Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Med Chem Lett ; 14(6): 788-793, 2023 Jun 08.
Article in English | MEDLINE | ID: mdl-37312847

ABSTRACT

A novel class of potent NaV1.7 inhibitors has been discovered. The replacement of diaryl ether in compound I was investigated to enhance mouse NaV1.7 inhibitory activity, which resulted in the discovery of N-aryl indoles. The introduction of the 3-methyl group is crucial for high NaV1.7 in vitro potency. The adjustment of lipophilicity led to the discovery of 2e. Compound 2e (DS43260857) demonstrated high in vitro potencies against both human and mouse NaV1.7 with high selectivity over NaV1.1, NaV1.5, and hERG. In vivo evaluations revealed 2e demonstrating potent efficacy in PSL mice with excellent pharmacokinetics.

2.
J Med Chem ; 63(18): 10204-10220, 2020 09 24.
Article in English | MEDLINE | ID: mdl-32392056

ABSTRACT

A highly potent, selective NaV1.7 inhibitor, DS-1971a, has been discovered. Exploration of the left-hand phenyl ring of sulfonamide derivatives (I and II) led to the discovery of novel series of cycloalkane derivatives with high NaV1.7 inhibitory potency in vitro. As the right-hand heteroaromatic ring affected the mechanism-based inhibition liability of CYP3A4, replacement of this moiety resulted in the generation of 4-pyrimidyl derivatives. Additionally, GSH adducts formation, which can cause idiosyncratic drug toxicity, was successfully avoided by this modification. An additional optimization led to the discovery of DS-1971a. In preclinical studies, DS-1971a demonstrated highly potent selective in vitro profile with robust efficacy in vivo. DS-1971a exhibited a favorable toxicological profile, which enabled multiple-dose studies of up to 600 mg bid or 400 mg tid (1200 mg/day) administered for 14 days to healthy human males. DS-1971a is expected to exert potent efficacy in patients with peripheral neuropathic pain, with a favorable safety profile.


Subject(s)
Analgesics/therapeutic use , Hyperalgesia/drug therapy , NAV1.7 Voltage-Gated Sodium Channel/metabolism , Pyrazoles/therapeutic use , Pyrimidines/therapeutic use , Sulfonamides/therapeutic use , Voltage-Gated Sodium Channel Blockers/therapeutic use , Analgesics/chemical synthesis , Analgesics/toxicity , Animals , Drug Discovery , Female , Humans , Macaca fascicularis , Male , Mice , Microsomes, Liver/metabolism , Molecular Structure , Pyrazoles/chemical synthesis , Pyrazoles/toxicity , Pyrimidines/chemical synthesis , Pyrimidines/toxicity , Structure-Activity Relationship , Sulfonamides/chemical synthesis , Sulfonamides/toxicity , Voltage-Gated Sodium Channel Blockers/chemical synthesis , Voltage-Gated Sodium Channel Blockers/toxicity
3.
Eur J Pharmacol ; 842: 221-230, 2019 Jan 05.
Article in English | MEDLINE | ID: mdl-30391349

ABSTRACT

Human ether-a-go-go-related gene (hERG) trafficking inhibition is known to be one of the mechanisms of indirect hERG inhibition, resulting in QT prolongation and lethal arrhythmia. Pentamidine, an antiprotozoal drug, causes QT prolongation/Torsades de Pointes (TdP) via hERG trafficking inhibition, but 17-AAG, a geldanamycin derivative heat shock protein 90 (Hsp90) inhibitor, has not shown torsadogenic potential clinically, despite Hsp90 inhibitors generally being hypothesized to cause TdP by hERG trafficking inhibition. In the present study, we investigated the underlying mechanisms of both drugs' actions on hERG channels using hERG-overexpressing CHO cells (hERG-CHOs) and human embryonic stem cell-derived cardiomyocytes (hES-CMs). The effects on hERG tail current and protein levels were evaluated using population patch clamp and Western blotting in hERG-CHOs. The effects on field potential duration (FPD) were recorded by a multi-electrode array (MEA) in hES-CMs. Neither drug affected hERG tail current acutely. Chronic treatment with each drug inhibited hERG tail current and decreased the mature form of hERG protein in hERG-CHOs, whereas the immature form of hERG protein was increased by pentamidine but decreased by 17-AAG. In MEA assays using hES-CMs, pentamidine time-dependently prolonged FPD, but 17-AAG shortened it. The FPD prolongation in hES-CMs upon chronic pentamidine exposure is relevant to its clinically reported arrhythmic risk. Cav1.2 or Nav1.5 current were not reduced by chronic application of either drug at a relevant concentration to hERG trafficking inhibition in human embryonic kidney (HEK293) cells. Therefore, the reason why chronic 17-AAG shortened the FPD despite the hERG trafficking inhibition occur is still unknown.


