Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 72
Filter
1.
Cladistics ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38861251

ABSTRACT

The Neotropical region is the most diverse on the planet, largely owing to its mosaic of tropical rainforests. Multiple tectonic and climatic processes have been hypothesized to contribute to generating this diversity, including Andean orogeny, the closure of the Isthmus of Panama, the GAARlandia land bridge and historical connections among currently isolated forests. Micrathena spiders are diverse and widespread in the region, and thus a complete phylogeny of this genus allows the testing of hypotheses at multiple scales. We estimated a complete, dated phylogeny using morphological data for 117 Micrathena species and molecular data of up to five genes for a subset of 79 species. Employing eventc-based approaches and biogeographic stochastic mapping while considering phylogenetic uncertainty, we estimated ancestral distributions, the timing and direction of dispersal events and diversification rates among areas. The phylogeny is generally robust, with uncertainty in the position of some of the species lacking sequences. Micrathena started diversifying around 25 Ma. Andean cloud forests show the highest in-situ speciation, while the Amazon is the major dispersal source for adjacent areas. The Dry Diagonal generated few species and is a sink of diversity. Species exchange between Central and South America involved approximately 23 dispersal events and started ~20 Ma, which is consistent with a Miocene age for the Isthmus of Panama closure. We inferred four dispersal events from Central America to the Antilles in the last 20 Myr, indicating the spiders did not reach the islands through the GAARlandia land bridge. We identified important species exchange routes among the Amazon, Andean cloud forests and Atlantic forests during the Plio-Pleistocene. Sampling all species of the genus was fundamental to the conclusions above, especially in identifying the Andean forests as the area that generated the majority of species. This highlights the importance of complete taxonomic sampling in biogeographic studies.

2.
Animals (Basel) ; 13(24)2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38136797

ABSTRACT

The Brazilian merganser (Mergus octosetaceus) is one of the most endangered bird species in South America and comprises less than 250 mature individuals in wild environments. This is a species extremely sensitive to environmental disturbances and restricted to a few "pristine" freshwater habitats in Brazil, and it has been classified as Critically Endangered on the IUCN Red List since 1994. Thus, biological conservation studies are vital to promote adequate management strategies and to avoid the decline of merganser populations. In this context, to understand the evolutionary dynamics and the current genetic diversity of remaining Brazilian merganser populations, we used the "Genotyping by Sequencing" approach to genotype 923 SNPs in 30 individuals from all known areas of occurrence. These populations revealed a low genetic diversity and high inbreeding levels, likely due to the recent population decline associated with habitat loss. Furthermore, it showed a moderate level of genetic differentiation between all populations located in four separated areas of the highly threatened Cerrado biome. The results indicate that urgent actions for the conservation of the species should be accompanied by careful genetic monitoring to allow appropriate in situ and ex situ management to increase the long-term species' survival in its natural environment.

3.
PeerJ ; 11: e15393, 2023.
Article in English | MEDLINE | ID: mdl-37250715

ABSTRACT

Background: The delimitation of cryptic species is a challenge for biodiversity conservation. Anurans show high cryptic diversity levels, and molecular species delimitation methods could help identify putative new species. Additionally, species delimitation approaches can provide important results for cryptic species conservation, with integrative methods adding robustness to results. Ischnocnema manezinho was described from Santa Catarina Island (SCI), southern Brazil. More recently, some inventories indicated continental populations supposedly similar in morphology to it. If these records are confirmed as I. manezinho, it would likely change its endangered status on National Red List, removing the species from conservation agendas. We investigated the threatened frog Ischnocnema manezinho, to evaluate if the continental populations belong to this species or if they form an undescribed species complex. Methods: We used coalescent, distance, and allele-sharing-based species delimitation methods and integrative analyses of morphometric and bioacoustics traits to test evolutionary independence between I. manezinho from SCI, Arvoredo Island, and continental populations. Results: Ischnocnema manezinho is restricted to Santa Catarina Island, while the five remaining lineages should be further investigated through a taxonomic review. Our results point to a small geographic range of Ischnocnema manezinho. Additionally, the species occurs in isolated fragments of forest in SCI surrounded by expanding urban areas, confirming its status as Endangered. Thus, the protection and monitoring of I. manezinho and the taxonomic description of the continental and Arvoredo Island candidate species should be priorities.


