluation in pre-clinical studies.


Subject(s)
Clotrimazole/pharmacology , Leishmaniasis, Cutaneous/drug therapy , Ruthenium/pharmacology , Animals , Clotrimazole/administration & dosage , Drug Combinations , Female , Leishmania major , Mice , Mice, Inbred BALB C , Organometallic Compounds/therapeutic use , Ruthenium/administration & dosage
2.
PLoS One ; 10(10): e0140878, 2015.
Article in English | MEDLINE | ID: mdl-26473363

ABSTRACT

The efficacy of chloroquine, once the drug of choice in the fight against Plasmodium falciparum, is now severely limited due to widespread resistance. Amodiaquine is one of the most potent antimalarial 4-aminoquinolines known and remains effective against chloroquine-resistant parasites, but toxicity issues linked to a quinone-imine metabolite limit its clinical use. In search of new compounds able to retain the antimalarial activity of amodiaquine while circumventing quinone-imine metabolite toxicity, we have synthesized five 4-aminoquinolines that feature rings lacking hydroxyl groups in the side chain of the molecules and are thus incapable of generating toxic quinone-imines. The new compounds displayed high in vitro potency (low nanomolar IC50), markedly superior to chloroquine and comparable to amodiaquine, against chloroquine-sensitive and chloroquine-resistant strains of P. falciparum, accompanied by low toxicity to L6 rat fibroblasts and MRC5 human lung cells, and metabolic stability comparable or higher than that of amodiaquine. Computational studies indicate a unique mode of binding of compound 4 to heme through the HOMO located on a biphenyl moeity, which may partly explain the high antiplasmodial activity observed for this compound.


Subject(s)
Chloroquine , Drug Resistance/drug effects , Models, Chemical , Plasmodium falciparum/metabolism , Animals , Antimalarials/chemical synthesis , Antimalarials/chemistry , Antimalarials/pharmacokinetics , Antimalarials/pharmacology , Cell Line , Chloroquine/chemistry , Chloroquine/pharmacokinetics , Chloroquine/pharmacology , Humans , Rats
3.
J Med Chem ; 57(23): 9995-10012, 2014 Dec 11.
Article in English | MEDLINE | ID: mdl-25409416

ABSTRACT

A series of organometallic ruthenium(II) complexes containing iminophosphorane ligands have been synthesized and characterized. Cationic compounds with chloride as counterion are soluble in water (70-100 mg/mL). Most compounds (especially highly water-soluble 2) are more cytotoxic to a number of human cancer cell lines than cisplatin. Initial mechanistic studies indicate that the cell death type for these compounds is mainly through canonical or caspase-dependent apoptosis, nondependent on p53, and that the compounds do not interact with DNA or inhibit protease cathepsin B. In vivo experiments of 2 on MDA-MB-231 xenografts in NOD.CB17-Prkdc SCID/J mice showed an impressive tumor reduction (shrinkage) of 56% after 28 days of treatment (14 doses of 5 mg/kg every other day) with low systemic toxicity. Pharmacokinetic studies showed a quick absorption of 2 in plasma with preferential accumulation in the breast tumor tissues when compared to kidney and liver, which may explain its high efficacy in vivo.


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/therapeutic use , Coordination Complexes/chemical synthesis , Organometallic Compounds/chemical synthesis , Organometallic Compounds/therapeutic use , Ruthenium/therapeutic use , Triple Negative Breast Neoplasms/drug therapy , Animals , Coordination Complexes/pharmacokinetics , Coordination Complexes/therapeutic use , Female , HEK293 Cells , Humans , In Vitro Techniques , Mice, Inbred NOD , Mice, SCID , Phosphoranes/chemical synthesis , Phosphoranes/therapeutic use , Solubility , Water
4.
Cell Biol Toxicol ; 29(6): 431-43, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24272524

