Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Genes Genomics ; 46(1): 135-148, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37985544

ABSTRACT

BACKGROUND: DNA methylation is an epigenetic mechanism that takes place at gene promoters and a potent epigenetic marker to regulate gene expression. OBJECTIVE: The study aimed to improve the milk production of Zaraibi goats by addressing the methylation pattern of two milk production-related genes: the growth hormone receptor (GHR) and the growth differentiation factor-9 (GDF-9). METHODS: 54 and 46 samples of low and high milk yield groups, respectively, were collected. Detection of methylation was assessed in two CpG islands in the GDF-9 promoter via methylation-specific primer assay (MSP) and in one CpG island across the GHR promoter using combined bisulfite restriction analysis (COBRA). RESULTS: A positive correlation between the methylation pattern of GDF-9 and GHR and their expression levels was reported. Breeding season was significantly effective on both peak milk yield (PMY) and total milk yield (TMY), where March reported a higher significant difference in PMY than November. Whereas single birth was highly significant on TMY than multiple births. The 3rd and 4th parities reported the highest significant difference in PMY, while the 4th parity was the most effective one on TMY. CONCLUSION: These results may help improve the farm animals' milk productive efficiency and develop prospective epigenetic markers to improve milk yield by epigenetic marker-assisted selection (eMAS) in goat breeding programs.


Subject(s)
DNA Methylation , Milk , Pregnancy , Female , Animals , Milk/metabolism , DNA Methylation/genetics , Goats/genetics , Growth Differentiation Factor 9/genetics , Growth Differentiation Factor 9/metabolism , Egypt , Prospective Studies , Epigenesis, Genetic
2.
Curr Issues Mol Biol ; 45(5): 4080-4099, 2023 May 06.
Article in English | MEDLINE | ID: mdl-37232729

ABSTRACT

The pathophysiology of several psychiatric diseases may entail disturbances in the hypothalamic-pituitary-adrenal (HPA) axis and metabolic pathways. Variations in how these effects present themselves may be connected to individual variances in clinical symptoms and treatment responses, such as the observation that a significant fraction of participants do not respond to current antipsychotic drugs. A bidirectional signaling pathway between the central nervous system and the gastrointestinal tract is known as the microbiota-gut-brain axis. The large and small intestines contain more than 100 trillion microbial cells, contributing to the intestinal ecosystem's incredible complexity. Interactions between the microbiota and intestinal epithelium can alter brain physiology and affect mood and behavior. There has recently been a focus on how these relationships impact mental health. According to evidence, intestinal microbiota may play a role in neurological and mental illnesses. Intestinal metabolites of microbial origin, such as short-chain fatty acids, tryptophan metabolites, and bacterial components that might stimulate the host's immune system, are mentioned in this review. We aim to shed some on the growing role of gut microbiota in inducing/manipulating several psychiatric disorders, which may pave the way for novel microbiota-based therapies.

3.
J Epidemiol Glob Health ; 13(2): 374-383, 2023 06.
Article in English | MEDLINE | ID: mdl-37202608

ABSTRACT

BACKGROUND: Cardiovascular diseases (CVDs) are considered a leading cause of death worldwide. Allelic variation in the CYP2C19 gene leads to a dysfunctional enzyme, and patients with this loss-of-function allele will have an impaired clopidogrel metabolism, which eventually results in major adverse cardiovascular events (MACE). Ischemic heart disease patients (n = 102) who underwent percutaneous cardiac intervention (PCI) followed by clopidogrel were enrolled in the present study. METHODS: The genetic variations in the CYP2C19 gene were identified using the TaqMan chemistry-based qPCR technique. Patients were followed up for 1 year to monitor MACE, and the correlations between the allelic variations in CYP2C19 and MACE were recorded. RESULTS: During the follow-up, we reported 64 patients without MACE (29 with unstable angina (UA), 8 with myocadiac infarction (MI), 1 patient with non-STEMI, and 1 patient with ischemic dilated cardiomyopathy (IDC)). Genotyping of CYP2C19 in the patients who underwent PCI and were treated with clopidogrel revealed that 50 patients (49%) were normal metabolizers for clopidogrel with genotype CYP2C19*1/*1 and 52 patients (51%) were abnormal metabolizers, with genotypes CYP2C19*1/*2 (n = 15), CYP2C19*1/*3 (n = 1), CYP2C19*1/*17 (n = 35), and CYP2C19*2/*17 (n = 1). Demographic data indicated that age and residency were significantly associated with abnormal clopidogrel metabolism. Moreover, diabetes, hypertension, and cigarette smoking were significantly associated with the abnormal metabolism of clopidogrel. These data shed light on the inter-ethnic variation in metabolizing clopidogrel based on the CYP2C19 allelic distribution. CONCLUSION: This study, along with other studies that address genotype variation of clopidogrel-metabolizing enzymes, might pave the way for further understanding of the pharmacogenetic background of CVD-related drugs.


