Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
2.
Front Neuroanat ; 18: 1382036, 2024.
Article in English | MEDLINE | ID: mdl-38899230

ABSTRACT

Introduction: The amygdala is a noticeable bilateral structure in the medial temporal lobe and it is composed of at least 13 different nuclei and cortical areas, subdivided into the deep nuclei, the superficial nuclei, and the remaining nuclei which contain the central nucleus (CeA). CeA mediates the behavioral and physiological responses associated with fear and anxiety through pituitary-adrenal responses by modulating the liberation of the hypothalamic Corticotropin Releasing Factor/Hormone. Methods: Five dolphins of three different species, belonging to the family Delphinidae (three striped dolphins, one common dolphin, and one Atlantic spotted dolphin), were used for this study. For a precise overview of the CeA's structure, thionine staining and the immunoperoxidase method using calbindin D-28k were employed. Results: CeA extended mainly dorsal to the lateral nucleus and ventral to the striatum. It was medial to the internal capsule and lateral to the optic tract and the medial nucleus of the amygdala. Discussion: The dolphin amygdaloid complex resembles that of primates, including the subdivision, volume, and location of the CeA.

3.
Front Neuroanat ; 18: 1321025, 2024.
Article in English | MEDLINE | ID: mdl-38379680

ABSTRACT

Introduction: The entorhinal cortex has been shown to be involved in high-level cognitive functions in terrestrial mammals. It can be divided into two main areas: the lateral entorhinal area (LEA) and the medial entorhinal area (MEA). Understanding of its structural organization in cetaceans is particularly important given the extensive evidence for their cognitive abilities. The present study describes the cytoarchitectural and immunohistochemical properties of the entorhinal cortex of the bottlenose dolphin (Tursiops truncatus, Montagu, 1821), perhaps the most studied cetacean species and a paradigm for dolphins and other small cetaceans. Methods: Four bottlenose dolphins' entorhinal cortices were processed. To obtain a precise overview of the organization of the entorhinal cortex we used thionin staining to study its laminar and regional organization, and immunoperoxidase technique to investigate the immunohistochemical distribution of three most commonly used calcium-binding proteins (CBPs), calbindin D-28k (CB), calretinin (CR) and parvalbumin (PV). Entorhinal cortex layers thickness were measured, morphological and morphometric analysis for each layer were conducted and statistically compared. Results: Six layers in both the LEA and MEA were identified. The main difference between the LEA and the MEA is observed in layers II and III: the neurons in layer II of the LEA were denser and larger than the neurons in layer II of MEA. In addition, a relatively cell-free zone between layers II and III in LEA, but not in MEA, was observed. The immunohistochemical distribution of the three CBPs, CB, CR and PV were distinct in each layer. The immunostaining pattern of CR, on one side, and CB/PV, on the other side, appeared to be distributed in a complementary manner. PV and CB immunostaining was particularly evident in layers II and III, whereas CR immunoreactive neurons were distributed throughout all layers, especially in layers V and VI. Immunoreactivity was expressed by neurons belonging to different morphological classes: All CBPs were expressed in non-pyramidal neurons, but CB and CR were also found in pyramidal neurons. Discussion: The morphological characteristics of pyramidal and non-pyramidal neurons in the dolphin entorhinal cortex are similar to those described in the entorhinal cortex of other species, including primates and rodents. Interestingly, in primates, rodents, and dolphins, most of the CBP-containing neurons are found in the superficial layers, but the large CR-ir neurons are also abundant in the deep layers. Layers II and III of the entorhinal cortex contain neurons that give rise to the perforant pathway, which conveys most of the cortical information to the hippocampal formation. From the hippocampal formation, reciprocal projections are directed back to the deep layer of the entorhinal cortex, which distributes the information to the neocortex and subcortical area. Our data reveal that in the dolphin entorhinal cortex, the three major CBPs label morphologically heterogeneous groups of neurons that may be involved in the information flow between entorhinal input and output pathways.