ABSTRACT

Ruthenium-based compounds have intriguing anti-cancer properties, and some of these novel compounds are currently in clinical trials. To continue the development of new metal-based drug combinations, we coupled ruthenium (Ru) with the azole compounds ketoconazole (KTZ) and clotrimazole (CTZ), which are well-known antifungal agents that also display anticancer properties. We report the activity of a series of 12 Ru-KTZ and Ru-CTZ compounds against three prostate tumor cell lines with different androgen sensitivity, as well as cervical cancer and lymphoblastic lymphoma cell lines. In addition, human cell lines were used to evaluate the toxicity against non-transformed cells and to establish selectivity indexes. Our results indicate that the combination of ruthenium and KTZ/CTZ in a single molecule results in complexes that are more cytotoxic than the individual components alone, displaying in some cases low micromolar CC50 values and high selectivity indexes. Additionally, all compounds are more cytotoxic against prostate cell lines with lower cytotoxicity against non-transformed epidermal cell lines. Some of the compounds were found to primarily induce cell death via apoptosis yet weakly interact with DNA. Our studies also demonstrate that the cytotoxicity induced by our Ru-based compounds is not directly related to their ability to interact with DNA.


Subject(s)
Clotrimazole/administration & dosage , Ketoconazole/administration & dosage , Prostatic Neoplasms/drug therapy , Ruthenium/administration & dosage , Apoptosis/drug effects , Cell Line, Tumor , DNA, Neoplasm/drug effects , Humans , Male , Prostatic Neoplasms/pathology
5.
J Biol Inorg Chem ; 18(7): 779-90, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23881220

ABSTRACT

In our ongoing search for new metal-based chemotherapeutic agents against leishmaniasis and Chagas disease, six new ruthenium-ketoconazole (KTZ) complexes have been synthesized and characterized, including two octahedral coordination complexes-cis,fac-[Ru(II)Cl2(DMSO)3(KTZ)] (1) and cis-[Ru(II)Cl2(bipy)(DMSO)(KTZ)] (2) (where DMSO is dimethyl sulfoxide and bipy is 2,2'-bipyridine)-and four organometallic compounds-[Ru(II)(η(6)-p-cymene)Cl2(KTZ)] (3), [Ru(II)(η(6)-p-cymene)(en)(KTZ)][BF4]2 (4), [Ru(II)(η(6)-p-cymene)(bipy)(KTZ)][BF4]2 (5), and [Ru(II)(η(6)-p-cymene)(acac)(KTZ)][BF4] (6) (where en is ethylenediamine and acac is acetylacetonate); the crystal structure of 3 is described. The central hypothesis of our work is that combining a bioactive compound such as KTZ and a metal in a single molecule results in a synergy that can translate into improved activity and/or selectivity against parasites. In agreement with this hypothesis, complexation of KTZ with Ru(II) in compounds 3-5 produces a marked enhancement of the activity toward promastigotes and intracellular amastigotes of Leishmania major, when compared with uncomplexed KTZ, or with similar ruthenium compounds not containing KTZ. Importantly, the selective toxicity of compounds 3-5 toward the leishmania parasites, in relation to human fibroblasts and osteoblasts or murine macrophages, is also superior to the selective toxicities of the individual constituents of the drug. When tested against Trypanosoma cruzi epimastigotes, some of the organometallic complexes displayed activity and selectivity comparable to those of free KTZ. A dual-target mechanism is suggested to account for the antiparasitic properties of these complexes.


Subject(s)
Ketoconazole/chemistry , Leishmania major/drug effects , Organometallic Compounds/chemistry , Organometallic Compounds/pharmacology , Ruthenium/chemistry , Trypanosoma cruzi/drug effects , Animals , Cell Line , Humans , Mice , Organometallic Compounds/chemical synthesis , Organometallic Compounds/toxicity , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/chemistry , Trypanocidal Agents/pharmacology , Trypanocidal Agents/toxicity
6.
J Mex Chem Soc ; 57(3): 169-174, 2013.
Article in English | MEDLINE | ID: mdl-24391686