Subject(s)
Cardiovascular Diseases , Myocardial Ischemia , Percutaneous Coronary Intervention , Humans , Clopidogrel/adverse effects , Clopidogrel/metabolism , Clopidogrel/therapeutic use , Cytochrome P-450 CYP2C19/genetics , Cytochrome P-450 CYP2C19/metabolism , Egypt/epidemiology , Myocardial Ischemia/genetics , Myocardial Ischemia/therapy , Myocardial Ischemia/chemically induced , Platelet Aggregation Inhibitors/adverse effects , Platelet Aggregation Inhibitors/metabolism , Platelet Aggregation Inhibitors/therapeutic use , Treatment Outcome
4.
Pharmaceuticals (Basel) ; 15(11)2022 Nov 13.
Article in English | MEDLINE | ID: mdl-36422526

ABSTRACT

Acute kidney injury is a heterogeneous set of disorders distinguished by a sudden decrease in the glomerular filtration rate, which is evidenced by an increase in the serum creatinine concentration or oliguria and categorized by stage and cause. It is an ever-growing health problem worldwide, with no reliable treatment. In the present study, we evaluated the role of Clitoria ternatea combined with mesenchymal stem cells in treating cisplatin-induced acute kidney injury in rats. Animals were challenged with cisplatin, followed by 400 mg/kg of Asian pigeonwing extract and/or mesenchymal stem cells (106 cells/150 g body weight). Kidney functions and enzymes were recorded, and histopathological sectioning was also performed. The expression profile of IL-1ß, IL-6, and caspase-3 was assessed using the quantitative polymerase chain reaction. The obtained data indicated that mesenchymal stem cells combined with the botanical extract modulated the creatinine uric acid and urea levels. Cisplatin increased the level of malondialdehyde and decreased the levels of both superoxide dismutase and glutathione; however, the dual treatment was capable of restoring the normal levels. Furthermore, all treatments modulated the IL-6, IL-1ß, and caspase-3 gene expression profiles. The obtained data shed some light on adjuvant therapy using C. ternatea and mesenchymal stem cells in treating acute kidney injury; however, further investigations are required to understand these agents' synergistic mechanisms fully. The total RNA was extracted from the control, the positive control, and all of the therapeutically treated animals. The expression profiles of the IL-6, IL-1ß, and caspase-3 genes were evaluated using the real-time polymerase chain reaction. Cisplatin treatment caused a significant upregulation in IL-6. All treatments could mitigate the IL-6-upregulating effect of cisplatin, with the mesenchymal stem cell treatment being the most effective. The same profile was observed in the IL-1ß and caspase-3 genes, except that the dual treatment (mesenchymal stem cells and the botanical extract) was the most effective in ameliorating the adverse effect of cisplatin; it downregulated caspase-3 expression better than the positive control.

5.
Pharmaceutics ; 14(8)2022 Jul 28.
Article in English | MEDLINE | ID: mdl-36015192

ABSTRACT

Nanomedicines have gained popularity due to their potential therapeutic applications, especially cancer treatment. Targeted nanoparticles can deliver drugs directly to cancer cells and enable prolonged drug release, reducing off-target toxicity and increasing therapeutic efficacy. However, translating nanomedicines from preclinical to clinical settings has been difficult. Rapid advancements in nanotechnology promise to enhance cancer therapies. Nanomedicine offers advanced targeting and multifunctionality. Nanoparticles (NPs) have several uses nowadays. They have been studied as drug transporters, tumor gene delivery agents, and imaging contrast agents. Nanomaterials based on organic, inorganic, lipid, or glycan substances and synthetic polymers have been used to enhance cancer therapies. This review focuses on polymeric nanoparticle delivery strategies for anticancer nanomedicines.

