Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Language
Publication year range
1.
Comput Biol Med ; 174: 108454, 2024 May.
Article in English | MEDLINE | ID: mdl-38608326

ABSTRACT

BACKGROUND: Effective and timely detection is vital for mitigating the severe impacts of Sexually Transmitted Infections (STI), including syphilis and HIV. Cyclic Voltammetry (CV) sensors have shown promise as diagnostic tools for these STI, offering a pathway towards cost-effective solutions in primary health care settings. OBJECTIVE: This study aims to pioneer the use of Fourier Descriptors (FDs) in analyzing CV curves as 2D closed contours, targeting the simultaneous detection of syphilis and HIV. METHODS: Raw CV signals are filtered, resampled, and transformed into 2D closed contours for FD extraction. Essential shape characteristics are captured through selected coefficients. A complementary geometrical analysis further extracts features like curve areas and principal axes lengths from CV curves. A Mahalanobis Distance Classifier is employed for differentiation between patient and control groups. RESULTS: The evaluation of the proposed method revealed promising results with classification performance metrics such as Accuracy and F1-Score consistently achieving values rounded to 0.95 for syphilis and 0.90 for HIV. These results underscore the potential efficacy of the proposed approach in differentiating between patient and control samples for STI detection. CONCLUSION: By integrating principles from biosensors, signal processing, image processing, machine learning, and medical diagnostics, this study presents a comprehensive approach to enhance the detection of both syphilis and HIV. This setts the stage for advanced and accessible STI diagnostic solutions.


Subject(s)
HIV Infections , Syphilis , Humans , Syphilis/diagnosis , HIV Infections/diagnosis , Fourier Analysis , Electrochemical Techniques/methods , Signal Processing, Computer-Assisted
2.
Sensors (Basel) ; 23(24)2023 Dec 16.
Article in English | MEDLINE | ID: mdl-38139715

ABSTRACT

Epilepsy is a condition that affects 50 million individuals globally, significantly impacting their quality of life. Epileptic seizures, a transient occurrence, are characterized by a spectrum of manifestations, including alterations in motor function and consciousness. These events impose restrictions on the daily lives of those affected, frequently resulting in social isolation and psychological distress. In response, numerous efforts have been directed towards the detection and prevention of epileptic seizures through EEG signal analysis, employing machine learning and deep learning methodologies. This study presents a methodology that reduces the number of features and channels required by simpler classifiers, leveraging Explainable Artificial Intelligence (XAI) for the detection of epileptic seizures. The proposed approach achieves performance metrics exceeding 95% in accuracy, precision, recall, and F1-score by utilizing merely six features and five channels in a temporal domain analysis, with a time window of 1 s. The model demonstrates robust generalization across the patient cohort included in the database, suggesting that feature reduction in simpler models-without resorting to deep learning-is adequate for seizure detection. The research underscores the potential for substantial reductions in the number of attributes and channels, advocating for the training of models with strategically selected electrodes, and thereby supporting the development of effective mobile applications for epileptic seizure detection.


Subject(s)
Artificial Intelligence , Epilepsy , Humans , Quality of Life , Seizures/diagnosis , Epilepsy/diagnosis , Electroencephalography/methods , Signal Processing, Computer-Assisted , Algorithms
3.
Front Artif Intell ; 6: 1290022, 2023.
Article in English | MEDLINE | ID: mdl-38145230

ABSTRACT

The COVID-19 pandemic is already considered one of the biggest global health crises. In Rio Grande do Norte, a Brazilian state, the RegulaRN platform was the health information system used to regulate beds for patients with COVID-19. This article explored machine learning and deep learning techniques with RegulaRN data in order to identify the best models and parameters to predict the outcome of a hospitalized patient. A total of 25,366 bed regulations for COVID-19 patients were analyzed. The data analyzed comes from the RegulaRN Platform database from April 2020 to August 2022. From these data, the nine most pertinent characteristics were selected from the twenty available, and blank or inconclusive data were excluded. This was followed by the following steps: data pre-processing, database balancing, training, and test. The results showed better performance in terms of accuracy (84.01%), precision (79.57%), and F1-score (81.00%) for the Multilayer Perceptron model with Stochastic Gradient Descent optimizer. The best results for recall (84.67%), specificity (84.67%), and ROC-AUC (91.6%) were achieved by Root Mean Squared Propagation. This study compared different computational methods of machine and deep learning whose objective was to classify bed regulation data for patients with COVID-19 from the RegulaRN Platform. The results have made it possible to identify the best model to help health professionals during the process of regulating beds for patients with COVID-19. The scientific findings of this article demonstrate that the computational methods used applied through a digital health solution, can assist in the decision-making of medical regulators and government institutions in situations of public health crisis.