ABSTRACT

The pharmacological properties of any drug are related to their ability to interact with macromolecular blood components. The interaction of human serum albumin (HSA) and apotransferrin (ATf) with six RuII complexes containing ketoconazole (KTZ), which we have previously reported to be active against Leishmania major and Trypanosoma cruzi, has been investigated by monitoring the tryptophan fluorescence intensity of each protein upon incremental addition of the complexes. All the Ru-KTZ derivatives, namely cis-fac-[RuIICl2(DMSO)3(KTZ)] (1), cis-[RuIICl2(bipy)(DMSO)(KTZ)] (2), [RuII(η6-p-cymene)Cl2(KTZ)] (3), [RuII(η6-p-cymene)(en)(KTZ)][BF4]2 (4), [RuII(η6-p-cymene)(bipy)(KTZ)][BF4]2 (5), and [RuII(η6-p-cymene)(acac)(KTZ)][BF4] (6) are able to quench the intrinsic fluorescence of HSA and ATf at 27 °C. Analysis of the spectroscopic data using Stern-Volmer plots indicates that in both cases the quenching takes place principally through a static mechanism involving the formation of Ru complex-protein adducts; further analysis of the fluorescence data allowed the estimation of apparent association constants and the number of binding sites for each protein and each compound. The results indicate that both HSA and ATf are possible effective transporters for Ru-KTZ antiparasitic drugs.

7.
Dalton Trans ; 41(48): 14490-7, 2012 Dec 28.
Article in English | MEDLINE | ID: mdl-23073240

ABSTRACT

A new catalyst composed of Pd nanoparticles supported on MgO has been prepared by the room temperature NaBH(4) reduction of Na(2)PdCl(4) in methanol in the presence of the support. TEM measurements reveal well-dispersed Pd particles of mean diameter 1.7 nm attached to the MgO surface. Further characterization was achieved by ICP-AES, XPS, XRD, H(2) pulse chemisorption and H(2)-TPR. The new catalyst is efficient for the regioselective hydrogenation of the heterocyclic ring of quinolines, as well as for the mild reduction of a variety of alkenes representative of fuel components, and the partial saturation of biodiesel. The new material is considerably more reactive than commercial Pd/SiO(2) and Pd/Al(2)O(3) catalysts under analogous reaction conditions.


Subject(s)
Alkenes/chemistry , Biofuels , Magnesium Oxide/chemistry , Metal Nanoparticles/chemistry , Palladium/chemistry , Quinolines/chemistry , Borohydrides/chemistry , Catalysis , Gas Chromatography-Mass Spectrometry , Hydrogenation , Oxidation-Reduction , Particle Size , Temperature
8.
J Med Chem ; 55(8): 3867-77, 2012 Apr 26.
Article in English | MEDLINE | ID: mdl-22448965

ABSTRACT

Eight new ruthenium complexes of clotrimazole (CTZ) with high antiparasitic activity have been synthesized, cis,fac-[Ru(II)Cl(2)(DMSO)(3)(CTZ)] (1), cis,cis,trans-[Ru(II)Cl(2)(DMSO)(2)(CTZ)(2)] (2), Na[Ru(III)Cl(4)(DMSO)(CTZ)] (3), Na[trans-Ru(III)Cl(4)(CTZ)(2)] (4), [Ru(II)(η(6)-p-cymene)Cl(2)(CTZ)] (5), [Ru(II)(η(6)-p-cymene)(bipy)(CTZ)][BF(4)](2) (6), [Ru(II)(η(6)-p-cymene)(en)(CTZ)][BF(4)](2) (7), and [Ru(II)(η(6)-p-cymene)(acac)(CTZ)][BF(4)] (8) (bipy = bipyridine; en = ethlylenediamine; acac = acetylacetonate). The crystal structures of compounds 4-8 are described. Complexes 1-8 are active against promastigotes of Leishmania major and epimastigotes of Trypanosoma cruzi. Most notably, complex 5 increases the activity of CTZ by factors of 110 and 58 against L. major and T. cruzi, with no appreciable toxicity to human osteoblasts, resulting in nanomolar and low micromolar lethal doses and therapeutic indexes of 500 and 75, respectively. In a high-content imaging assay on L. major-infected intraperitoneal mice macrophages, complex 5 showed significant inhibition on the proliferation of intracellular amastigotes (IC(70) = 29 nM), while complex 8 displayed some effect at a higher concentration (IC(40) = 1 µM).