6.
Sci Rep ; 12(1): 2853, 2022 02 18.
Article in English | MEDLINE | ID: mdl-35181721

ABSTRACT

Corona Virus Disease 2019 (COVID-19) is a disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This pandemic has brought the world to a standstill and threatened human lives. Many methods are known to date to detect this virus. Due to their relative sensitivity, polymerase chain reaction (PCR)-based assays are the most frequently applied and considered the gold standard. However, due to the rapid mutation rate of the viral genome and the emergence of new variants, existing protocols need to be updated and improved. Designing a fast and accurate PCR-based assay is of great importance for the early detection of this virus and more efficient control of the spread of this disease. This study describes a fast, reliable, easy-to-use, and high-throughput multiplex SARS-CoV-2 RT-PCR detection method. The assay was designed to detect two viral genes (N and RdRP) and a human gene (RP) simultaneously. The performance and the sensitivity of the assay were tested in 28 SARS-CoV-2 positive samples and compared with commercial kits, which showed 100% positive percent agreement with a limit of detection (LOD) value of 1.40 and 0.81 copies/µL or 35.13 and 20.31 copies/reaction for RdRP and N genes, respectively. The current assay is found accurate, reliable, simple, sensitive, and specific. It can be used as an optimized SARS-CoV-2 diagnostic assay in hospitals, medical centers, and diagnostic laboratories as well as for research purposes.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , Coronavirus Nucleocapsid Proteins/genetics , Real-Time Polymerase Chain Reaction/methods , Ribonuclease P/genetics , SARS-CoV-2/isolation & purification , Humans
7.
Cancer Treat Res Commun ; 30: 100509, 2022.
Article in English | MEDLINE | ID: mdl-35026535

ABSTRACT

BACKGROUND: Lung cancer is the second most common cancer in both men and women, with an estimated 235,760 new cases and 131,880 deaths in 2021 in the US. Despite the modern therapies being available such as radiotherapy and chemotherapy, death rates are still increasing. Erlotinib (ERL) is one of the treatment options for lung cancer, although the probability for the patients to develop resistance to ERL constrains its reliability. The aim of the present study is to assess the synergetic effect of combining ERL with vorinostat (SAHA) on the progression of lung cancer cells. RESULTS: Adenocarcinoma alveolar basal epithelial cells (A549) were treated with either ERL, SAHA as mono drugs or with the combination of them for 24 h. Cytotoxicity assay and cell cycle analysis along with apoptosis detection were investigated. The expression profile of CDH1, TGF1, and MAPK was also assessed. Results showed an elevation in the apoptosis level in all treatments compared to WISH; the normal human amnion-derived cells. Furthermore, the treatments caused the cell cycle to arrest at G2/M, indicating its cytotoxic activity. CONCLUSION: The combination of SAHA and ERL significantly increased the level of apoptosis in lung cancer cells. Meanwhile, this combination treatment downregulated MAPK compared to the mono drugs and the control cells, suggesting the potential role of MAPK in regulating apoptosis and cell cycle machinery in lung cancer.

8.
Environ Sci Pollut Res Int ; 29(3): 4710-4721, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34414536

ABSTRACT

The increasing demand for food in the world has made sustainable agriculture practices even more important. Nanotechnology applications in many areas have also been used in sustainable agriculture in recent years for the purposes to improve plant yield, pest control, etc. However, ecotoxicology and environmental safety of nanoparticles must be evaluated before large-scale applications. This study comparatively explores the efficacy and fate of different iron oxide NPs (γ-Fe2O3-maghemite and Fe3O4-magnetite) on barley (Hordeum vulgare L.). Various NP doses (50, 100, and 200 mg/L) were applied to the seeds in hydroponic medium for 3 weeks. Results revealed that γ-Fe2O3 and Fe3O4 NPs significantly improved the germination rate (~37% for γ-Fe2O3; ~63% for Fe3O4), plant biomass, and pigmentation (P < 0.005). Compared to the control, the iron content of tissues gradually raised by the increasing NPs doses revealing their translocation, which is confirmed by VSM analysis as well. The findings suggest that γ-Fe2O3 and Fe3O4 NPs have great potential to improve barley growth. They can be recommended for breeding programs as nanofertilizers. However, special care should be paid before the application due to their unknown effects on other living beings.