4.
Biology (Basel) ; 12(10)2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37887029

ABSTRACT

The hypothalamus is the body's control coordinating center. It is responsible for maintaining the body's homeostasis by directly influencing the autonomic nervous system or managing hormones. Beaked whales are the longest divers among cetaceans and their brains are rarely available for study. Complete hypothalamic samples from a female Cuvier's beaked whale and a male Blainville's beaked whale were processed to investigate the paraventricular (PVN) and supraoptic (SON) nuclei, using immunohistochemical staining against vasopressin. The PVN occupied the preoptic region, where it reached its maximum size, and then regressed in the anterior or suprachiasmatic region. The SON was located from the preoptic to the tuberal hypothalamic region, encompassing the optical structures. It was composed of a retrochiasmatic region (SONr), which bordered and infiltrated the optic tracts, and a principal region (SONp), positioned more medially and dorsally. A third vasopressin-positive nucleus was also detected, i.e., the suprachiasmatic nucleus (SCN), which marked the end of the SON. This is the first description of the aforementioned nuclei in beaked whales-and in any marine mammals-as well as their rostro-caudal extent and immunoreactivity. Moreover, the SCN has been recognized for the first time in any marine mammal species.

5.
Vet Sci ; 9(10)2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36288139

ABSTRACT

Neuromelanin (NM) is a dark polymer pigment that is located mostly in the human substantia nigra, and in the locus ceruleus, referred to as "the blue spot". NM increases linearly with age, and has been described mainly in the human brain; however, it also occurs in the neurons of monkeys, horses, giraffes, cattle, sheep, goats, dogs, rats, and even in frogs. While in most of these mammals NM shows the histochemical and ultrastructural features typical of lipofuscins, human NM is confined within cytoplasmic organelles that are surrounded by a double membrane, suggesting an autophagic origin. In a study on the morphology of the locus ceruleus of the family Delphinidae, the presence of a variable quantity of NM in the interior of locus ceruleus neurons was observed for the first time; meanwhile, nothing is known about its ultrastructure and composition. Transmission electron microscopy demonstrated in two toothed whales-an Atlantic spotted dolphin (Stenella frontalis; family Delphinidae) and a Blainville's beaked whale (Mesoplodon densirostris; family Ziphiidae)-the presence of melanin granules associated with lipid droplets and membranes that were very similar to that of human NM. The relationship between NM and neuronal vulnerability must be studied in depth, and cetaceans may offer a new natural-spontaneous comparative model for the study of NM and its implication in neurodegenerative diseases.

6.
Vet Sci ; 9(8)2022 Aug 11.
Article in English | MEDLINE | ID: mdl-36006339

ABSTRACT

This study analyses the aortic wall structure in nine cetacean species with deep diving habits belonging to four Odontoceti families: Ziphiidae, Kogiidae, Physteridae, and Delphinidae. Samples of ascending, thoracic and abdominal aorta were processed for histological and morphometric studies. The elastic component was higher in the proximal aortic segments, and the muscular elements increased distally in all cases. Morphometric analyses showed that all families presented a decrease in the thickness of the arterial wall and the tunica media along the aorta. The reduction was dramatic between ascending and thoracic aorta in the Physeteridae specimens; meanwhile, the other three families showed a more uniform decrease between the ascending, thoracic and abdominal aorta. The decline was not correlated with a reduced elastic or lamellar unit thickness but with a loss of lamellar units. The organization of the elements in the aortic wall did not show essential modifications between the four families, resembling the structure described previously in the shallow and intermediate diving dolphins. Our findings support that the difference in the morphometric characteristics of the different segments in the aortic wall is likely related to the diving habit more than the absolutes values of any other parameter.

7.
Animals (Basel) ; 12(9)2022 Apr 29.
Article in English | MEDLINE | ID: mdl-35565575

ABSTRACT

Herpesviruses are causative agents of meningitis and encephalitis in cetaceans, which are among the main leading known natural causes of death in these species. Brain samples from 103 stranded cetaceans were retrospectively screened for the presence of herpesvirus DNA in the brain. Molecular detection of Cetacean Morbillivirus was performed in HV positive brain cases. Histopathologic evaluation of brain samples included the presence or absence of the following findings (n = 7): meningitis, perivascular cuffings, microgliosis, intranuclear inclusion bodies, malacia, neuronal necrosis and neurophagic nodules, and haemorrhages. Histological evidence of the involvement of other etiological agents led to complementary analysis. We detected the presence of alpha and gamma-HVs in 12 out of 103 (11.6%) brain samples from stranded cetaceans of five different species: one bottlenose dolphin, six striped dolphins, three Atlantic spotted dolphins, one Cuvier's beaked whale, and one common dolphin. Pathogenic factors such as viral strain, age, sex, and the presence of co-infections were analysed and correlated with the brain histopathological findings in each case. Herpesvirus was more prevalent in males, juveniles, and calves and a 41.6% incidence of co-infections in the brain was detected in our study: three with Dolphin Morbillivirus, one with Staphilococcus aureus septicaemia and one with Brucella spp.

