Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Med Chem ; 66(20): 14188-14207, 2023 10 26.
Article in English | MEDLINE | ID: mdl-37797307

ABSTRACT

Histone deacetylase 6 (HDAC6) is a unique member of the HDAC family mainly targeting cytosolic nonhistone substrates, such as α-tubulin, cortactin, and heat shock protein 90 to regulate cell proliferation, metastasis, invasion, and mitosis in tumors. We describe the identification and characterization of a series of 2-(difluoromethyl)-1,3,4-oxadiazoles (DFMOs) as selective nonhydroxamic acid HDAC6 inhibitors. By comparing structure-activity relationships and performing quantum mechanical calculations of the HDAC6 catalytic mechanism, we show that potent oxadiazoles are electrophilic substrates of HDAC6 and propose a mechanism for the bioactivation. We also observe that the inherent electrophilicity of the oxadiazoles makes them prone to degradation in water solution and the generation of potentially toxic products cannot be ruled out, limiting the developability for chronic diseases. However, the oxadiazoles demonstrate high oral bioavailability and low in vivo clearance and are excellent tools for studying the role of HDAC6 in vitro and in vivo in rats and mice.


Subject(s)
Neoplasms , Oxadiazoles , Rats , Mice , Animals , Histone Deacetylase 6 , Oxadiazoles/pharmacology , Tubulin/metabolism , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/chemistry
2.
J Biol Chem ; 295(15): 5136-5151, 2020 04 10.
Article in English | MEDLINE | ID: mdl-32132173

ABSTRACT

Increased plasma concentrations of lipoprotein(a) (Lp(a)) are associated with an increased risk for cardiovascular disease. Lp(a) is composed of apolipoprotein(a) (apo(a)) covalently bound to apolipoprotein B of low-density lipoprotein (LDL). Many of apo(a)'s potential pathological properties, such as inhibition of plasmin generation, have been attributed to its main structural domains, the kringles, and have been proposed to be mediated by their lysine-binding sites. However, available small-molecule inhibitors, such as lysine analogs, bind unselectively to kringle domains and are therefore unsuitable for functional characterization of specific kringle domains. Here, we discovered small molecules that specifically bind to the apo(a) kringle domains KIV-7, KIV-10, and KV. Chemical synthesis yielded compound AZ-05, which bound to KIV-10 with a Kd of 0.8 µm and exhibited more than 100-fold selectivity for KIV-10, compared with the other kringle domains tested, including plasminogen kringle 1. To better understand and further improve ligand selectivity, we determined the crystal structures of KIV-7, KIV-10, and KV in complex with small-molecule ligands at 1.6-2.1 Å resolutions. Furthermore, we used these small molecules as chemical probes to characterize the roles of the different apo(a) kringle domains in in vitro assays. These assays revealed the assembly of Lp(a) from apo(a) and LDL, as well as potential pathophysiological mechanisms of Lp(a), including (i) binding to fibrin, (ii) stimulation of smooth-muscle cell proliferation, and (iii) stimulation of LDL uptake into differentiated monocytes. Our results indicate that a small-molecule inhibitor targeting the lysine-binding site of KIV-10 can combat the pathophysiological effects of Lp(a).


Subject(s)
Apolipoproteins A/antagonists & inhibitors , Apolipoproteins A/metabolism , Fibrin/metabolism , Kringles/drug effects , Small Molecule Libraries/pharmacology , Amino Acid Sequence , High-Throughput Screening Assays , Humans , Ligands , Models, Molecular , Protein Binding , Protein Domains , Sequence Homology
3.
Commun Biol ; 2: 431, 2019.
Article in English | MEDLINE | ID: mdl-31799433