Subject(s)
Benzoquinones/pharmacology , Electrophysiological Phenomena/drug effects , Lactams, Macrocyclic/pharmacology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Pentamidine/pharmacology , Safety , Stem Cells/cytology , Animals , Benzoquinones/adverse effects , CHO Cells , Calcium Channels, L-Type/metabolism , Cricetulus , ERG1 Potassium Channel/metabolism , Gene Expression Regulation/drug effects , HEK293 Cells , Humans , Lactams, Macrocyclic/adverse effects , Myocytes, Cardiac/cytology , NAV1.5 Voltage-Gated Sodium Channel/metabolism , Pentamidine/adverse effects
4.
Bioorg Med Chem Lett ; 28(12): 2222-2227, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29752182

ABSTRACT

In this study, we aimed to synthesize a novel blocker of transient receptor potential canonical 6 (TRPC6). The sp2 carbon atoms of the aminoindane skeleton of the known inhibitor were replaced with sp3 carbon atoms to increase the molecular complexity, measured by fraction sp3 (Fsp3). The representative compound, a bicyclo[4.3.0]nonane derivative DS88790512, inhibited TRPC6 with an IC50 value of 11 nM. Notably, DS88790512 exhibited excellent selectivity against hERG and hNaV1.5 channels, and was identified as an orally bioavailable compound.


Subject(s)
Calcium Channel Blockers/pharmacology , Drug Discovery , Indans/pharmacology , TRPC6 Cation Channel/antagonists & inhibitors , Administration, Oral , Animals , Biological Availability , Calcium Channel Blockers/administration & dosage , Calcium Channel Blockers/chemistry , Dose-Response Relationship, Drug , Humans , Indans/administration & dosage , Indans/chemistry , Mice , Microsomes, Liver/chemistry , Microsomes, Liver/metabolism , Molecular Structure , Structure-Activity Relationship , TRPC6 Cation Channel/metabolism
5.
Sci Rep ; 4: 4670, 2014 Apr 22.
Article in English | MEDLINE | ID: mdl-24751527

ABSTRACT

To overcome the limitations and misjudgments of conventional prediction of arrhythmic cardiotoxicity, we have developed an on-chip in vitro predictive cardiotoxicity assay using cardiomyocytes derived from human stem cells employing a constructive spatiotemporal two step measurement of fluctuation (short-term variability; STV) of cell's repolarization and cell-to-cell conduction time, representing two origins of lethal arrhythmia. Temporal STV of field potential duration (FPD) showed a potential to predict the risks of lethal arrhythmia originated from repolarization dispersion for false negative compounds, which was not correctly predicted by conventional measurements using animal cells, even for non-QT prolonging clinical positive compounds. Spatial STV of conduction time delay also unveiled the proarrhythmic risk of asynchronous propagation in cell networks, whose risk cannot be correctly predicted by single-cell-based measurements, indicating the importance of the spatiotemporal fluctuation viewpoint of in vitro cell networks for precise prediction of lethal arrhythmia reaching clinical assessment such as thorough QT assay.


Subject(s)
Cardiotoxicity , Drug Evaluation, Preclinical , Microchip Analytical Procedures , Myocytes, Cardiac/drug effects , Cell Communication/drug effects , Cell Culture Techniques , Humans , In Vitro Techniques , Lab-On-A-Chip Devices , Myocytes, Cardiac/metabolism
6.
Am J Pathol ; 165(1): 273-81, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15215182

ABSTRACT

Collagenous Alzheimer amyloid plaque component (CLAC) is a unique non-Abeta amyloid component of senile plaques (SP) derived from a transmembrane collagen termed CLAC-precursor. Here we characterize the chronological and spatial relationship of CLAC with other features of SP amyloid in the brains of patients with Alzheimer's disease (AD), Down syndrome (DS), and of PSAPP transgenic mice. In AD and DS cerebral cortex, CLAC invariably colocalized with Abeta42 but often lacked Abeta40- or thioflavin S (thioS)-reactivities. Immunoelectron microscopy of CLAC-positive SP showed labeling of fibrils that are more loosely dispersed compared to typical amyloid fibrils in CLAC-negative SP. In DS cerebral cortex, diffuse plaques in young patients were negative for CLAC, whereas a subset of SP became CLAC-positive in patients aged 35 to 50 years, before the appearance of Abeta40. In DS cases over 50 years of age, Abeta40-positive SP dramatically increased, whereas CLAC burden remained at a constant level. In PSAPP transgenic mice, CLAC was positive in the diffuse Abeta deposits surrounding huge-cored plaques. Thus, CLAC and Abeta40 or thioS exhibit mostly separate distribution patterns in SP, suggesting that CLAC is a relatively early component of SP in human brains that may have inhibitory effects against the maturation of SP into beta-sheet-rich amyloid deposits.


Subject(s)
Amyloid beta-Peptides/metabolism , Membrane Proteins/metabolism , Non-Fibrillar Collagens , Peptide Fragments/metabolism , Plaque, Amyloid/chemistry , Thiazoles/metabolism , Adult , Aged , Aged, 80 and over , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Animals , Antibodies, Monoclonal/metabolism , Benzothiazoles , Down Syndrome/metabolism , Down Syndrome/pathology , Female , Fluorescent Antibody Technique, Indirect , Humans , Immunohistochemistry , Male , Membrane Proteins/ultrastructure , Mice , Mice, Transgenic , Middle Aged , Neocortex/cytology , Neocortex/metabolism , Neocortex/pathology , Neurons/metabolism , Neurons/pathology , Plaque, Amyloid/ultrastructure , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...