Subject(s)
Anura , Forests , Animals , Phylogeny , Anura/genetics , Biodiversity , Plant Leaves
4.
Ann Hum Genet ; 87(5): 210-221, 2023 09.
Article in English | MEDLINE | ID: mdl-37161738

ABSTRACT

During the colonial period in South America, many autochthonous populations were affected by relocation by European missionary reductions and other factors that impacted and reconfigured their genetic makeup. Presently, the descendants of some "reduced" and other isolated groups are distributed in the Amazonian areas of Peru, Bolivia, and Brazil, and among them, speakers of Takanan and Panoan languages. Based on linguistics, these peoples should be closely related, but so far no DNA comparison studies have been conducted to corroborate a genetic relationship. To clarify these questions, we used a set of 15 short tandem repeats of the non-recombining part of the Y-chromosome (Y-STRs) and mitochondrial DNA (mtDNA) control region sequence data. Paternal line comparisons showed the Takanan-speaking peoples from Peru and Bolivia descended from recent common ancestors; one group was related to Arawakan, Jivaroan, and Cocama and the other to Panoan speakers, consistent with linguistics. Also, a genetic affinity for maternal lines was observed between some Takanan speakers and individuals who spoke different Amazonian languages. Our results supported a shared ancestry of Takanan, Panoan, Cocama, and Jivaroan-speaking communities who appeared to be related to each other and came likely from an early Arawak expansion in the western Amazonia of South America.


Subject(s)
DNA, Mitochondrial , Genetics, Population , Humans , Bolivia , Peru , Haplotypes , Brazil , DNA, Mitochondrial/genetics , Chromosomes, Human, Y/genetics , Genetic Variation
5.
Mol Ecol ; 32(3): 628-643, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36336814

ABSTRACT

Hybridization is known to be part of many species' evolutionary history. Sea turtles have a fascinating hybridization system in which species separated by as much as 43 million years are still capable of hybridizing. Indeed, the largest nesting populations in Brazil of loggerheads (Caretta caretta) and hawksbills (Eretmochelys imbricata) have a high incidence of hybrids between these two species. A third species, olive ridleys (Lepidochelys olivacea), is also known to hybridize although at a smaller scale. Here, we used restriction site-associated DNA sequencing (RAD-Seq) markers, mitogenomes, and satellite-telemetry to investigate the patterns of hybridization and introgression in the Brazilian sea turtle population and their relationship with the migratory behaviours between feeding and nesting aggregations. We also explicitly test if the mixing of two divergent genomes in sea turtle hybrids causes mitochondrial paternal leakage. We developed a new species-specific PCR-assay capable of detecting mitochondrial DNA (mtDNA) inheritance from both parental species and performed ultra-deep sequencing to estimate the abundance of each mtDNA type. Our results show that all adult hybrids are first generation (F1) and most display a loggerhead migratory behaviour. We detected paternal leakage in F1 hybrids and different proportions of mitochondria from maternal and paternal species. Although previous studies showed no significant fitness decrease in hatchlings, our results support genetically-related hybrid breakdown possibly caused by cytonuclear incompatibility. Further research on hybrids from other populations in addition to Brazil and between different species will show if backcross inviability and mitochondrial paternal leakage is observed across sea turtle species.


Subject(s)
DNA, Mitochondrial , Turtles , Animals , DNA, Mitochondrial/genetics , Turtles/genetics , Mitochondria/genetics , Biological Evolution , Polymerase Chain Reaction
6.
Gen Comp Endocrinol ; 309: 113791, 2021 08 01.
Article in English | MEDLINE | ID: mdl-33872604

ABSTRACT

Prolactin (PRL) is a pleiotropic neurohormone secreted by the mammalian pituitary gland into the blood, thus reaching many tissues and organs beyond the brain. PRL binds to its receptor, PRLR, eliciting a molecular signaling cascade. This system modulates essential mammalian behaviors and promotes notable modifications in the reproductive female tissues and organs. Here, we explore how the intracellular domain of PRLR (PRLR-ICD) modulates the expression of the PRLR gene. Despite differences in the reproductive strategies between eutherian and metatherian mammals, there is no clear distinction between PRLR-ICD functional motifs. However, we found selection signatures that showed differences between groups, with many conserved functional elements strongly maintained through purifying selection across the class Mammalia. We observed a few residues under relaxed selection, the levels of which were more pronounced in Eutheria and particularly striking in primates (Simiiformes), which could represent a pre-adaptive genetic element protected from purifying selection. Alternative, new motifs, such as YLDP (318-321) and others with residues Y283 and Y290, may already be functional. These motifs would have been co-opted in primates as part of a complex genetic repertoire related to some derived adaptive phenotypes, but these changes would have no impact on the primordial functions that characterize the mammals as a whole and that are related to the PRL-PRLR system.