ABSTRACT

Liver X receptors (LXRs) are attractive drug targets for cardiovascular disease treatment due to their role in regulating cholesterol homeostasis and immunity. The anti-atherogenic properties of LXRs have prompted development of synthetic ligands, but these cause major adverse effects-such as increased lipogenesis-which are challenging to dissect from their beneficial activities. Here we show that LXR compounds displaying diverse functional responses in animal models induce distinct receptor conformations. Combination of hydrogen/deuterium exchange mass spectrometry and multivariate analysis allowed identification of LXR regions differentially correlating with anti-atherogenic and lipogenic activities of ligands. We show that lipogenic compounds stabilize active states of LXRα and LXRß while the anti-atherogenic expression of the cholesterol transporter ABCA1 is associated with the ligand-induced stabilization of LXRα helix 3. Our data indicates that avoiding ligand interaction with the activation helix 12 while engaging helix 3 may provide directions for development of ligands with improved therapeutic profiles.


Subject(s)
Liver X Receptors/chemistry , Liver X Receptors/metabolism , Models, Molecular , Protein Conformation , ATP Binding Cassette Transporter 1/chemistry , ATP Binding Cassette Transporter 1/metabolism , Drug Discovery , Humans , Ligands , Molecular Structure , Nuclear Receptor Co-Repressor 1/chemistry , Nuclear Receptor Co-Repressor 1/metabolism , Protein Binding , Structure-Activity Relationship
4.
Sci Adv ; 5(7): eaau4202, 2019 07.
Article in English | MEDLINE | ID: mdl-31392261

ABSTRACT

Signaling through the receptor tyrosine kinase RET is essential during normal development. Both gain- and loss-of-function mutations are involved in a variety of diseases, yet the molecular details of receptor activation have remained elusive. We have reconstituted the complete extracellular region of the RET signaling complex together with Neurturin (NRTN) and GFRα2 and determined its structure at 5.7-Å resolution by cryo-EM. The proteins form an assembly through RET-GFRα2 and RET-NRTN interfaces. Two key interaction points required for RET extracellular domain binding were observed: (i) the calcium-binding site in RET that contacts GFRα2 domain 3 and (ii) the RET cysteine-rich domain interaction with NRTN. The structure highlights the importance of the RET cysteine-rich domain and allows proposition of a model to explain how complex formation leads to RET receptor dimerization and its activation. This provides a framework for targeting RET activity and for further exploration of mechanisms underlying neurological diseases.


Subject(s)
Glial Cell Line-Derived Neurotrophic Factor Receptors/chemistry , Neurturin/chemistry , Protein Conformation , Proto-Oncogene Proteins c-ret/chemistry , Cryoelectron Microscopy , Cysteine/chemistry , Glial Cell Line-Derived Neurotrophic Factor Receptors/ultrastructure , Humans , Multiprotein Complexes/chemistry , Multiprotein Complexes/ultrastructure , Neurturin/ultrastructure , Protein Binding/genetics , Protein Domains/genetics , Proto-Oncogene Proteins c-ret/ultrastructure , Signal Transduction
5.
ACS Med Chem Lett ; 9(7): 594-599, 2018 Jul 12.
Article in English | MEDLINE | ID: mdl-30034585

ABSTRACT

In order to assess the potential of sPLA2-X as a therapeutic target for atherosclerosis, novel sPLA2 inhibitors with improved type X selectivity are required. To achieve the objective of identifying such compounds, we embarked on a lead generation effort that resulted in the identification of a novel series of indole-2-carboxamides as selective sPLA2-X inhibitors with excellent potential for further optimization.

6.
ACS Med Chem Lett ; 9(7): 600-605, 2018 Jul 12.
Article in English | MEDLINE | ID: mdl-30034586

ABSTRACT

A lead generation campaign identified indole-based sPLA2-X inhibitors with a promising selectivity profile against other sPLA2 isoforms. Further optimization of sPLA2 selectivity and metabolic stability resulted in the design of (-)-17, a novel, potent, and selective sPLA2-X inhibitor with an exquisite pharmacokinetic profile characterized by high absorption and low clearance, and low toxicological risk. Compound (-)-17 was tested in an ApoE-/- murine model of atherosclerosis to evaluate the effect of reversible, pharmacological sPLA2-X inhibition on atherosclerosis development. Despite being well tolerated and achieving adequate systemic exposure of mechanistic relevance, (-)-17 did not significantly affect circulating lipid and lipoprotein biomarkers and had no effect on coronary function or histological markers of atherosclerosis.

