Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 10(1): 6489, 2020 04 16.
Article in English | MEDLINE | ID: mdl-32300166

ABSTRACT

Peroxisome proliferator activated receptor α (PPARα) acts as a fatty acid sensor to orchestrate the transcription of genes coding for rate-limiting enzymes required for lipid oxidation in hepatocytes. Mice only lacking Pparα in hepatocytes spontaneously develop steatosis without obesity in aging. Steatosis can develop into non alcoholic steatohepatitis (NASH), which may progress to irreversible damage, such as fibrosis and hepatocarcinoma. While NASH appears as a major public health concern worldwide, it remains an unmet medical need. In the current study, we investigated the role of hepatocyte PPARα in a preclinical model of steatosis. For this, we used High Fat Diet (HFD) feeding as a model of obesity in C57BL/6 J male Wild-Type mice (WT), in whole-body Pparα- deficient mice (Pparα-/-) and in mice lacking Pparα only in hepatocytes (Pparαhep-/-). We provide evidence that Pparα deletion in hepatocytes promotes NAFLD and liver inflammation in mice fed a HFD. This enhanced NAFLD susceptibility occurs without development of glucose intolerance. Moreover, our data reveal that non-hepatocytic PPARα activity predominantly contributes to the metabolic response to HFD. Taken together, our data support hepatocyte PPARα as being essential to the prevention of NAFLD and that extra-hepatocyte PPARα activity contributes to whole-body lipid homeostasis.


Subject(s)
Hepatocytes/pathology , Liver/pathology , Non-alcoholic Fatty Liver Disease/immunology , Obesity/metabolism , PPAR alpha/deficiency , Animals , Diet, High-Fat/adverse effects , Disease Models, Animal , Gene Expression Profiling , Hepatocytes/immunology , Humans , Lipid Metabolism/immunology , Lipidomics , Liver/cytology , Liver/immunology , Male , Mice , Mice, Knockout , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Obesity/etiology , Obesity/immunology , Obesity/pathology , PPAR alpha/genetics
2.
Haematologica ; 104(7): 1428-1439, 2019 07.
Article in English | MEDLINE | ID: mdl-30679328

ABSTRACT

Anaplastic lymphoma kinase (ALK)-positive anaplastic large cell lymphomas are tumors that carry translocations involving the ALK gene at the 2p23 locus, leading to the expression of ALK tyrosine kinase fusion oncoproteins. Amongst hematologic malignancies, these lymphomas are particular in that they express very low levels of B-cell lymphoma 2 (BCL2), a recognized inhibitor of apoptosis and autophagy, two processes that share complex interconnections. We have previously shown that treatment of ALK-positive anaplastic large cell lymphoma cells with the ALK tyrosine kinase inhibitor crizotinib induces autophagy as a pro-survival response. Here, we observed that crizotinib-mediated inactivation of ALK caused an increase in BCL2 levels that restrained the cytotoxic effects of the drug. BCL2 downregulation in combination with crizotinib treatment potentiated loss of cell viability through both an increase in autophagic flux and cell death, including apoptosis. More importantly, our data revealed that the blockade of autophagic flux completely reversed impaired cell viability, which demonstrates that excessive autophagy is associated with cell death. We propose that the downregulation of BCL2 protein, which plays a central role in the autophagic and apoptotic machinery, combined with crizotinib treatment may represent a promising therapeutic alternative to current ALK-positive anaplastic large cell lymphoma treatments.


Subject(s)
Anaplastic Lymphoma Kinase/metabolism , Antineoplastic Agents/pharmacology , Autophagy , Crizotinib/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Lymphoma, Large-Cell, Anaplastic/pathology , Proto-Oncogene Proteins c-bcl-2/metabolism , Anaplastic Lymphoma Kinase/genetics , Animals , Cell Death , Cell Proliferation/drug effects , Humans , Lymphoma, Large-Cell, Anaplastic/drug therapy , Lymphoma, Large-Cell, Anaplastic/metabolism , Mice , Mice, Inbred NOD , Mice, SCID , Prognosis , Proto-Oncogene Proteins c-bcl-2/genetics , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
3.
Nat Commun ; 8(1): 1903, 2017 12 04.
Article in English | MEDLINE | ID: mdl-29199269

ABSTRACT

Dendrogenin A (DDA) is a newly discovered cholesterol metabolite with tumor suppressor properties. Here, we explored its efficacy and mechanism of cell death in melanoma and acute myeloid leukemia (AML). We found that DDA induced lethal autophagy in vitro and in vivo, including primary AML patient samples, independently of melanoma Braf status or AML molecular and cytogenetic classifications. DDA is a partial agonist on liver-X-receptor (LXR) increasing Nur77, Nor1, and LC3 expression leading to autolysosome formation. Moreover, DDA inhibited the cholesterol biosynthesizing enzyme 3ß-hydroxysterol-Δ8,7-isomerase (D8D7I) leading to sterol accumulation and cooperating in autophagy induction. This mechanism of death was not observed with other LXR ligands or D8D7I inhibitors establishing DDA selectivity. The potent anti-tumor activity of DDA, its original mechanism of action and its low toxicity support its clinical evaluation. More generally, this study reveals that DDA can direct control a nuclear receptor to trigger lethal autophagy in cancers.