Subject(s)
Prolactin , Receptors, Prolactin , Animals , Evolution, Molecular , Female , Mammals/genetics , Mammals/metabolism , Pituitary Gland/metabolism , Prolactin/metabolism , Receptors, Prolactin/genetics , Receptors, Prolactin/metabolism
7.
Am J Med Genet C Semin Med Genet ; 184(4): 928-938, 2020 12.
Article in English | MEDLINE | ID: mdl-33205899

ABSTRACT

We review studies from our laboratories using different molecular tools to characterize the Amerindian, European and African ancestry of Brazilians. Initially we used uniparental DNA markers to investigate the contribution of distinct Y chromosome and mitochondrial DNA lineages to present-day populations. High levels of genetic admixture and strong directional mating between European males and Amerindian and African females were unraveled. We next analyzed different types of biparental autosomal polymorphisms. Especially useful was a set of 40 insertion-deletion polymorphisms (indels) that when studied worldwide proved exquisitely sensitive in discriminating between Amerindians, Europeans and Sub-Saharan Africans. When applied to the study of Brazilians these markers confirmed extensive genomic admixture. We then studied ancestry differences in different regions by statistically controlling them to eliminate color considerations. The European ancestry was predominant in all regions studied, with proportions ranging from 60.6% in the Northeast to 77.7% in the South. We propose that the immigration of 6 million Europeans to Brazil in the 19th and 20th centuries is in large part responsible for dissipating previous ancestry dissimilarities that reflected region-specific population histories. Brazilians should be assessed individually, as 210 million human beings, and not as members of specific regions or color groups.


Subject(s)
Black People , White People , Black People/genetics , Brazil , DNA, Mitochondrial/genetics , Female , Genetic Markers , Genetic Variation , Humans , Male , White People/genetics
8.
BMC Genomics ; 21(Suppl 7): 413, 2020 Sep 10.
Article in English | MEDLINE | ID: mdl-32912150

ABSTRACT

BACKGROUND: According to history, in the pre-Hispanic period, during the conquest and Inka expansion in Ecuador, many Andean families of the Cañar region would have been displaced to several places of Tawantinsuyu, including Kañaris, a Quechua-speaking community located at the highlands of the Province of Ferreñafe, Lambayeque (Peru). Other families were probably taken from the Central Andes to a place close to Kañaris, named Inkawasi. Evidence of this migration comes from the presence near the Kañaris-Inkawasi communities of a village, a former Inka camp, which persists until the present day. This scenario could explain these toponyms, but it is still controversial. To clarify this historical question, the study presented here focused on the inference of the genetic relationship between 'Cañaris' populations, particularly of Cañar and Ferreñafe, compared to other highland populations. We analysed native patrilineal Y chromosome haplotypes composed of 15 short tandem repeats, a set of SNPs, and maternal mitochondrial DNA haplotypes of control region sequences. RESULTS: After the genetic comparisons of local populations-three from Ecuador and seven from Peru-, Y chromosome analyses (n = 376) indicated that individuals from the Cañar region do not share Y haplotypes with the Kañaris, or even with those of the Inkawasi. However, some Y haplotypes of Ecuadorian 'Cañaris' were associated with haplotypes of the Peruvian populations of Cajamarca, Chivay (Arequipa), Cusco and Lake Titicaca, an observation that is congruent with colonial records. Within the Kañaris and Inkawasi communities there are at least five clans in which several individuals share haplotypes, indicating that they have recent common ancestors. Despite their relative isolation, most individuals of both communities are related to those of the Cajamarca and Chachapoyas in Peru, consistent with the spoken Quechua and their geographic proximity. With respect to mitochondrial DNA haplotypes (n = 379), with the exception of a shared haplotype of the D1 lineage between the Cañar and Kañaris, there are no genetic affinities. CONCLUSION: Although there is no close genetic relationship between the Peruvian Kañaris (including Inkawasi) and Ecuadorian Cañar populations, our results showed some congruence with historical records.