8.
Vet Sci ; 9(2)2022 Jan 21.
Article in English | MEDLINE | ID: mdl-35202291

ABSTRACT

Cetacean brain sampling may be an arduous task due to the difficulty of collecting and histologically preparing such rare and large specimens. Thus, one of the main challenges of working with cetaceans' brains is to establish a valid methodology for an optimal manipulation and fixation of the brain tissue, which allows the samples to be viable for neuroanatomical and neuropathological studies. With this in view, we validated a methodology in order to preserve the quality of such large brains (neuroanatomy/neuropathology) and at the same time to obtain fresh brain samples for toxicological, virological, and microbiological analysis (neuropathology). A fixation protocol adapted to brains, of equal or even three times the size of human brains, was studied and tested. Finally, we investigated the usefulness of a panel of 20 antibodies (neuromarkers) associated with the normal structure and function of the brain, pathogens, age-related, and/or functional variations. The sampling protocol and some of the 20 neuromarkers have been thought to explore neurodegenerative diseases in these long-lived animals. To conclude, many of the typical measures used to evaluate neuropathological changes do not tell us if meaningful cellular changes have occurred. Having a wide panel of antibodies and histochemical techniques available allows for delving into the specific behavior of the neuronal population of the brain nuclei and to get a "fingerprint" of their real status.

9.
Front Vet Sci ; 7: 567258, 2020.
Article in English | MEDLINE | ID: mdl-33195545

ABSTRACT

Estimating cetacean interactions with fishery activities is challenging. Bycatch and chronic entanglements are responsible for thousands of cetacean deaths per year globally. This study represents the first systematic approach to the postmortem investigation of fishery interactions in stranded cetaceans in the Canary Islands. We retrospectively studied 586 cases necropsied between January 2000 and December 2018. Of the cases with a known cause of death, 7.4% (32/453) were due to fishery interactions, and the Atlantic spotted dolphin (Stenella frontalis) was the most affected species [46.9% (15/32)]. Three types of fishery interactions were recognized by gross findings: bycatch [65.6% (21/32)], chronic entanglements [18.8% (6/32)], and fishermen aggression [15.6% (5/32)]. Among the bycaught cases, we differentiated the dolphins that died because of ingestion of longline hooks [23.8% (5/21)] from those that died because of fishing net entrapments [76.2% (16/21)], including dolphins that presumably died at depth due to peracute underwater entrapment (PUE) [37.5% (6/16)], dolphins that were hauled out alive and suffered additional trauma during handling [43.8% (7/16)], and those that were released alive but became stranded and died because of fishery interactions [18.7% (3/16)]. Gross and histologic findings of animals in each group were presented and compared. The histological approach confirmed gross lesions and excluded other possible causes of death. Cetaceans in good-fair body condition and shallow diving species were significantly more affected by fishery interactions, in agreement with the literature. Low rates of fishery interactions have been described, compared with other regions. However, within the last few years, sightings of entangled live whales, especially the minke whale (Balaenoptera acutorostrata) and Bryde's whale (B. edeni), have increased. This study contributes to further improvement of the evaluation of different types of fishery interactions and may facilitate the enforcement of future conservation policies to preserve cetacean populations in the Canary Islands.

10.
Biol Open ; 9(11)2020 11 05.
Article in English | MEDLINE | ID: mdl-33037014

ABSTRACT

Hypoxia could be a possible risk factor for neurodegenerative alterations in cetaceans' brain. Among toothed whales, the beaked whales are particularly cryptic and routinely dive deeper than 1000 m for about 1 h in order to hunt squids and fishes. Samples of frontal cerebral and cerebellar cortex were collected from nine animals, representing six different species of the suborder Odontoceti. Immunohistochemical analysis employed anti-ß-amyloid (Aß) and anti-neurofibrillary tangle (NFT) antibodies. Six of nine (67%) animals showed positive immunolabeling for Aß and/or NFT. The most striking findings were intranuclear Aß immunopositivity in cerebral cortical neurons and NFT immunopositivity in cerebellar Purkinje neurons with granulovacuolar degeneration. Aß plaques were also observed in one elderly animal. Herein, we present immunohistopathological findings classic of Alzheimer's and other neurodegenerative diseases in humans. Our findings could be linked to hypoxic phenomena, as they were more extensive in beaked whales. Despite their adaptations, cetaceans could be vulnerable to sustained and repetitive brain hypoxia.


