Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Publication year range
1.
Nefrologia (Engl Ed) ; 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38679516

ABSTRACT

INTRODUCTION: New generation helixone dialyzers has recently been developed as part of the ongoing effort to improve dialyzer hemocompatibility and avoid adverse reactions to synthetic dialyzers. This study aimed to assess the performance and albumin loss of this new dialyzer series in hemodiafiltration and compare it with the previous generation helixone series. MATERIAL AND METHODS: A prospective study was conducted in 19 patients. Each patient underwent eight dialysis sessions with the same routine dialysis parameters; only the dialyzer varied: FX60 CorDiax, FX CorAL 60, FX600 CorDiax, FX CorAL 600, FX80 CorDiax, FX CorAL 80, FX800 CorDiax, and FX CorAL 800. The reduction ratios (RR) of urea, creatinine, ß2-microglobulin, myoglobin, kappa-free immunoglobulin light chains (κFLC), prolactin, α1-microglobulin, α1-acid glycoprotein, lambda immunoglobulin light chains (λFLC), and albumin were compared intra-individually. Dialysate albumin loss was also measured. RESULTS: All treatments were well tolerated. The mean amount of replacement fluid ranged from 31 to 34 L. Comparison of dialysis treatments showed no differences between small molecules and even up to those the size of ß2-microglobulins. Little differences were found between myoglobin, κFLC, prolactin, α1-microglobulin, and λFLC RRs, and only FX80 CorDiax was slightly superior to the others. Mean dialysate albumin losses were similar, with less than 2.5 g lost in each dialyzer. The FX80 CorDiax showed slightly higher global removal scores than the other dialyzers evaluated, except for FX CorAL 800. CONCLUSION: The new generation helixone dialyzers series has been updated to minimise the risk of adverse reactions, while maintaining the effectiveness and albumin loss achieved by the previous most advanced helixone generation.

3.
Blood Purif ; 52(1): 68-74, 2023.
Article in English | MEDLINE | ID: mdl-35551384

ABSTRACT

INTRODUCTION: The medium cut-off Elisio HX dialyzer by Nipro became commercially available in Europe in 2021, but there are still no reports of in vivo data. This study aimed to evaluate the safety and efficacy of it compared with previously evaluated hemodialysis (HD), expanded HD (HDx), and postdilution hemodiafiltration (HDF) treatments. METHODS: A prospective study was carried out on 18 patients who underwent 5 dialysis sessions: FX80 Cordiax in HD, Elisio H19 in HD, Elisio HX19 in HDx, Theranova 400 in HDx, and FX80 Cordiax in HDF. The reduction ratios of urea, creatinine, ß2-microglobulin, myoglobin, kappa FLC, prolactin, α1-microglobulin, α1-acid glycoprotein, lambda FLC, and albumin were compared. Dialysate albumin loss was measured. RESULTS: The comparison between the different dialysis modalities revealed no difference for small molecules, but HDx and HDF were significantly more efficient than HD for medium and large molecule removal. The efficacy of Elisio HX19 dialyzer in HDx was similar to the Theranova 400, superior to both dialyzers in HD, and slightly lower than HDF. Albumin losses in dialysate with HD dialyzers were less than 1 g, but between 1.5 and 2.5 g in HDx and HDF. The global removal score (GRS) values with HDx treatments were statistically significantly higher than those with HD. The highest GRS was obtained with the helixone dialyzer in HDF. CONCLUSIONS: The new MCO dialyzer, Elisio HX, performs with excellent behavior and tolerance. It represents an upgrade compared to their predecessor and is very close to the removal capacity of HDF treatment.


Subject(s)
Hemodiafiltration , Renal Dialysis , Humans , Prospective Studies , Hemodiafiltration/adverse effects , Albumins , Dialysis Solutions
4.
Clin Kidney J ; 15(12): 2292-2299, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36381368