Subject(s)
Chromosomes, Human, Y , Indians, South American , DNA, Mitochondrial/genetics , Ecuador , Genetic Markers , Genetic Variation , Genetics, Population , Haplotypes , Humans , Indians, South American/genetics , Peru
9.
J Hered ; 111(5): 444-456, 2020 09 30.
Article in English | MEDLINE | ID: mdl-32710544

ABSTRACT

An extremely high incidence of hybridization among sea turtles is found along the Brazilian coast. This atypical phenomenon and its impact on sea turtle conservation can be elucidated through research focused on the evolutionary history of sea turtles. We assessed high-quality multilocus haplotypes of 143 samples of the 5 species of sea turtles that occur along the Brazilian coast to investigate the hybridization process and the population structure of hawksbill (Eretmochelys imbricata) and loggerhead turtles (Caretta caretta). The multilocus data were initially used to characterize interspecific hybrids. Introgression (F2 hybrids) was only confirmed in hatchlings of F1 hybrid females (hawksbill × loggerhead), indicating that introgression was either previously overestimated and F2 hybrids may not survive to adulthood, or the first-generation hybrid females nesting in Brazil were born as recent as few decades ago. Phylogenetic analyses using nuclear markers recovered the mtDNA-based Indo-Pacific and Atlantic lineages for hawksbill turtles, demonstrating a deep genetic divergence dating from the early Pliocene. In addition, loggerhead turtles that share a common feeding area and belong to distinct Indo-Pacific and Atlantic mtDNA clades present no clear genetic differentiation at the nuclear level. Finally, our results indicate that hawksbill and loggerhead rookeries along the Brazilian coast are likely connected by male-mediated gene flow.


Subject(s)
Genetics, Population , Hybridization, Genetic , Turtles/classification , Turtles/genetics , Animals , Brazil , Genetic Markers , Genetic Variation , Multilocus Sequence Typing , Phylogeny
10.
Genet Mol Biol ; 43(2): e20190264, 2020.
Article in English | MEDLINE | ID: mdl-32555943

ABSTRACT

The hawksbill turtle is a broadly distributed, highly migratory and critically endangered sea turtle species. The paucity of studies restricts the comprehension of its behavior and life history. In this work, we performed a global phylogeographic analysis using a compilation of previously published mitochondrial haplotype data to understand the dynamics and diversity of hawksbill populations worldwide. Our results revealed a complex demographic pattern associated to hawksbill phylogeography since the Pliocene. Isolation by distance is not enough to explain distinct demographic units of hawksbill turtles, which are also influenced by other factors as oceanic currents, coral reef distribution and nesting timing. The foraging aggregations are typically mixed stocks of individuals originating from multiple nesting areas, but there is also a trend of foragers coming from nearby natal beaches. Phylogenetic analysis indicates two highly divergent major lineages split between Atlantic and Indo-Pacific rookeries, but there is also a more recent Atlantic Ocean colonization from the Indo-Pacific Ocean. Long-distance dispersal events are likely responsible for homogenization between distant populations within oceans. Our findings provided new insights about population connectivity, identified gaps that should be prioritized in future research and highlighted the need for international efforts aiming at hawksbill's conservation.

11.
Mol Phylogenet Evol ; 149: 106849, 2020 08.
Article in English | MEDLINE | ID: mdl-32387290

ABSTRACT

The central Andean rainforests and the Atlantic Forest are two similar biomes that are fully isolated by xerophytic and open-vegetation regions (the Chaco and Cerrado, respectively). Even though there is evidence suggesting that these rainforests have been connected in the past, their dynamics of connection, the geographic areas that bridged these regions, and the biological processes that have promoted diversification between them remain to be studied. In this research, we used three passerine species (Poecilotriccus plumbeiceps, Phylloscartes ventralis and Cacicus chrysopterus) as models to address whether the Andean and the Atlantic forests have acted as a refugia system (macrorefugia), and to evaluate biogeographic hypotheses of diversification and connection between them. In order to achieve these goals, we performed traditional phylogeographic analyses and compared alternative biogeographic scenarios by using Approximate Bayesian Computation. Additionally, we performed morphological analyses to evaluate phenotypic divergence between these regions. Our findings support that both rainforest regions acted as refugia, but that the impact of their isolation was stronger on the genetic than on the morphologic characters. Our results provided evidence that both geographic isolation as well as ecological factors have modeled the external traits of forest organisms in the region. Regarding the connection routes between the Andes and the Atlantic Forest, the genetic data rejected the hypothesis of a Chaco connection in the tested species, providing evidence for a connection through the Cerrado or through the transition between the Cerrado and Chaco, in a process that could have started as early as the Late Miocene.