Subject(s)
Amyloid beta-Peptides/metabolism , Cerebellum/metabolism , Cerebral Cortex/metabolism , Whales/metabolism , tau Proteins/metabolism , Aging/metabolism , Animals , Biomarkers , Cerebellum/pathology , Cerebral Cortex/pathology , Hypoxia/metabolism , Immunohistochemistry , Nerve Degeneration/genetics , Nerve Degeneration/metabolism , Nerve Degeneration/pathology , Neurons/metabolism , Phosphorylation
11.
Sci Rep ; 10(1): 8251, 2020 05 19.
Article in English | MEDLINE | ID: mdl-32427895

ABSTRACT

Fat embolism is the mechanical blockage of blood vessels by circulating fat particles. It is frequently related to traumas involving soft tissues and fat-containing bones. Different techniques have been used for decades to demonstrate histologically fat emboli, being the extremely toxic post-fixation with osmium tetroxide one of the most used techniques in the last decades. In the present study, the osmium tetroxide technique was compared qualitatively and quantitatively, for the first time, with chromic acid and Oil Red O frozen techniques  for histological fat emboli detection in the lungs of eight sperm whales that died due to ship strikes. This was also the first time that chromic acid technique was tested in cetaceans. Results showed that the three techniques were valuable for the histological detection of fat embolism in cetaceans, even when tissues presented advanced autolysis and had been stored in formaldehyde for years. Although quantitative differences could not be established, the Oil Red O frozen technique showed the lowest quality for fat emboli staining. On the contrary, the chromic acid technique was proven to be a good alternative to osmium tetroxide due to its slightly lower toxicity, its equivalent or even superior capacity of fat emboli detection, and its significantly lower economic cost.


Subject(s)
Embolism, Fat/veterinary , Histological Techniques/methods , Lung/blood supply , Pulmonary Embolism/veterinary , Animals , Cetacea/metabolism , Embolism, Fat/pathology , Lung/chemistry , Lung/pathology , Pulmonary Embolism/pathology , Staining and Labeling
12.
Animals (Basel) ; 10(4)2020 Apr 14.
Article in English | MEDLINE | ID: mdl-32295193

ABSTRACT

Cetaceans greatly depend on their hearing system to perform many vital activities. The spiral ganglion is an essential component of the auditory pathway and can even be associated with injuries caused by anthropogenic noise. However, its anatomical location, characterized by surrounding bony structures, makes the anatomical and anatomopathological study of the spiral ganglion a difficult task. In order to obtain high-quality tissue samples, a perfect balance between decalcification and the preservation of neural components must be achieved. In this study, different methodologies for spiral ganglion sample preparation and preservation were evaluated. Hydrochloric acid had the shortest decalcification time but damaged the tissue extensively. Both formic acid and EDTA decalcification solutions had a longer decalcification time but exhibited better preservation of the neurons. However, improved cell morphology and staining were observed on ears pretreated with EDTA solution. Therefore, we suggest that decalcifying methodologies based on EDTA solutions should be used to obtain the highest quality samples for studying cell morphology and antigenicity in cetacean spiral ganglion neurons.