Subject(s)
Hordeum , Magnetite Nanoparticles , Nanoparticles , Ferric Compounds , Ferrosoferric Oxide , Plant Roots
9.
Saudi J Biol Sci ; 28(10): 5621-5630, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34588873

ABSTRACT

Red palm weevil (RPW) is the most aggressive date palm parasite in the Middle East, and especially in the Gulf region. Originated in Southeast Asia, this pest has been detected in the entire Arabian Peninsula, North Africa, Italy, Latin America, and other territories. It is important to local from obtrusive species, which help augmenting the pest control strategies. In the present study we collected 21 RPW samples from 21 different locations in the Eastern Province, Saudi Arabia to genetically characterize them using RAPD- and ISSR-based clustering. Unweighted pair group method with arithmetic mean (UPGMA) for RAPD data categorized the 21 accessions into seven distinct groups, with Al-Oyonn and Juaymah each categorized in solitary group, meanwhile, UPGMA for ISSR indicated six different groups, with Battaliyah, Al-Oyoon, and Juaymah each assigned to a separate group. Combining RAPD and ISSR data revealed two accession; Al-Oyoon and Juaymah that might be considered obtrusive species. Based on distance calculations, we proposed that the potential origins of RPW collected from these locations are Iran and the United Arab Emirates. However, this assumption needs further studies for confirmation.

10.
Cancers (Basel) ; 13(12)2021 Jun 20.
Article in English | MEDLINE | ID: mdl-34203051

ABSTRACT

High-grade serous ovarian cancer (HGSOC) is the most lethal gynecological malignancy among women. Several obstacles impede the early diagnosis and effective treatment options for ovarian cancer (OC) patients, which most importantly include the development of platinum-drug-resistant strains. Currently, extensive efforts are being put into the development of strategies capable of effectively circumventing the physical and biological barriers present in the peritoneal cavity of metastatic OC patients, representing a late stage of gastrointestinal and gynecological cancer with an extremely poor prognosis. Naturally occurring extracellular vesicles (EVs) have been shown to play a pivotal role in progression of OC and are now being harnessed as a delivery vehicle for cancer chemotherapeutics. However, there are limitations to their clinical application due to current challenges in their preparation techniques. Intriguingly, there is a recent drive towards the use of engineered synthetic EVs for the delivery of chemotherapeutics and RNA interference therapy (RNAi), as they show the promise of overcoming the obstacles in the treatment of OC patients. This review discusses the therapeutic application of EVs in OC and elucidates the potential use of engineered EV-mimetic nanoparticles as a delivery vehicle for RNAi therapy and other chemotherapeutics, which would potentially improve clinical outcomes of OC patients.

11.
Int J Gen Med ; 14: 3271-3280, 2021.
Article in English | MEDLINE | ID: mdl-34267545

ABSTRACT

BACKGROUND: The sequelae of COVID-19 pneumonia on pulmonary function and airways inflammation are still an area of active research. OBJECTIVE: This research aimed to explore the long-term impact of COVID-19 pneumonia on the lung function after three months from recovery. METHODS: Fifty subjects (age 18-60 years) were recruited and classified into two groups: the control group (30 subjects) and the post-COVID-19 pneumonia group (20 patients). Pulmonary function tests, spirometry, body plethysmography [lung volumes and airway resistance (Raw)], diffusion capacity for carbon monoxide (DLCO), and fractional exhaled nitric oxide (FeNO), were measured after at least 3 months post-recovery. RESULTS: Significant reduction in total lung capacity (TLC), forced vital capacity (FVC), forced expiratory volume (FEV1), FEV1/FEV, and diffusing capacity for carbon monoxide (DLCO) was observed in post-COVID-19 subjects compared to controls. Restrictive lung impairment was observed in 50% of post-COVID-19 cases (n = 10) compared to 20% in the control group (n = 6, P = 0.026). In addition, mild diffusion defect was detected in 35% (n = 7) of the post-COVID-19 group compared to 23.3% (n = 7) in the controls (P = 0.012). CONCLUSION: COVID-19 pneumonia has an impact on the lung functions in terms of restrictive lung impairment and mild diffusion defect after three months from recovery. Therefore, a long-term follow-up of the lung function in post-COVID-19 survivors is recommended.