7.
J Biol Chem ; 293(15): 5492-5508, 2018 04 13.
Article in English | MEDLINE | ID: mdl-29414779

ABSTRACT

Neurturin (NRTN) provides trophic support to neurons and is considered a therapeutic agent for neurodegenerative diseases, such as Parkinson's disease. It binds to its co-receptor GFRa2, and the resulting NRTN-GFRa2 complex activates the transmembrane receptors rearranged during transfection (RET) or the neural cell adhesion molecule (NCAM). We report the crystal structure of NRTN, alone and in complex with GFRa2. This is the first crystal structure of a GFRa with all three domains and shows that domain 1 does not interact directly with NRTN, but it may support an interaction with RET and/or NCAM, via a highly conserved surface. In addition, biophysical results show that the relative concentration of GFRa2 on cell surfaces can affect the functional affinity of NRTN through avidity effects. We have identified a heparan sulfate-binding site on NRTN and a putative binding site in GFRa2, suggesting that heparan sulfate has a role in the assembly of the signaling complex. We further show that mutant NRTN with reduced affinity for heparan sulfate may provide a route forward for delivery of NRTN with increased exposure in preclinical in vivo models and ultimately to Parkinson's patients.


Subject(s)
Glial Cell Line-Derived Neurotrophic Factor Receptors/chemistry , Heparitin Sulfate/chemistry , Multiprotein Complexes/chemistry , Neurturin/chemistry , Signal Transduction , Crystallography, X-Ray , Glial Cell Line-Derived Neurotrophic Factor Receptors/genetics , Glial Cell Line-Derived Neurotrophic Factor Receptors/metabolism , Heparitin Sulfate/metabolism , Humans , Multiprotein Complexes/genetics , Multiprotein Complexes/metabolism , Neurturin/genetics , Neurturin/metabolism , Protein Domains , Protein Structure, Quaternary
8.
ACS Med Chem Lett ; 7(10): 884-889, 2016 Oct 13.
Article in English | MEDLINE | ID: mdl-27774123

ABSTRACT

Expedited structure-based optimization of the initial fragment hit 1 led to the design of (R)-7 (AZD2716) a novel, potent secreted phospholipase A2 (sPLA2) inhibitor with excellent preclinical pharmacokinetic properties across species, clear in vivo efficacy, and minimized safety risk. Based on accumulated profiling data, (R)-7 was selected as a clinical candidate for the treatment of coronary artery disease.

9.
PLoS One ; 10(1): e0113705, 2015.
Article in English | MEDLINE | ID: mdl-25629509

ABSTRACT

Activated factor XI (FXIa) inhibitors are anticipated to combine anticoagulant and profibrinolytic effects with a low bleeding risk. This motivated a structure aided fragment based lead generation campaign to create novel FXIa inhibitor leads. A virtual screen, based on docking experiments, was performed to generate a FXIa targeted fragment library for an NMR screen that resulted in the identification of fragments binding in the FXIa S1 binding pocket. The neutral 6-chloro-3,4-dihydro-1H-quinolin-2-one and the weakly basic quinolin-2-amine structures are novel FXIa P1 fragments. The expansion of these fragments towards the FXIa prime side binding sites was aided by solving the X-ray structures of reported FXIa inhibitors that we found to bind in the S1-S1'-S2' FXIa binding pockets. Combining the X-ray structure information from the identified S1 binding 6-chloro-3,4-dihydro-1H-quinolin-2-one fragment and the S1-S1'-S2' binding reference compounds enabled structure guided linking and expansion work to achieve one of the most potent and selective FXIa inhibitors reported to date, compound 13, with a FXIa IC50 of 1.0 nM. The hydrophilicity and large polar surface area of the potent S1-S1'-S2' binding FXIa inhibitors compromised permeability. Initial work to expand the 6-chloro-3,4-dihydro-1H-quinolin-2-one fragment towards the prime side to yield molecules with less hydrophilicity shows promise to afford potent, selective and orally bioavailable compounds.