Subject(s)
Antiprotozoal Agents/therapeutic use , Clotrimazole/therapeutic use , Leishmania major/drug effects , Organometallic Compounds/therapeutic use , Ruthenium/therapeutic use , Trypanosoma cruzi/drug effects , Animals , Antiprotozoal Agents/chemical synthesis , Antiprotozoal Agents/chemistry , Cell Line , Clotrimazole/chemistry , Crystallography, X-Ray , Humans , Mice , Organometallic Compounds/chemical synthesis , Organometallic Compounds/chemistry , Ruthenium/chemistry
9.
Dalton Trans ; 41(9): 2764-73, 2012 Mar 07.
Article in English | MEDLINE | ID: mdl-22249579

ABSTRACT

Three new ruthenium complexes with bidentate chloroquine analogue ligands, [Ru(η(6)-cym)(L(1))Cl]Cl (1, cym = p-cymene, L(1) = N-(2-((pyridin-2-yl)methylamino)ethyl)-7-chloroquinolin-4-amine), [Ru(η(6)-cym)(L(2))Cl]Cl (2, L(2) = N-(2-((1-methyl-1H-imidazol-2-yl)methylamino)ethyl)-7-chloroquinolin-4-amine) and [Ru(η(6)-cym)(L(3))Cl] (3, L(3) = N-(2-((2-hydroxyphenyl)methylimino)ethyl)-7-chloroquinolin-4-amine) have been synthesized and characterized. In addition, the X-ray crystal structure of 2 is reported. The antimalarial activity of complexes 1-3 and ligands L(1), L(2) and L(3), as well as the compound N-(2-(bis((pyridin-2-yl)methyl)amino)ethyl)-7-chloroquinolin-4-amine (L(4)), against chloroquine sensitive and chloroquine resistant Plasmodium falciparum malaria strains was evaluated. While 1 and 2 are less active than the corresponding ligands, 3 exhibits high antimalarial activity. The chloroquine analogue L(2) also shows good activity against both the chloroquine sensitive and the chloroquine resistant strains. Heme aggregation inhibition activity (HAIA) at an aqueous buffer/n-octanol interface (HAIR(50)) and lipophilicity (D, as measured by water/n-octanol distribution coefficients) have been measured for all ligands and metal complexes. A direct correlation between the D and HAIR(50) properties cannot be made because of the relative structural diversity of the complexes, but it may be noted that these properties are enhanced upon complexation of the inactive ligand L(3) to ruthenium, to give a metal complex (3) with promising antimalarial activity.


Subject(s)
Antimalarials/chemistry , Chloroquine/analogs & derivatives , Chloroquine/chemistry , Organometallic Compounds/chemistry , Ruthenium/chemistry , 1-Octanol/chemistry , Animals , Antimalarials/pharmacology , CHO Cells , Cell Survival/drug effects , Chloroquine/pharmacology , Cricetinae , Cricetulus , Crystallography, X-Ray , Electric Conductivity , Heme/chemistry , Hydrophobic and Hydrophilic Interactions , Inhibitory Concentration 50 , Ligands , Magnetic Resonance Spectroscopy , Molecular Structure , Organometallic Compounds/pharmacology , Plasmodium falciparum/drug effects , Ruthenium/pharmacology , Water/chemistry
10.
Dalton Trans ; 41(5): 1534-43, 2012 Feb 07.
Article in English | MEDLINE | ID: mdl-22138896

ABSTRACT

In the search for new therapeutic tools against neglected diseases produced by trypanosomatid parasites, and particularly against African Trypanosomiasis, whose etiological agent is Trypanosoma brucei, organoruthenium compounds with bioactive nitrofuran containing thiosemicarbazones (L) as co-ligands were obtained. Four ruthenium(II) complexes with the formula [Ru(2)(p-cymene)(2)(L)(2)]X(2), where X = Cl or PF(6), were synthesized and the crystal structures of two of them were solved by X-ray diffraction methods. Two of the complexes show significant in vitro growth inhibition activity against Trypanosoma brucei brucei and are highly selective towards trypanosomal cells with respect to mammalian cells (J774 murine macrophages). These promising results make the title organoruthenium compounds good lead candidates for further developments towards potential antitrypanosomal organometallic drugs.