12.
Int J Mol Cell Med ; 10(1): 45-55, 2021.
Article in English | MEDLINE | ID: mdl-34268253

ABSTRACT

Oral squamous cell carcinoma (OSCC) is the most common malignant epithelial cancer occurring in the oral cavity, where it accounts for nearly 90% of all oral cavity neoplasms. The c-MYC transcription factor plays an important role in the control of programmed cell death, normal-to-malignant cellular transformation, and progression of the cell cycle. However, the role of c-MYC in controlling the proliferation of OSCC cells is not well known. In this study, c-MYC gene was silenced in OSCC cells (ORL-136T), and molecular and cellular responses were screened. To identify the pathway through which cell death occurred, cytotoxicity, colony formation, western blotting, caspase-3, and RT-qPCR analyzes were performed. Results indicated that knockdown of c-MYC has resulted in a significant decrease in the cell viability and c-MYC protein synthesis. Furthermore, caspase-3 was shown to be upregulated leading to apoptosis via the intrinsic pathway. In response to c-MYC knockdown, eight cell proliferation-associated genes showed variable expression profiles: c-MYC (-21.2), p21 (-2.5), CCNA1(1.8), BCL2 (-1.4), p53(-3.7), BAX(1.1), and CYCS (19.3). p27 expression was dramatically decreased in c-MYC-silenced cells in comparison with control, and this might indicate that the relative absence of c-MYC triggered intrinsic apoptosis in OSCC cells via p27 and CYCS.

13.
Genes Environ ; 43(1): 15, 2021 Apr 29.
Article in English | MEDLINE | ID: mdl-33926574

ABSTRACT

CRISPR/Cas9 has revolutionized genome-editing techniques in various biological fields including human cancer research. Cancer is a multi-step process that encompasses the accumulation of mutations that result in the hallmark of the malignant state. The goal of cancer research is to identify these mutations and correlate them with the underlying tumorigenic process. Using CRISPR/Cas9 tool, specific mutations responsible for cancer initiation and/or progression could be corrected at least in animal models as a first step towards translational applications. In the present article, we review various novel strategies that employed CRISPR/Cas9 to treat breast cancer in both in vitro and in vivo systems.

14.
PLoS One ; 16(4): e0250942, 2021.
Article in English | MEDLINE | ID: mdl-33914804

ABSTRACT

The outbreak of the new human coronavirus SARS-CoV-2 (also known as 2019-nCoV) continues to increase globally. The real-time reverse transcription polymerase chain reaction (rRT-PCR) is the most used technique in virus detection. However, possible false-negative and false-positive results produce misleading consequences, making it necessary to improve existing methods. Here, we developed a multiplex rRT-PCR diagnostic method, which targets two viral genes (RdRP and E) and one human gene (RP) simultaneously. The reaction was tested by using pseudoviral RNA and human target mRNA sequences as a template. Also, the protocol was validated by using 14 clinical SARS-CoV-2 positive samples. The results are in good agreement with the CDC authorized Cepheid`s Xpert® Xpress SARS-CoV-2 diagnostic system (100%). Unlike single gene targeting strategies, the current method provides the amplification of two viral regions in the same PCR reaction. Therefore, an accurate SARS-CoV-2 diagnostic assay was provided, which allows testing of 91 samples in 96-well plates in per run. Thanks to this strategy, fast, reliable, and easy-to-use rRT-PCR method is obtained to diagnose SARS-CoV-2.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , Multiplex Polymerase Chain Reaction/methods , RNA, Viral/genetics , SARS-CoV-2/genetics , COVID-19/virology , COVID-19 Nucleic Acid Testing/standards , Humans , Limit of Detection , Multiplex Polymerase Chain Reaction/standards , RNA, Viral/analysis , SARS-CoV-2/isolation & purification , Sensitivity and Specificity
15.
Heliyon ; 7(1): e06105, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33553761

ABSTRACT

Gut microbiota has become an issue of great importance recently due to its major role in autism spectrum disorder (ASD). Over the past three decades, there has been a sustained research activity focused to explain the actual mechanism by which gut microbiota triggers/develops autism. Several genetic and epigenetic factors are involved in this disorder, with epigenetics being the most active area of research. Although the constant investigation and advancements, epigenetic implications in ASD still need a deeper functional/causal analysis. In this review, we describe the major gut microbiota metabolites and how they induce epigenetic changes in ASD along with interactions through the gut-brain axis.