Subject(s)
Biological Evolution , Forests , Genetic Variation , Passeriformes/anatomy & histology , Passeriformes/genetics , Animals , Bayes Theorem , Ecosystem , Genetics, Population , Phylogeny , Phylogeography , Species Specificity
12.
Mol Phylogenet Evol ; 148: 106819, 2020 07.
Article in English | MEDLINE | ID: mdl-32289449

ABSTRACT

The Brazilian Atlantic Forest harbors high levels of anuran diversity and endemism, including several taxa restricted to small geographic ranges. Here, we provide a multilocus phylogeny for Paratelmatobiinae, a leptodactylid subfamily composed of small-ranged species distributed in the Brazilian Atlantic Forest and in the campo rupestre ecosystem. We performed Bayesian inference and maximum likelihood analyses using three mitochondrial and five nuclear markers, and a matrix comprising a broad taxonomic sampling. We then delimitated independently evolving lineages within the group. We recovered Paratelmatobiinae and each of its four genera as monophyletic and robustly supported. Five putatively new species included in our analyses were unambiguously supported in the phylogenetic trees and delimitation analyses. We also recovered other deeply divergent and geographically structured lineages within the four genera of Paratelmatobiinae. Our estimation of divergence times indicates that diversification in the subfamily began in the Eocene and continued until the Pleistocene. We discuss possible scenarios of diversification for the four genera of Paratelmatobiinae, and outline the implications of our findings for taxonomy and conservation.


Subject(s)
Anura/classification , Biodiversity , Forests , Phylogeny , Animals , Bayes Theorem , Brazil , Calibration , Cell Nucleus/genetics , Consensus , DNA, Mitochondrial/genetics , Geography , Species Specificity , Time Factors
13.
Genet Mol Biol ; 42(4): e20190210, 2020.
Article in English | MEDLINE | ID: mdl-32142097

ABSTRACT

The Florida manatee (Trichechus manatus latirostris) is an endangered subspecies of the West Indian manatee (T. manatus), which inhabits inland and marine waters of southeastern United States. In this study, we assembled the mitochondrial genome (mtDNA) of the Florida manatee from whole genome shotgun reads. As a result, we show that the currently annotated T. manatus mtDNA belongs to a different species, the Amazonian manatee (T. inunguis). The newly assembled Florida manatee mtDNA is 16,881 bp in length, with 13 protein-coding genes, two ribosomal RNAs (rRNAs), 22 transfer RNAs (tRNAs) and one non-coding control region (D-loop). Phylogenetic analysis based on the control region indicates the newly assembled mtDNA is haplotype A01, characteristic of T. m. latirostris, while the current mtDNA associated with the Florida manatee genome assembly has a Ti02 haplotype that is found in Amazonian manatees and hybrids.

14.
An Acad Bras Cienc ; 91(suppl 3): e20190325, 2019 Aug 26.
Article in English | MEDLINE | ID: mdl-31460594

ABSTRACT

The West Indian (Trichechus manatus) and Amazonian (T. inunguis) manatees have a sympatric occurrence at the mouth of the Amazon River. A result of this interspecific encounter is the occurrence of hybrids, which are frequently found along the coasts of Amapá state in Brazil, French Guiana and Guyana. Here we present new genetic evidence indicating the occurrence of a hybrid swarm along the Guianas Shield coastline, which is an interspecific hybrid zone that also separates T. manatus populations located east (Brazil) and west (Caribbean, Gulf of Mexico, Florida and Antilles). In addition, we suggest that this hybrid population occupies a peculiar mangrove-rich environment under strong influence of the Amazon River plume, which requires an independent management and should be considered a special conservation area.