ABSTRACT

Background: Recently, several pharmaceutical companies have developed new medium cut-off (MCO) dialyzers for expanded hemodialysis (HDx). This study aimed to compare the safety and efficacy of four MCO dialyzers, against each other and versus high-flux hemodialysis (HD) and post-dilution hemodiafiltration (HDF). Methods: A prospective study was carried out on 23 patients who underwent six dialysis sessions: two sessions with the FX80 Cordiax in HD and HDF, and four HDx sessions with the Phylther 17-SD, Vie-18X, Elisio HX19 and Theranova 400 dialyzers. The reduction ratios (RRs) of urea, creatinine, ß2-microglobulin, myoglobin, kappa free immunoglobulin light chain (κFLC), prolactin, α1-microglobulin, α1-acid glycoprotein, lambda (λFLC) and albumin were compared. Dialysate albumin loss was also measured. Results: The differences in efficacy between the evaluated dialyzers were minimal in small molecules and even up to the size of ß2-microglobulin. The main differences were found between myoglobin, κFLC, prolactin, α1-microglobulin and λFLC RRs, in which all four MCO dialyzers, with similar efficacy, were clearly superior to HD and slightly inferior to HDF treatment. Albumin losses in the dialysate with HD dialyzers were <1 g and between 1.5 and 2.5 g in HDx and HDF. The global removal score values were similar in all four HDx treatments, and again significantly higher than those with HD. Conclusions: The results of the four MCO dialyzers evaluated in this study showed good efficiency, with no significant performance differences between them while being completely safe in terms of albumin loss. Likewise, the study confirms the superiority of HDx over high-flux HD with an efficacy close to that of post-dilution HDF.

5.
Pediatr Neurol ; 128: 16-19, 2022 03.
Article in English | MEDLINE | ID: mdl-35032885

ABSTRACT

BACKGROUND: There is a gap of knowledge regarding cerebrospinal fluid (CSF) ion concentrations in normal and pathological states, particularly during the neonatal period. We aim to compare CSF ion concentrations in newborns with different causes of neonatal-onset epilepsy (NOE) and acute symptomatic seizures (ASS) and controls, to examine their usefulness for diagnostic purposes. METHODS: A descriptive retrospective study was conducted from January 2019 to June 2020 in a tertiary hospital. We analyzed CSF K+, Na+, Cl-, and Ca2+ concentrations in frozen samples from patients with neonatal seizures (NS) secondary to NOE and ASS (neonatal arterial ischemic stroke [NAIS] and hypoxic-ischemic encephalopathy). As the control group, we selected CSF samples from newborns who had undergone CSF analysis as part of the diagnostic workup and in whom central nervous system infections had been ruled out, without signs of dehydration, gastroenteritis, or history of seizures. RESULTS: Sixty-eight newborns were included, 16 with NOE, 13 with ASS, and 39 without NS (control group). In comparison with the control group, [K+]CSF was lower in patients with KCNQ2-related epilepsy (P = 0.007), other causes of NOE (P = 0.010), and NAIS (P = 0.002). Changes in [Na+]CSF, [Cl-]CSF, and [Ca2+]CSF were less consistent among subgroups. CONCLUSIONS: Here we report for the first time ionic imbalances in the CSF of neonates with NOE and NAIS. No differences were observed between newborns with different causes of NS. Further studies should be undertaken to investigate the physiopathology behind these changes and their impact on biological function.


Subject(s)
Ions/cerebrospinal fluid , Seizures/cerebrospinal fluid , Age Factors , Calcium , Chlorides , Female , Humans , Infant, Newborn , Ions/blood , Male , Potassium , Retrospective Studies , Seizures/blood , Seizures/etiology , Sodium
9.
Fluids Barriers CNS ; 16(1): 34, 2019 Nov 14.
Article in English | MEDLINE | ID: mdl-31727079

ABSTRACT

BACKGROUND: Cerebrospinal fluid (CSF) metabolomic investigations are a powerful tool for studying neurometabolic diseases. We aimed to assess the effect of CSF contamination with blood on the concentrations of selected biomarkers. METHODS: CSF samples were spiked in duplicate with increasing volumes of whole blood under two conditions: (A) pooled CSF spiked with fresh whole blood and frozen to cause red blood cell (RBC) lysis; (B) pooled CSF spiked with fresh blood and centrifuged (the supernatant with no RBCs was frozen until the moment of analysis). CSF concentrations of amino acids, biogenic amines, pterins, and vitamins were analysed by HPLC coupled with tandem mass spectrometry, electrochemical and fluorescence detection. RESULTS: Aspartate, glutamate, taurine, ornithine, glycine, citrulline, pyridoxal 5´-phosphate, 5-methyltetrahydrofolate, and thiamine showed higher values when RBCs were lysed when compared with those of CSF with no RBC, while arginine, 5-hydroxyindoleacetic and homovanillic acids showed lower values. When RBCs were removed from CSF, only some amino acids, thiamine and pyridoxal 5´-phosphate showed moderately higher values when compared with the non-spiked CSF sample. CONCLUSIONS: CSF-targeted metabolomic analysis is feasible even when substantial RBC contamination of CSF has occurred since CSF centrifugation to remove RBC prior to freezing eliminated most of the interferences observed.


Subject(s)
Biogenic Amines/analysis , Blood Chemical Analysis , Cerebrospinal Fluid , Pterins/analysis , Vitamins/analysis , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...