13.
BMC Vet Res ; 15(1): 353, 2019 Oct 21.
Article in English | MEDLINE | ID: mdl-31638986

ABSTRACT

BACKGROUND: Brucella spp. isolation is increasingly reported in cetaceans, although associated pathologies, including lesions of the musculoskeletal and nervous systems, are less frequently described. Concerning the nervous system, Brucella sp. infection causing meningitis, meningoencephalitis or meningoencephalomyelitis have been extensively reported in striped dolphins (Stenella coeruleoalba), and less frequently in other cetacean species. CASE PRESENTATION: A juvenile female common bottlenose dolphin (Tursiops truncatus) was found stranded alive in Lanzarote (Canary Islands, Spain) in 2005, but died shortly after. On physical examination, the dolphin showed a moderate body condition and was classified as code 2 (fresh dead) at the time of necropsy. The main gross findings were severe multiorgan parasitism, thickened and congested leptomeninges, and (sero)fibrino-suppurative and proliferative arthritis of the shoulder joint. Histopathological examination revealed the distinct features of a sub-acute systemic disease associated with Cetacean Morbillivirus (CeMV) infection. However, brain lesions diverged from those reported in systemic CeMV infection. This led to suspect that there was a coinfecting pathogen, based on the characteristics of the inflammatory response and the lesion distribution pattern in the central nervous system. Brucella sp. was detected in the brain tissue by PCR and Brucella antigen was demonstrated by immunohistochemistry in the brain and shoulder joint lesions. CONCLUSIONS: The zoonotic potential of marine mammal strains of Brucella has been demonstrated both in natural and laboratory conditions. In this study, PCR detected Brucella sp. in the brain of a common bottlenose dolphin stranded in the Canary Islands; the dolphin was also co-infected with CeMV. This is the first detection of Brucella sp. infection in a stranded cetacean in this archipelago. Therefore, we stress the importance of taking adequate measures during the handling of these species to prevent the transmissions of the infection to humans.


Subject(s)
Bottle-Nosed Dolphin , Brain/microbiology , Brucellosis/veterinary , Meningoencephalitis/veterinary , Animals , Brucella , Female , Meningoencephalitis/microbiology , Polymerase Chain Reaction/veterinary , Spain
14.
Front Immunol ; 10: 485, 2019.
Article in English | MEDLINE | ID: mdl-30936878

ABSTRACT

Cetacean morbillivirus (CeMV; Paramyxoviridae) causes epizootic and interepizootic fatalities in odontocetes and mysticetes worldwide. Studies suggest there is different species-specific susceptibility to CeMV infection, with striped dolphins (Stenella coeruleoalba), bottlenose dolphins (Tursiops truncatus), and Guiana dolphins (Sotalia guianensis) ranking among the most susceptible cetacean hosts. The pathogenesis of CeMV infection is not fully resolved. Since no previous studies have evaluated the organ-specific immunopathogenetic features of CeMV infection in tissues from infected dolphins, this study was aimed at characterizing and comparing immunophenotypic profiles of local immune responses in lymphoid organs (lymph nodes, spleen), lung and CNS in CeMV-molecularly (RT-PCR)-positive cetaceans from Western Mediterranean, Northeast-Central, and Southwestern Atlantic. Immunohistochemical (IHC) analyses targeted molecules of immunologic interest: caspase 3, CD3, CD20, CD57, CD68, FoxP3, MHCII, Iba1, IFNγ, IgG, IL4, IL10, lysozyme, TGFß, and PAX5. We detected consistent CeMV-associated inflammatory response patterns. Within CNS, inflammation was dominated by CD3+ (T cells), and CD20+ and PAX5+ (B cells) lymphocytes, accompanied by fewer Iba1+, CD68+, and lysozyme+ histiocytes, mainly in striped dolphins and bottlenose dolphins. Multicentric lymphoid depletion was characterized by reduced numbers of T cells and B cells, more pronounced in Guiana dolphins. Striped dolphins and bottlenose dolphins often had hyperplastic (regenerative) phenomena involving the aforementioned cell populations, particularly chronically infected animals. In the lung, there was mild to moderate increase in T cells, B cells, and histiocytes. Additionally, there was a generalized increased expression of caspase 3 in lymphoid, lung, and CNS tissues. Apoptosis, therefore, is believed to play a major role in generalized lymphoid depletion and likely overt immunosuppression during CeMV infection. No differences were detected regarding cytokine immunoreactivity in lymph nodes, spleen, and lung from infected and non-infected dolphins by semiquantitative analysis; however, there was striking immunoreactivity for IFNγ in the CNS of infected dolphins. These novel results set the basis for tissue-specific immunophenotypic responses during CeMV infection in three highly susceptible delphinid species. They also suggest a complex interplay between viral and host's immune factors, thereby contributing to gain valuable insights into similarities, and differences of CeMV infection's immunopathogenesis in relation to body tissues, CeMV strains, and cetacean hosts.