Subject(s)
Drug Design , Drug Evaluation, Preclinical , Factor XIa/chemistry , Quantitative Structure-Activity Relationship , Serine Proteinase Inhibitors/chemistry , Amino Acid Sequence , Binding Sites , Crystallography, X-Ray , Drug Evaluation, Preclinical/methods , Factor XIa/antagonists & inhibitors , Humans , Ligands , Models, Molecular , Molecular Conformation , Molecular Sequence Data , Nuclear Magnetic Resonance, Biomolecular , Peptide Library , Protein Binding , Serine Proteinase Inhibitors/pharmacology
10.
Bioorg Med Chem Lett ; 24(22): 5251-5, 2014 Nov 15.
Article in English | MEDLINE | ID: mdl-25316315

ABSTRACT

The discovery of potent novel pyrazole containing group X secreted phospholipase A2 inhibitors via structure based virtual screening is reported. Docking was applied on a large set of in-house fragment collection and pharmacophore feature matching was used to filter docking poses. The selected virtual screening hits was run in NMR screening, a potent pyrazole containing fragment hit was identified and confirmed by its complex X-ray structure and the following biochemical assay result. Expansion on the fragment hit has led to further improvement of potency while maintaining high ligand efficiency, thus supporting the further development of this chemical series.


Subject(s)
Group X Phospholipases A2/chemistry , Phospholipase A2 Inhibitors/chemistry , Pyrazoles/chemistry , Binding Sites , Databases, Protein , Drug Evaluation, Preclinical , Group X Phospholipases A2/metabolism , Humans , Molecular Docking Simulation , Phospholipase A2 Inhibitors/metabolism , Protein Structure, Tertiary , Pyrazoles/metabolism
11.
Biochemistry ; 43(5): 1213-22, 2004 Feb 10.
Article in English | MEDLINE | ID: mdl-14756557

ABSTRACT

The vitamin B(6)-dependent enzyme 7,8-diaminopelargonic acid (DAPA) synthase catalyzes the antepenultimate step in the synthesis of biotin, the transfer of the alpha-amino group of S-adenosyl-l-methionine (SAM) to 7-keto-8-aminopelargonic acid (KAPA) to form DAPA. The Y17F, Y144F, and D147N mutations in the active site were constructed independently. The k(max)/K(m)(app) values for the half-reaction with DAPA of the Y17F and Y144F mutants are reduced by 1300- and 2900-fold, respectively, compared to the WT enzyme. Crystallographic analyses of these mutants do not show significant changes in the structure of the active site. The kinetic deficiencies, together with a structural model of the enzyme-PLP/DAPA Michaelis complex, point to a role of these two residues in recognition of the DAPA/KAPA substrates and in catalysis. The k(max)/K(m)(app) values for the half-reaction with SAM are similar to that of the WT enzyme, showing that the two tyrosine residues are not involved in this half-reaction. Mutations of the conserved Arg253 uniquely affect the SAM kinetics, thus establishing this position as part of the SAM binding site. The D147N mutant is catalytically inactive in both half-reactions. The structure of this mutant exhibits significant changes in the active site, indicating that this residue plays an important structural role. Of the four residues examined, only Tyr144 and Arg253 are strictly conserved in the available amino acid sequences of DAPA synthases. This enzyme thus provides an illustrative example that active site residues essential for catalysis are not necessarily conserved, i.e., that during evolution alternative solutions for efficient catalysis by the same enzyme arose. Decarboxylated SAM [S-adenosyl-(5')-3-methylthiopropylamine] reacts nearly as well as SAM and cannot be eliminated as a putative in vivo amino donor.