Subject(s)
Organoselenium Compounds/chemistry , Organoselenium Compounds/pharmacology , Trypanocidal Agents/chemistry , Trypanocidal Agents/pharmacology , Trypanosoma brucei brucei/drug effects , Animals , Cattle , Cell Line , Crystallography, X-Ray , DNA/metabolism , Humans , Ligands , Macrophages/drug effects , Mice , Models, Molecular , Trypanosomiasis, African/drug therapy
11.
J Inorg Biochem ; 105(12): 1684-91, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22001497

ABSTRACT

Three platinum-chloroquine complexes, trans-Pt(CQDP)(2)(I)(2) [1], trans-Pt(CQDP)(2)(Cl)(2) [2] and trans-Pt(CQ)(2)(Cl)(2) [3], were prepared and their most probable structure was established through a combination of spectroscopic analysis and density functional theory (DFT) calculations. Their interaction with DNA was studied and their activity against 6 tumor cell lines was evaluated. Compounds 1 and 2 interact with DNA primarily through electrostatic contacts and hydrogen bonding, with a minor contribution of a covalent interaction, while compound 3 binds to DNA predominantly in a covalent fashion, with weaker secondary electrostatic interactions and possibly hydrogen bonding, this complex also exerted greater cytotoxic activity against the tumor cell lines.


Subject(s)
Antineoplastic Agents/chemical synthesis , Chelating Agents/chemistry , Chloroquine/chemistry , Coordination Complexes/chemical synthesis , Platinum , Animals , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Coordination Complexes/pharmacology , DNA , DNA Cleavage , DNA, Circular/chemistry , Drug Screening Assays, Antitumor , Humans , Inhibitory Concentration 50 , Mice , Models, Molecular , Molecular Conformation
12.
Dalton Trans ; 40(40): 10621-32, 2011 Oct 28.
Article in English | MEDLINE | ID: mdl-21850360

ABSTRACT

A nanostructured catalyst composed of Ru nanoparticles immobilized on poly(4-vinylpyridine) (PVPy) has been synthesized by NaBH(4) reduction of RuCl(3)·3H(2)O in the presence of the polymer in methanol at room temperature. TEM measurements show well-dispersed Ru nanoparticles with an average diameter of 3.1 nm. Both powder XRD patterns and XPS data indicate that the Ru particles are predominantly in the zerovalent state. The new catalyst is efficient for the hydrogenation of a wide variety of aromatic hydrocarbons and N-heteroaromatic compounds representative of components of petroleum-derived fuels. The experimental data indicate the existence of two distinct active sites in the nanostructure that lead to two parallel hydrogenation pathways, one for simple aromatics involving conventional homolytic hydrogen splitting on Ru and a second one for N-heteroaromatics taking place via a novel heterolytic hydrogen activation on the catalyst surface, assisted by the basic pyridine groups of the support.

13.
J Inorg Biochem ; 105(2): 276-82, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21194628

ABSTRACT

The mechanism of antimalarial action of [Au(CQ)(PPh(3))]PF(6) (1), which is active in vitro against CQ-resistant P. falciparum and in vivo against P. berghei, has been investigated in relation to hemozoin formation and DNA as possible important targets. Complex 1 interacts with heme and inhibits ß-hematin formation both in aqueous medium and near water/n-octanol interfaces at pH ~5 to a greater extent than chloroquine diphosphate (CQDP) or other known metal-based antimalarial agents; the higher inhibition activity is probably related to the higher lipophilicity observed for 1 through partition coefficient measurements at low pH, with respect to CQDP. The interactions of complex 1 with DNA were explored using spectrophotometric and fluorimetric titrations, circular dichroism spectroscopy, viscosity and melting point studies, as well as electrophoresis and covalent binding assays. The experimental data indicate that complex 1 interacts with DNA predominantly by intercalation and electrostatic association of the CQ moiety, similarly to free CQDP, while no covalent metal-DNA binding seems to take place. The most likely antimalarial mechanism for complex 1 is thus heme aggregation inhibition; the high activities observed against resistant parasites are probably due to the structural modification of CQ introduced by the presence of the gold-triphenylphosphine fragment, together with the enhanced lipophilic character.