Subject(s)
Genetic Variation/genetics , Hybridization, Genetic , Species Specificity , Trichechus inunguis/genetics , Trichechus manatus/genetics , Animals , Bayes Theorem , Brazil , Caribbean Region , Guyana , Phylogeny , Population Dynamics , Rivers , Trichechus inunguis/physiology , Trichechus manatus/physiology
15.
Mol Phylogenet Evol ; 133: 198-213, 2019 04.
Article in English | MEDLINE | ID: mdl-30660755

ABSTRACT

We evaluated whether the Andean and the Atlantic forests acted as refugia during the Quaternary, and tested biogeographic hypotheses about the regions involved in the connectivity between those biomes (through the Chaco or the Cerrado). To achieve these goals we selected the Buff-browed Foliage-gleaner Syndactyla rufosuperciliata (Aves, Furnariidae) as a study system, a taxon distributed between the Andean and Atlantic forest. We first explored the historical connectivity between regions through niche modeling. We subsequently used DNA sequences (n = 71 individuals) and genomic analyses (ddRADseq, n = 33 individuals) to evaluate population genetic structure and gene flow within this species. Finally, we performed population model selection using Approximate Bayesian Computation. Our findings indicate that the Andean and the Atlantic forests acted as refugia, and that the populations of the focal species from both regions contacted through the Cerrado region, thus suggesting that the historical dynamics of Andean and Atlantic forests are important for the evolution of forest birds in the region. The results are in agreement with studies of other organisms and may indicate a more general pattern of connectivity among biomes in the Neotropics. Finally, we recommend recognizing both the Andean and the Altantic forests lineages of S. rufosuperciliata as independent species.


Subject(s)
Ecosystem , Forests , Passeriformes/classification , Phylogeography , Animals , Bayes Theorem , Gene Flow , Genetic Variation , Genetics, Population , Passeriformes/genetics , Phylogeny , Population Density , Sequence Analysis, DNA
16.
Curr Biol ; 29(1): 149-157.e3, 2019 01 07.
Article in English | MEDLINE | ID: mdl-30581024

ABSTRACT

The Americas were the last inhabitable continents to be occupied by humans, with a growing multidisciplinary consensus for entry 15-25 thousand years ago (kya) from northeast Asia via the former Beringia land bridge [1-4]. Autosomal DNA analyses have dated the separation of Native American ancestors from the Asian gene pool to 23 kya or later [5, 6] and mtDNA analyses to ∼25 kya [7], followed by isolation ("Beringian Standstill" [8, 9]) for 2.4-9 ky and then a rapid expansion throughout the Americas. Here, we present a calibrated sequence-based analysis of 222 Native American and relevant Eurasian Y chromosomes (24 new) from haplogroups Q and C [10], with four major conclusions. First, we identify three to four independent lineages as autochthonous and likely founders: the major Q-M3 and rarer Q-CTS1780 present throughout the Americas, the very rare C3-MPB373 in South America, and possibly the C3-P39/Z30536 in North America. Second, from the divergence times and Eurasian/American distribution of lineages, we estimate a Beringian Standstill duration of 2.7 ky or 4.6 ky, according to alternative models, and entry south of the ice sheet after 19.5 kya. Third, we describe the star-like expansion of Q-M848 (within Q-M3) starting at 15 kya [11] in the Americas, followed by establishment of substantial spatial structure in South America by 12 kya. Fourth, the deep branches of the Q-CTS1780 lineage present at low frequencies throughout the Americas today [12] may reflect a separate out-of-Beringia dispersal after the melting of the glaciers at the end of the Pleistocene.


Subject(s)
American Indian or Alaska Native/genetics , Chromosomes, Human, Y/genetics , DNA, Ancient/analysis , Genotype , Human Migration , Archaeology , DNA, Mitochondrial/genetics , Female , Genome, Human/genetics , Humans , Male
17.
Curr Biol ; 28(24): 4001-4008.e7, 2018 12 17.
Article in English | MEDLINE | ID: mdl-30528582

ABSTRACT

Parrots are one of the most distinct and intriguing groups of birds, with highly expanded brains [1], highly developed cognitive [2] and vocal communication [3] skills, and a long lifespan compared to other similar-sized birds [4]. Yet the genetic basis of these traits remains largely unidentified. To address this question, we have generated a high-coverage, annotated assembly of the genome of the blue-fronted Amazon (Amazona aestiva) and carried out extensive comparative analyses with 30 other avian species, including 4 additional parrots. We identified several genomic features unique to parrots, including parrot-specific novel genes and parrot-specific modifications to coding and regulatory sequences of existing genes. We also discovered genomic features under strong selection in parrots and other long-lived birds, including genes previously associated with lifespan determination as well as several hundred new candidate genes. These genes support a range of cellular functions, including telomerase activity; DNA damage repair; control of cell proliferation, cancer, and immunity; and anti-oxidative mechanisms. We also identified brain-expressed, parrot-specific paralogs with known functions in neural development or vocal-learning brain circuits. Intriguingly, parrot-specific changes in conserved regulatory sequences were overwhelmingly associated with genes that are linked to cognitive abilities and have undergone similar selection in the human lineage, suggesting convergent evolution. These findings bring novel insights into the genetics and evolution of longevity and cognition, as well as provide novel targets for exploring the mechanistic basis of these traits.