4.
Article in English | MEDLINE | ID: mdl-36498280

ABSTRACT

The improvement of laboratory diagnosis is a critical step for the reduction of syphilis cases around the world. In this paper, we present the development of an impedance-based method for detecting T. pallidum antigens and antibodies as an auxiliary tool for syphilis laboratory diagnosis. We evaluate the voltammetric signal obtained after incubation in carbon or gold nanoparticle-modified carbon electrodes in the presence or absence of Poly-L-Lysine. Our results indicate that the signal obtained from the electrodes was sufficient to distinguish between infected and non-infected samples immediately (T0') or 15 min (T15') after incubation, indicating its potential use as a point-of-care method as a screening strategy.


Subject(s)
Metal Nanoparticles , Syphilis , Humans , Treponema pallidum , Gold , Antibodies, Bacterial , Syphilis/diagnosis , Carbon
5.
Neuroimage ; 264: 119690, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36261058

ABSTRACT

The 'day residue' - the presence of waking memories into dreams - is a century-old concept that remains controversial in neuroscience. Even at the psychological level, it remains unclear how waking imagery cedes into dreams. Are visual and affective residues enhanced, modified, or erased at sleep onset? Are they linked, or dissociated? What are the neural correlates of these transformations? To address these questions we combined quantitative semantics, sleep EEG markers, visual stimulation, and multiple awakenings to investigate visual and affect residues in hypnagogic imagery at sleep onset. Healthy adults were repeatedly stimulated with an affective image, allowed to sleep and awoken seconds to minutes later, during waking (WK), N1 or N2 sleep stages. 'Image Residue' was objectively defined as the formal semantic similarity between oral reports describing the last image visualized before closing the eyes ('ground image'), and oral reports of subsequent visual imagery ('hypnagogic imagery). Similarly, 'Affect Residue' measured the proximity of affective valences between 'ground image' and 'hypnagogic imagery'. We then compared these grounded measures of two distinct aspects of the 'day residue', calculated within participants, to randomly generated values calculated across participants. The results show that Image Residue persisted throughout the transition to sleep, increasing during N1 in proportion to the time spent in this stage. In contrast, the Affect Residue was gradually neutralized as sleep progressed, decreasing in proportion to the time spent in N1 and reaching a minimum during N2. EEG power in the theta band (4.5-6.5 Hz) was inversely correlated with the Image Residue during N1. The results show that the visual and affective aspects of the 'day residue' in hypnagogic imagery diverge at sleep onset, possibly decoupling visual contents from strong negative emotions, in association with increased theta rhythm.


Subject(s)
Sleep Stages , Sleep , Adult , Humans , Sleep Stages/physiology , Wakefulness/physiology , Theta Rhythm , Electroencephalography
6.
Sci Rep ; 12(1): 6550, 2022 04 21.
Article in English | MEDLINE | ID: mdl-35449179

ABSTRACT

Dengue is recognized as a health problem that causes significant socioeconomic impacts throughout the world, affecting millions of people each year. A commonly used method for monitoring the dengue vector is to count the eggs that Aedes aegypti mosquitoes have laid in spatially distributed ovitraps. Given this approach, the present study uses a database collected from 397 ovitraps allocated across the city of Natal, RN-Brazil. The Egg Density Index for each neighborhood was computed weekly, over four complete years (from 2016 to 2019), and simultaneously analyzed with the dengue case incidence. Our results illustrate that the incidence of dengue is related to the socioeconomic level of the neighborhoods in the city of Natal. A deep learning algorithm was used to predict future dengue case incidence, either based on the previous weeks of dengue incidence or the number of eggs present in the ovitraps. The analysis reveals that ovitrap data allows earlier prediction (four to six weeks) compared to dengue incidence itself (one week). Therefore, the results validate that the quantification of Aedes aegypti eggs can be valuable for the early planning of public health interventions.


Subject(s)
Aedes , Dengue , Animals , Artificial Intelligence , Brazil/epidemiology , Dengue/epidemiology , Humans , Mosquito Vectors
7.
Braz. arch. biol. technol ; 62: e19180078, 2019. tab, graf
Article in English | LILACS | ID: biblio-1001427

ABSTRACT

Abstract Venous refilling time (VRT) can diagnose the presence of venous diseases in lower limbs. In order to calculate VRT it is necessary to determine the End of the Emptying Maneuvers (EEM). First Derivative Method (FDM) can be employed for automatic detection of the EEM, but its sensitivity to artifacts and noise can degrade its performance. In contrast, studies report that Area Triangulation Method (ATM) evinces effectiveness in biosignals point finding. This work compares the exactness of ATM and FDM for recognition of the EEM. The annotations made by 3 trained human observers on 37 photoplethysmography records were used as a reference. Bland-Altman graphics supported the analysis of agreement among human observers and methods, which was complemented with Analysis of variance and Multiple Comparisons statistical tests. Results showed that ATM is more accurate than FDM for automatic detection of the EEM, with statistically significant differences (p-value < 0.01).


Subject(s)
Venous Insufficiency/diagnosis , Lower Extremity/physiopathology , Analysis of Variance , Photoplethysmography/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...