Subject(s)
Antimalarials/pharmacology , Chloroquine/analogs & derivatives , Organogold Compounds/pharmacology , Animals , Antimalarials/chemistry , Chloroquine/chemistry , Chloroquine/pharmacology , DNA/chemistry , Hemeproteins/chemistry , Hemin/chemistry , Humans , Inhibitory Concentration 50 , Intercalating Agents/chemistry , Intercalating Agents/pharmacology , Organogold Compounds/chemistry , Plasmodium falciparum/drug effects
14.
J Inorg Biochem ; 105(1): 39-45, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21113330

ABSTRACT

The interactions of π-arene-Ru(II)-chloroquine complexes with human serum albumin (HSA), apotransferrin and holotransferrin have been studied by circular dichroism (CD) and UV-Visible spectroscopies, together with isothermal titration calorimetry (ITC). The data for [Ru(η(6)-p-cymene)(CQ)(H(2)O)Cl]PF(6) (1), [Ru(η(6)-benzene)(CQ)(H(2)O)Cl]PF(6) (2), [Ru(η(6)-p-cymene)(CQ)(H(2)O)(2)][PF(6)](2) (3), [Ru(η(6)-p-cymene)(CQ)(en)][PF(6)](2) (4), [Ru(η(6)-p-cymene)(η(6)-CQDP)][BF(4)](2) (5) (CQ: chloroquine; DP: diphosphate; en: ethylenediamine), in comparison with CQDP and [Ru(η(6)-p-cymene)(en)Cl][PF(6)] (6) as controls demonstrate that 1, 2, 3, and 5, which contain exchangeable ligands, bind to HSA and to apotransferrin in a covalent manner. The interaction did not affect the α-helical content in apotransferrin but resulted in a loss of this type of structure in HSA. The binding was reversed in both cases by a decrease in pH and in the case of the Ru-HSA adducts, also by addition of chelating agents. A weaker interaction between complexes 4 and 6 and HSA was measured by ITC but was not detectable spectroscopically. No interactions were observed for complexes 4 and 6 with apotransferrin or for CQDP with either protein. The combined results suggest that the arene-Ru(II)-chloroquine complexes, known to be active against resistant malaria and several lines of cancer cells, also display a good transport behavior that makes them good candidates for drug development.


Subject(s)
Antimalarials/chemistry , Antineoplastic Agents/chemistry , Chloroquine/chemistry , Organometallic Compounds/chemistry , Ruthenium/chemistry , Serum Albumin/chemistry , Transferrin/chemistry , Apoproteins/chemistry , Calorimetry , Circular Dichroism , Drug Interactions , Humans , Molecular Structure
15.
J Inorg Biochem ; 104(9): 967-77, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20605217

ABSTRACT

The complexes [Ru(eta(6)-p-cymene)(CQ)Cl(2)] (1), [Ru(eta(6)-benzene)(CQ)Cl(2)] (2), [Ru(eta(6)-p-cymene)(CQ)(H(2)O)(2)][BF(4)](2) (3), [Ru(eta(6)-p-cymene)(en)(CQ)][PF(6)](2) (4), [Ru(eta(6)-p-cymene)(eta(6)-CQDP)][BF(4)](2) (5) (CQ = chloroquine base; CQDP = chloroquine diphosphate; en = ethylenediamine) interact with DNA to a comparable extent to that of CQ and in analogous intercalative manner with no evidence for any direct contribution of the metal, as shown by spectrophotometric and fluorimetric titrations, thermal denaturation measurements, circular dichroism spectroscopy and electrophoresis mobility shift assays. Complexes 1-5 induced cytotoxicity in Jurkat and SUP-T1 cancer cells primarily via apoptosis. Despite the similarities in the DNA binding behavior of complexes 1-5 with those of CQ the antitumor properties of the metal drugs do not correlate with those of CQ, indicating that DNA is not the principal target in the mechanism of cytotoxicity of these compounds. Importantly, the Ru-CQ complexes are generally less toxic toward normal mouse splenocytes and human foreskin fibroblast cells than the standard antimalarial drug CQDP and therefore this type of compound shows promise for drug development.


Subject(s)
Apoptosis/drug effects , DNA/chemistry , Ruthenium Compounds/chemistry , Ruthenium Compounds/pharmacology , Animals , Antineoplastic Agents/adverse effects , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cells, Cultured , Chloroquine/adverse effects , Female , Flow Cytometry , Humans , Mice , Ruthenium Compounds/adverse effects , Ruthenium Compounds/chemical synthesis
16.
J Biol Inorg Chem ; 14(6): 863-71, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19343380

ABSTRACT

We have measured water/n-octanol partition coefficients, pK(a) values, heme binding constants, and heme aggregation inhibition activity of a series of ruthenium-pi-arene-chloroquine (CQ) complexes recently reported to be active against CQ-resistant strains of Plasmodium falciparum. Measurements of heme aggregation inhibition activity of the metal complexes near water/n-octanol interfaces qualitatively predict their superior antiplasmodial action against resistant parasites, in relation to CQ; we conclude that this modified method may be a better predictor of antimalarial potency than standard tests in aqueous acidic buffer. Some interesting tendencies emerge from our data, indicating that the antiplasmodial activity is related to a balance of effects associated with the lipophilicity, basicity, and structural details of the compounds studied.