Subject(s)
Amazona/physiology , Biological Evolution , Cognition , Genome , Longevity/genetics , Amazona/genetics , Animals , Male
18.
Science ; 362(6419)2018 12 07.
Article in English | MEDLINE | ID: mdl-30409807

ABSTRACT

Studies of the peopling of the Americas have focused on the timing and number of initial migrations. Less attention has been paid to the subsequent spread of people within the Americas. We sequenced 15 ancient human genomes spanning from Alaska to Patagonia; six are ≥10,000 years old (up to ~18× coverage). All are most closely related to Native Americans, including those from an Ancient Beringian individual and two morphologically distinct "Paleoamericans." We found evidence of rapid dispersal and early diversification that included previously unknown groups as people moved south. This resulted in multiple independent, geographically uneven migrations, including one that provides clues of a Late Pleistocene Australasian genetic signal, as well as a later Mesoamerican-related expansion. These led to complex and dynamic population histories from North to South America.


Subject(s)
Genome, Human , Human Migration , Indians, North American/genetics , Datasets as Topic , Asia, Eastern/ethnology , Genomics , Humans , North America , Polymorphism, Single Nucleotide , Population Dynamics , Siberia/ethnology , South America
19.
Genet Mol Biol ; 41(3): 593-604, 2018.
Article in English | MEDLINE | ID: mdl-30235395

ABSTRACT

Amazon parrots are long-lived birds with highly developed cognitive skills, including vocal learning. Several parrot mitogenomes have been sequenced, but important aspects of their organization and evolution are not fully understood or have limited experimental support. The main aim of the present study was to describe the mitogenome of the blue-fronted Amazon, Amazona aestiva, and compare it to other mitogenomes from the genus Amazona and the order Psittaciformes. We observed that mitogenomes are highly conserved among Amazon parrots, and a detailed analysis of their duplicated control regions revealed conserved blocks. Population level analyses indicated that the specimen analyzed here seems to be close to A. aestiva individuals from Bahia state. Evolutionary relationships of 41 Psittaciformes species and three outgroups were inferred by BEAST. All relationships were retrieved with high support.

20.
Mol Phylogenet Evol ; 128: 221-232, 2018 11.
Article in English | MEDLINE | ID: mdl-30092357

ABSTRACT

The central Andean rainforests and the Atlantic Forest are separated by the Chaco and the Cerrado domains. Despite this isolation, diverse evidence suggests that these rainforests have been connected in the past. However, little is known about the timing and geographic positions of these connections, as well as their effects on diversification of species. In this study, we used the Black-goggled Tanager (Trichothraupis melanops, Thraupidae) as a model to study whether the Andean and the Atlantic forests have acted as a refugia system, and to evaluate biogeographic hypotheses of diversification and connection between these rainforests. We compared alternative biogeographic scenarios by using Approximate Bayesian Computation (ABC), modeled range shifts across time, and assessed niche divergence between regions. The results indicated that the major phylogeographic gap within T. melanops is located between these rainforests. The ABC analysis supported peripatric diversification, with initial dispersal from the Atlantic Forest to the Andes during the Mid-Pleistocene. Also, the results supported an Andean-Atlantic forests connection through the current Cerrado-Chaco transition, linking the southern Atlantic Forest with the central Andes. Our findings, taken together with other studies, support that the connection between these biomes has been recurrent, and that has occurred mostly through the Cerrado and/or the Cerrado-Chaco transition. The data also support that the connection dynamic has played an important role in the biological diversification, by promoting peripatric divergence in some forest taxa restricted to both biomes.


Subject(s)
Animal Distribution/physiology , Biodiversity , Forests , Passeriformes/physiology , Animals , Bayes Theorem , Genetics, Population , Models, Theoretical , Paleontology , Phylogeny , Phylogeography , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...