Subject(s)
Conserved Sequence , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , S-Adenosylmethionine/analogs & derivatives , Transaminases/chemistry , Transaminases/metabolism , Alanine/genetics , Amination , Amino Acids, Diamino/chemistry , Arginine/genetics , Binding Sites/genetics , Catalysis , Conserved Sequence/genetics , Crystallography, X-Ray , Escherichia coli Proteins/genetics , Glutamine/genetics , Kinetics , Lysine/genetics , Mutagenesis, Site-Directed , S-Adenosylmethionine/chemistry , Substrate Specificity/genetics , Transaminases/genetics , Tyrosine/genetics
12.
Biochemistry ; 41(42): 12582-9, 2002 Oct 22.
Article in English | MEDLINE | ID: mdl-12379100

ABSTRACT

7,8-diaminopelargonic acid (DAPA) synthase (EC 2.6.1.62) is a pyridoxal phosphate (PLP)-dependent transaminase that catalyzes the transfer of the alpha-amino group from S-adenosyl-L-methionine (SAM) to 7-keto-8-aminopelargonic acid (KAPA) to form DAPA in the antepenultimate step in the biosynthesis of biotin. The wild-type enzyme has a steady-state kcat value of 0.013 s(-1), and the K(m) values for SAM and KAPA are 150 and <2 microM, respectively. The k(max) and apparent K(m) values for the half-reaction of the PLP form of the enzyme with SAM are 0.016 s(-1) and 300 microM, respectively, while those for the reaction with DAPA are 0.79 s(-1) and 1 microM. The R391A mutant enzyme exhibits near wild-type kinetic parameters in the reaction with SAM, while the apparent K(m) for DAPA is increased 180-fold. The 2.1 A crystal structure of the R391A mutant enzyme shows that the mutation does not significantly alter the structure. These results indicate that the conserved arginine residue is not required for binding the alpha-amino acid SAM, but it is important for recognition of DAPA.


Subject(s)
Alanine/genetics , Arginine/genetics , Mutagenesis, Site-Directed , Transaminases/chemistry , Transaminases/genetics , Alanine/chemistry , Amino Acids, Diamino/chemistry , Arginine/chemistry , Binding Sites/genetics , Crystallization , Crystallography, X-Ray , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Hydrogen-Ion Concentration , Imines/chemistry , Kinetics , S-Adenosylmethionine/chemistry , Spectrophotometry , Stereoisomerism , Substrate Specificity/genetics
13.
J Biol Chem ; 277(45): 43352-8, 2002 Nov 08.
Article in English | MEDLINE | ID: mdl-12218056

ABSTRACT

The antibiotic amiclenomycin blocks the biosynthesis of biotin by inhibiting the pyridoxal-phosphate-dependent enzyme diaminopelargonic acid synthase. Inactivation of the enzyme is stereoselective, i.e. the cis isomer of amiclenomycin is a potent inhibitor, whereas the trans isomer is much less reactive. The crystal structure of the complex of the holoenzyme and amiclenomycin at 1.8 A resolution reveals that the internal aldimine linkage between the cofactor and the side chain of the catalytic residue Lys-274 is broken. Instead, a covalent bond is formed between the 4-amino nitrogen of amiclenomycin and the C4' carbon atom of pyridoxal-phosphate. The electron density for the bound inhibitor suggests that aromatization of the cyclohexadiene ring has occurred upon formation of the covalent adduct. This process could be initiated by proton abstraction at the C4 carbon atom of the cyclohexadiene ring, possibly by the proximal side chain of Lys-274, leading to the tautomer Schiff base followed by the removal of the second allylic hydrogen. The carboxyl tail of the amiclenomycin moiety forms a salt link to the conserved residue Arg-391 in the substrate-binding site. Modeling suggests steric hindrance at the active site as the determinant of the weak inhibiting potency of the trans isomer.


Subject(s)
Aminobutyrates/pharmacology , Biotin/antagonists & inhibitors , Biotin/biosynthesis , Crystallography, X-Ray , Escherichia coli/enzymology , Kinetics , Models, Molecular , Molecular Conformation , Transaminases/chemistry , Transaminases/isolation & purification , Transaminases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...