Subject(s)
Antimalarials/chemistry , Antimalarials/pharmacology , Drug Resistance/drug effects , Heme/metabolism , Octanols/chemistry , Plasmodium falciparum/drug effects , Water/chemistry , Acetates/chemistry , Animals , Antimalarials/metabolism , Buffers , Chloroquine/chemistry , Hemin/metabolism , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions , Plasmodium falciparum/metabolism , Plasmodium falciparum/physiology , Ruthenium/chemistry
17.
Inorg Chem ; 48(3): 1122-31, 2009 Feb 02.
Article in English | MEDLINE | ID: mdl-19119867

ABSTRACT

The new Ru(II) chloroquine complexes [Ru(eta(6)-arene)(CQ)Cl2] (CQ = chloroquine; arene = p-cymene 1, benzene 2), [Ru(eta(6)-p-cymene)(CQ)(H2O)2][BF4]2 (3), [Ru(eta(6)-p-cymene)(CQ)(en)][PF6]2 (en = ethylenediamine) (4), and [Ru(eta(6)-p-cymene)(eta(6)-CQDP)][BF4]2 (5, CQDP = chloroquine diphosphate) have been synthesized and characterized by use of a combination of NMR and FTIR spectroscopy with DFT calculations. Each complex is formed as a single coordination isomer: In 1-4, chloroquine binds to ruthenium in the eta(1)-N mode through the quinoline nitrogen atom, whereas in 5 an unprecedented eta(6) bonding through the carbocyclic ring is observed. 1, 2, 3, and 5 are active against CQ-resistant (Dd2, K1, and W2) and CQ-sensitive (FcB1, PFB, F32, and 3D7) malaria parasites (Plasmodium falciparum); importantly, the potency of these complexes against resistant parasites is consistently higher than that of the standard drug chloroquine diphosphate. 1 and 5 also inhibit the growth of colon cancer cells, independently of the p53 status and of liposarcoma tumor cell lines with the latter showing increased sensitivity, especially to 1 (IC50 8 microM); this is significant because this type of tumor does not respond to currently employed chemotherapies.


Subject(s)
Antimalarials/chemical synthesis , Antimalarials/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Chloroquine/chemistry , Ruthenium Compounds/chemical synthesis , Ruthenium Compounds/pharmacology , Animals , Antimalarials/chemistry , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Humans , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Structure , Plasmodium falciparum/drug effects , Ruthenium Compounds/chemistry , Spectrophotometry, Infrared
18.
J Biol Inorg Chem ; 13(5): 703-12, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18305967

ABSTRACT

The mechanism of antimalarial action of the ruthenium-chloroquine complex [RuCl(2)(CQ)](2) (1), previously shown by us to be active in vitro against CQ-resistant strains of Plasmodium falciparum and in vivo against P. berghei, has been investigated. The complex is rapidly hydrolyzed in aqueous solution to [RuCl(OH(2))(3)(CQ)](2)[Cl](2), which is probably the active species. This compound binds to hematin in solution and inhibits aggregation to beta-hematin at pH approximately 5 to a slightly lower extent than chloroquine diphosphate; more importantly, the heme aggregation inhibition activity of complex 1 is significantly higher than that of CQ when measured at the interface of n-octanol-aqueous acetate buffer mixtures under acidic conditions modeling the food vacuole of the parasite. Partition coefficient measurements confirmed that complex 1 is considerably more lipophilic than CQ in n-octanol-water mixtures at pH approximately 5. This suggests that the principal target of complex 1 is the heme aggregation process, which has recently been reported to be fast and spontaneous at or near water-lipid interfaces. The enhanced antimalarial activity of complex 1 is thus probably due to a higher effective concentration of the drug at or near the interface compared with that of CQ, which accumulates strongly in the aqueous regions of the vacuole under those conditions. Furthermore, the activity of complex 1 against CQ-resistant strains of P. falciparum is probably related to its greater lipophilicity, in line with previous reports indicating a lowered ability of the mutated transmembrane transporter PfCRT to promote the efflux of highly lipophilic drugs. The metal complex also interacts with DNA by intercalation, to a comparable extent and in a similar manner to uncomplexed CQ and therefore DNA binding does not appear to be an important part of the mechanism of antimalarial action in this case.