Subject(s)
Dolphins/immunology , Morbillivirus Infections/veterinary , Morbillivirus/immunology , Animals , Atlantic Ocean , Central Nervous System/immunology , Central Nervous System/pathology , Cytokines/biosynthesis , Cytokines/genetics , Female , Immunohistochemistry , Lung/immunology , Lung/pathology , Lymphoid Tissue/immunology , Lymphoid Tissue/pathology , Male , Mediterranean Sea , Morbillivirus Infections/immunology , Morbillivirus Infections/pathology , Paraffin Embedding , Species Specificity , Tissue Fixation
15.
PLoS One ; 14(3): e0213363, 2019.
Article in English | MEDLINE | ID: mdl-30893365

ABSTRACT

Cetacean morbillivirus (CeMV) is a major natural cause of morbidity and mortality in cetaceans worldwide and results in epidemic and endemic fatalities. The pathogenesis of CeMV has not been fully elucidated, and questions remain regarding tissue tropism and the mechanisms of immunosuppression. We compared the histopathologic and viral immunohistochemical features in molecularly confirmed CeMV-infected Guiana dolphins (Sotalia guianensis) from the Southwestern Atlantic (Brazil) and striped dolphins (Stenella coeruleoalba) and bottlenose dolphins (Tursiops truncatus) from the Northeast-Central Atlantic (Canary Islands, Spain) and the Western Mediterranean Sea (Italy). Major emphasis was placed on the central nervous system (CNS), including neuroanatomical distribution of lesions, and the lymphoid system and lung were also examined. Eleven Guiana dolphins, 13 striped dolphins, and 3 bottlenose dolphins were selected by defined criteria. CeMV infections showed a remarkable neurotropism in striped dolphins and bottlenose dolphins, while this was a rare feature in CeMV-infected Guiana dolphins. Neuroanatomical distribution of lesions in dolphins stranded in the Canary Islands revealed a consistent involvement of the cerebrum, thalamus, and cerebellum, followed by caudal brainstem and spinal cord. In most cases, Guiana dolphins had more severe lung lesions. The lymphoid system was involved in all three species, with consistent lymphoid depletion. Multinucleate giant cells/syncytia and characteristic viral inclusion bodies were variably observed in these organs. Overall, there was widespread lymphohistiocytic, epithelial, and neuronal/neuroglial viral antigen immunolabeling with some individual, host species, and CeMV strain differences. Preexisting and opportunistic infections were common, particularly endoparasitism, followed by bacterial, fungal, and viral infections. These results contribute to understanding CeMV infections in susceptible cetacean hosts in relation to factors such as CeMV strains and geographic locations, thereby establishing the basis for future neuro- and immunopathological comparative investigations.


Subject(s)
Cetacea/virology , Morbillivirus Infections/veterinary , Morbillivirus , Animals , Bottle-Nosed Dolphin/virology , Central Nervous System/pathology , Central Nervous System/virology , Dolphins/virology , Female , Lung/pathology , Lung/virology , Lymphoid Tissue/pathology , Lymphoid Tissue/virology , Male , Morbillivirus Infections/immunology , Morbillivirus Infections/pathology , Species Specificity , Stenella/virology
16.
PLoS One ; 13(10): e0204444, 2018.
Article in English | MEDLINE | ID: mdl-30289951

ABSTRACT

This study describes the pathologic findings and most probable causes of death (CD) of 224 cetaceans stranded along the coastline of the Canary Islands (Spain) over a 7-year period, 2006-2012. Most probable CD, grouped as pathologic categories (PCs), was identified in 208/224 (92.8%) examined animals. Within natural PCs, those associated with good nutritional status represented 70/208 (33.6%), whereas, those associated with significant loss of nutritional status represented 49/208 (23.5%). Fatal intra- and interspecific traumatic interactions were 37/208 (17.8%). Vessel collisions included 24/208 (11.5%). Neonatal/perinatal pathology involved 13/208 (6.2%). Fatal interaction with fishing activities comprised 10/208 (4.8%). Within anthropogenic PCs, foreign body-associated pathology represented 5/208 (2.4%). A CD could not be determined in 16/208 (7.7%) cases. Natural PCs were dominated by infectious and parasitic disease processes. Herein, our results suggest that between 2006 and 2012, in the Canary Islands, direct human activity appeared responsible for 19% of cetaceans deaths, while natural pathologies accounted for 81%. These results, integrating novel findings and published reports, aid in delineating baseline knowledge on cetacean pathology and may be of value to rehabilitators, caregivers, diagnosticians and future conservation policies.