16.
Cancer Treat Res Commun ; 27: 100308, 2021.
Article in English | MEDLINE | ID: mdl-33465562

ABSTRACT

Cancer is the second leading cause of death globally, where nearly 1 in 6 deaths is due to cancer, with 70% of all deaths from cancer occur in low- and middle-income countries. The overall lifetime risk of developing colorectal cancer is 1 in 22 in men and 1 in 24 in women. In this work, we aimed to evaluate the role of temozolomide (TMZ) in controlling colon cancer cells (CRC) via regulating the miRnome. For this purpose, CRC cells (CaCo-2) were treated with 50 µM of TMZ for 48 h. Cell count using trypan test and cytotoxicity using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) were carried out, and the obtained results indicated a significant decrease in cell count (p = 0.029), and in the cell viability (p = 0.0019). Cell cycle analysis was performed using flow cytometer, and results showed that TMZ arrested CRC cells at G2/M phase. A total of 84 miRNAs were profiled using real time PCR, and the results indicated that TMZ treatment upregulated 15 of 84 miRNAs panel profiled and downregulated the rest. The TMZ-upregulated/downregulated miRNAs were predicted to interact with many epigenetic-related proteins i.e., DNMTs, EZH2, and SUV31H1. This study shed some light on the role of TMZ in regulating the miRnome of CRC and hence in different types of cancers.


Subject(s)
Colorectal Neoplasms/drug therapy , MicroRNAs/metabolism , Temozolomide/pharmacology , Caco-2 Cells , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Down-Regulation/drug effects , Epigenesis, Genetic , G2 Phase Cell Cycle Checkpoints/drug effects , G2 Phase Cell Cycle Checkpoints/genetics , Gene Expression Regulation, Neoplastic/genetics , Humans , Temozolomide/therapeutic use , Up-Regulation/drug effects
17.
F1000Res ; 10: 1199, 2021.
Article in English | MEDLINE | ID: mdl-37901256

ABSTRACT

Nigella sativa ( N. sativa) is traditionally used as an immune enhancer in different communities. The aim of this study was to evaluate the effect of N. sativa on immunity related parameters in young healthy subjects. This study was a double blind, randomized, placebo controlled clinical trial. Fifty-two healthy subjects (48 male and 4 female) 18-25 years old were enrolled in the study. They were randomly divided into four groups; the first received charcoal capsules and served as controls and the other three received 0.5, 1 g, and 2 g of powdered N. sativa capsules, respectively. Two blood samples were obtained from all participant, before initiation of the trial and at the end of the four weeks intervention. One sample was used for routine health screening by evaluating liver and renal functions as well as complete blood count and differential. The second sample was used to measure certain cytokines including; IL-1, IL-4, IL-6, IL-10, and TNF. A third and fourth samples were obtained from the last cohort of subjects before and after treatment; the third was used for measuring immunoglobulins and CD profile and the fourth for evaluating certain gene expressions (INF-γ, NF-κ-B, TNF-α, IL-1ß, IL-13, IL-8, and IL-6). Only 1 g dose of N. sativa produced a significant elevation in total lymphocyte count, CD3+ and CD4+ counts. One gram N. sativa increased the absolute lymphocyte count from 1850±0.24 to 2170±0.26 (p=0.008), CD3+ from 1184.4±75.60 to 1424±114.51 (p=0.009), and CD4+ from 665.6±141.66 to 841±143.36 (p=0.002).  This elevation in T cells was lost by increasing the dose of N. sativa to 2g. The rest of the parameters were not changed significantly in all doses. The results show a promising immunopotentiation effect of N. sativa by elevating helper T cells and the optimum dose for young age group seems to be 1 g.