Subject(s)
Antimalarials , Organometallic Compounds/pharmacology , 1-Octanol/chemistry , Acids , Animals , Buffers , Chemical Phenomena , Chemistry, Physical , Chloroquine/pharmacology , DNA/chemistry , Drug Resistance , Heme/chemistry , Hemin/chemistry , Hydrolysis , Nucleic Acid Denaturation , Plasmodium berghei/drug effects , Plasmodium falciparum/drug effects , Solvents , Spectrometry, Fluorescence , Spectrophotometry, Ultraviolet
19.
Catal Commun ; 8(12): 2115-2118, 2007 Dec.
Article in English | MEDLINE | ID: mdl-19050746

ABSTRACT

A series of catalysts composed of ruthenium nanoparticles immobilized on poly(4-vinylpyridine) was prepared by NaBH(4) reduction of RuCl(3).3H(2)O in methanol in the presence of the polymer; TEM measurements of a 10 wt % Ru/P4VPy material indicate that ruthenium particles of 1-2 nm predominate. This catalyst is efficient for the selective hydrogenation of quinoline to 1,2,3,4-tetrahydroquinoline at 100-120 ºC and 30-40 bar H(2). The activity increases with hydrogen pressure up to 40 bar but is essentially independent of quinoline concentration. Polar solvents, triethylamine, and acetic acid enhance catalytic performance, suggesting an ionic mechanism involving heterolytic hydrogen activation.

20.
J Med Chem ; 47(21): 5204-9, 2004 Oct 07.
Article in English | MEDLINE | ID: mdl-15456263

ABSTRACT

A number of new Au(I) and Au(III) complexes of chloroquine (CQ) have been prepared, characterized, and evaluated in vitro against several strains of Plasmodium falciparum. [(CQ)Au(PPh(3))][NO(3)] (2) was synthesized by reaction of AuCl(PPh(3)) with AgNO(3) followed by treatment with CQ. Similar reactions of AuCl(PR(3)) (R = Me, Et) with KPF(6) and CQ yielded [(CQ)Au(PMe(3))][PF(6)] (3), and [(CQ)Au(PEt(3))][PF(6)] (4), respectively. KAuCl(4) reacted with CQ to produce the Au(III) complex [(CQ)(2)Au(Cl)(2)]Cl (5), which in turn formed [(CQ)Au(Cl)(SR)(Et(2)O)]Cl (6) by reaction with 1-thio-beta-d-glucose-2,3,4,6-tetraacetate (SRH). The new compounds were characterized by a combination of elemental analysis, fast atom bombardment mass spectrometry (FAB-MS), and NMR spectroscopy. All the complexes display in vitro activity against CQ-sensitive and CQ-resistant strains of Plasmodium falciparum. The highest activity for this series was obtained for complex 4, which is 5 times more active than chloroquine diphosphate (CQDP) against the CQ-resistant strain FcB1. On preincubation of noninfected red blood cells with complexes 1, 5, and 6, protection against subsequent infection was observed in some cases. No clear structure-activity correlations could be established for this series of compounds.


Subject(s)
Antimalarials/chemical synthesis , Chloroquine/analogs & derivatives , Chloroquine/chemical synthesis , Gold Compounds/chemical synthesis , Organometallic Compounds/chemical synthesis , Animals , Antimalarials/chemistry , Antimalarials/pharmacology , Chloroquine/chemistry , Chloroquine/pharmacology , Drug Resistance , Gold Compounds/chemistry , Gold Compounds/pharmacology , Organogold Compounds , Organometallic Compounds/chemistry , Organometallic Compounds/pharmacology , Plasmodium falciparum/drug effects , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...