Subject(s)
Cause of Death , Cetacea , Animals , Communicable Diseases/mortality , Communicable Diseases/pathology , Communicable Diseases/veterinary , Female , Foreign Bodies/mortality , Foreign Bodies/pathology , Foreign Bodies/veterinary , Human Activities , Islands , Male , Spain
17.
Sci Rep ; 8(1): 5486, 2018 04 03.
Article in English | MEDLINE | ID: mdl-29615733

ABSTRACT

The locus coeruleus (LC) is the largest catecholaminergic nucleus and extensively projects to widespread areas of the brain and spinal cord. The LC is the largest source of noradrenaline in the brain. To date, the only examined Delphinidae species for the LC has been a bottlenose dolphin (Tursiops truncatus). In our experimental series including different Delphinidae species, the LC was composed of five subdivisions: A6d, A6v, A7, A5, and A4. The examined animals had the A4 subdivision, which had not been previously described in the only Delphinidae in which this nucleus was investigated. Moreover, the neurons had a large amount of neuromelanin in the interior of their perikarya, making this nucleus highly similar to that of humans and non-human primates. This report also presents the first description of neuromelanin in the cetaceans' LC complex, as well as in the cetaceans' brain.


Subject(s)
Dolphins , Locus Coeruleus/metabolism , Animals , Locus Coeruleus/cytology , Melanins/metabolism , Neurons/enzymology , Tyrosine 3-Monooxygenase/metabolism
19.
J Wildl Dis ; 51(3): 696-702, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25973629

ABSTRACT

An adult male striped dolphin (Stenella coeruleoalba) stranded alive at Arico, Tenerife, Canary Islands, Spain. The dolphin died shortly after stranding, and a complete postmortem examination was performed. The most remarkable gross findings were two fleshy masses of approximately 1 cm diameter, near the tip of the penis. These masses were composed of hyperplastic epithelial cells with pigmentary incontinence. Ballooning degeneration and margination of chromatin was observed within the stratum corneum of the epidermis. A universal nested PCR assay that amplifies a conserved region within the polymerase gene of Herpesviridae was positive. The sequenced product was most closely related to a gammaherpesvirus that shared nucleotide identities of 93% with penile lesions from Atlantic and Mediterranean bottlenose dolphins (Tursiops truncatus). This similarity supports the hypothesis of sexual transmission between species.


Subject(s)
Herpesviridae Infections/veterinary , Penile Diseases/veterinary , Stenella/virology , Animals , Herpesviridae Infections/epidemiology , Herpesviridae Infections/pathology , Male , Penile Diseases/pathology , Penile Diseases/virology , Penis/pathology , Penis/virology , Reverse Transcriptase Polymerase Chain Reaction/veterinary , Spain/epidemiology
20.
Front Physiol ; 3: 177, 2012.
Article in English | MEDLINE | ID: mdl-22675306

ABSTRACT

Gas embolic lesions linked to military sonar have been described in stranded cetaceans including beaked whales. These descriptions suggest that gas bubbles in marine mammal tissues may be more common than previously thought. In this study we have analyzed gas amount (by gas score) and gas composition within different decomposition codes using a standardized methodology. This broad study has allowed us to explore species-specific variability in bubble prevalence, amount, distribution, and composition, as well as masking of bubble content by putrefaction gases. Bubbles detected within the cardiovascular system and other tissues related to both pre- and port-mortem processes are a common finding on necropsy of stranded cetaceans. To minimize masking by putrefaction gases, necropsy, and gas sampling must be performed as soon as possible. Before 24 h post mortem is recommended but preferably within 12 h post mortem. At necropsy, amount of bubbles (gas score) in decomposition code 2 in stranded cetaceans was found to be more important than merely presence vs. absence of bubbles from a pathological point of view. Deep divers presented higher abundance of gas bubbles, mainly composed of 70% nitrogen and 30% CO(2), suggesting a higher predisposition of these species to suffer from decompression-related gas embolism.

SELECTION OF CITATIONS
SEARCH DETAIL