Subject(s)
Nigella sativa , Adolescent , Adult , Female , Humans , Male , Young Adult , Healthy Volunteers , Immune System , Interleukin-6 , Phytotherapy/methods
18.
Crit Rev Oncol Hematol ; 157: 103196, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33307198

ABSTRACT

The objective of this review is to elucidate the role of miRNAs in triple negative breast cancer (TNBC). To achieve our goal, we searched databases such as PubMed, ScienceDirect, Springer, Web of Science and Scopus. We retrieved up to 1233 articles, based a rigorous selection criterion, only 197 articles were extensively reviewed. We selected articles only addressing TNBC, but not other types of breast cancer, with the employed approach being miRNA analysis and/or profiling. Our extensive review resulted in grouping of miRNAs into categories in which specific members of miRNAs have roles in specific mechanism in TNBC i.e., carcinogenesis, invasion, metastasis, apoptosis, diagnosis, prognosis, and treatment. TNBC is an aggressive subtype of breast cancer; therefore, different approaches for accurate diagnosis, prognosis and treatment are needed. In this review we summarize the up-to-date miRNA profiling, prognostic, and therapeutic findings that add to the route of controlling TNBC.


Subject(s)
MicroRNAs , Triple Negative Breast Neoplasms , Apoptosis , Biomarkers, Tumor/genetics , Carcinogenesis , Gene Expression Regulation, Neoplastic , Humans , MicroRNAs/genetics , Prognosis , Triple Negative Breast Neoplasms/diagnosis , Triple Negative Breast Neoplasms/genetics
19.
3 Biotech ; 10(9): 407, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32904337

ABSTRACT

Breast cancer is a group of diseases in which cells divide out of controlled, typically resulting in a mass. Erlotinib is targeted cancer drug which functions as an inhibitor of the epidermal growth factor receptor (EGFR) tyrosine kinase. It is used mainly to treat of non-small cell lung cancer patients and has an action against pancreatic cancer. Vorinostat (aka suberanilohydroxamic acid) is an inhibitor of histone deacetylases (HDAC), which has an epigenetic modulation activity. It is used to treat cutaneous T cell lymphoma. In the present study, the erlotinib (ERL) and vorinostat (SAHA) loaded TiO2 nanoparticles (NPs) were used for the treatment of the breast cancer cells (MDA-MB-231 and MCF-7) and human cancerous amniotic cells (WISH). Cell count and viability were negatively affected in all treatments compared to normal cells and bare TiO2 NPs. Apoptosis results indicated a significant increase in the total apoptosis in all treatments compared with control cells. ERL- and SAHA-loaded TiO2 NPs treatments arrested breast cancer cells at G2/M phase, which indicate the cytotoxic effect of these treatment. Partner and localizer of BRCA2 (PALB2) gene expression was assessed using qPCR. The results indicate that PLAB2 was upregulated in ERL- and SAHA-loaded TiO2 NPs compared with control cells and can be used as nanocarrier for chemotherapy drugs. However, this conclusion necessitates further confirmative investigation.

20.
Indian J Dermatol Venereol Leprol ; 86(5): 475-481, 2020.
Article in English | MEDLINE | ID: mdl-32769310

ABSTRACT

Although malignant melanoma is not the most common type of skin cancer, it is the most aggressive and fatal type as it can spread out and metastasize progressively. Early diagnosis and interventions lead to improved patient survival. The incidence rate of melanoma is dramatically increasing, with a few newer therapeutic options available. Therefore, establishing a reliable genetic or epigenetic-based diagnostic and prognostic tool is really important. In this review, we highlight the underlying epigenetic mechanisms involved in melanoma. Furthermore, the epigenetic-based therapeutic options will be also discussed. One of the key areas of discussion will be microRNA which is a small, single-stranded RNA molecule that serves as a regulatory element and found to regulate nearly a third of human genes. MicroRNAs play a role in a wide range of diseases including cancer. In malignant cells, it regulates cell proliferation, invasion, and metastasis.


Subject(s)
Epigenesis, Genetic/genetics , Genetic Therapy/methods , Melanoma/genetics , Mutation/genetics , Skin Neoplasms/genetics , DNA Methylation/genetics , Humans , Melanoma/therapy , Skin Neoplasms/therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...