Subject(s)
Antineoplastic Agents/pharmacology , Autophagy/drug effects , Cholestanols/pharmacology , Imidazoles/pharmacology , Leukemia, Myeloid, Acute , Liver X Receptors/drug effects , Melanoma , Animals , Cell Death/drug effects , Cell Line, Tumor , Drug Partial Agonism , Gene Expression/drug effects , HEK293 Cells , HL-60 Cells , Humans , In Vitro Techniques , Liver X Receptors/metabolism , Melanoma, Experimental , Membrane Transport Proteins/drug effects , Membrane Transport Proteins/genetics , Mice , Microtubule-Associated Proteins/drug effects , Microtubule-Associated Proteins/genetics , Nuclear Receptor Subfamily 4, Group A, Member 1/drug effects , Nuclear Receptor Subfamily 4, Group A, Member 1/genetics
4.
EMBO Mol Med ; 6(1): 80-98, 2014 01.
Article in English | MEDLINE | ID: mdl-24203162

ABSTRACT

Although non-melanoma skin cancer (NMSC) is the most common human cancer and its incidence continues to rise worldwide, the mechanisms underlying its development remain incompletely understood. Here, we unveil a cascade of events involving peroxisome proliferator-activated receptor (PPAR) ß/δ and the oncogene Src, which promotes the development of ultraviolet (UV)-induced skin cancer in mice. UV-induced PPARß/δ activity, which directly stimulated Src expression, increased Src kinase activity and enhanced the EGFR/Erk1/2 signalling pathway, resulting in increased epithelial-to-mesenchymal transition (EMT) marker expression. Consistent with these observations, PPARß/δ-null mice developed fewer and smaller skin tumours, and a PPARß/δ antagonist prevented UV-dependent Src stimulation. Furthermore, the expression of PPARß/δ positively correlated with the expression of SRC and EMT markers in human skin squamous cell carcinoma (SCC), and critically, linear models applied to several human epithelial cancers revealed an interaction between PPARß/δ and SRC and TGFß1 transcriptional levels. Taken together, these observations motivate the future evaluation of PPARß/δ modulators to attenuate the development of several epithelial cancers.


Subject(s)
Carcinoma, Squamous Cell/pathology , PPAR delta/metabolism , PPAR-beta/metabolism , Skin Neoplasms/pathology , Skin/radiation effects , Ultraviolet Rays , src-Family Kinases/metabolism , Animals , Carcinoma, Squamous Cell/etiology , Carcinoma, Squamous Cell/metabolism , Enzyme Activation , Epithelial-Mesenchymal Transition/radiation effects , Female , Gene Expression Regulation, Neoplastic/radiation effects , Humans , Mice , Mice, Hairless , Mice, Knockout , PPAR delta/antagonists & inhibitors , PPAR delta/genetics , PPAR-beta/antagonists & inhibitors , PPAR-beta/genetics , RNA, Messenger/metabolism , Signal Transduction/radiation effects , Skin/metabolism , Skin Neoplasms/etiology , Skin Neoplasms/metabolism , src-Family Kinases/genetics
5.
Nat Commun ; 4: 1840, 2013.
Article in English | MEDLINE | ID: mdl-23673625

ABSTRACT

We previously synthesized dendrogenin A and hypothesized that it could be a natural metabolite occurring in mammals. Here we explore this hypothesis and report the discovery of dendrogenin A in mammalian tissues and normal cells as an enzymatic product of the conjugation of 5,6α-epoxy-cholesterol and histamine. Dendrogenin A was not detected in cancer cell lines and was fivefold lower in human breast tumours compared with normal tissues, suggesting a deregulation of dendrogenin A metabolism during carcinogenesis. We established that dendrogenin A is a selective inhibitor of cholesterol epoxide hydrolase and it triggered tumour re-differentiation and growth control in mice and improved animal survival. The properties of dendrogenin A and its decreased level in tumours suggest a physiological function in maintaining cell integrity and differentiation. The discovery of dendrogenin A reveals a new metabolic pathway at the crossroads of cholesterol and histamine metabolism and the existence of steroidal alkaloids in mammals.


Subject(s)
Antineoplastic Agents/pharmacology , Cell Differentiation/drug effects , Cholestanols/pharmacology , Cholesterol/metabolism , Histamine/metabolism , Imidazoles/pharmacology , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Body Fluids/metabolism , Brain/metabolism , Cell Line, Tumor , Cholestanols/chemistry , Cholestanols/therapeutic use , Epoxide Hydrolases/antagonists & inhibitors , Epoxide Hydrolases/metabolism , Female , Humans , Imidazoles/chemistry , Imidazoles/therapeutic use , Immunocompetence/drug effects , Lymphocytes/drug effects , Lymphocytes/metabolism , Lymphocytes/pathology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Neoplasms/drug therapy , Neoplasms/metabolism , Receptors, Estrogen/metabolism , Survival Analysis , Tissue Extracts
SELECTION OF CITATIONS
SEARCH DETAIL
...