Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Toxicology ; 504: 153786, 2024 May.
Article in English | MEDLINE | ID: mdl-38522819

ABSTRACT

This study evaluated the effect of pharmacological inhibition of galectin 3 (Gal-3) with modified citrus pectin (MCP) on the heart and kidney in a model of cisplatin-induced acute toxicity. Male Wistar rats were divided into four groups (n = 6/group): SHAM, which received sterile saline intraperitoneally (i.p.) for three days; CIS, which received cisplatin i.p. (10 mg/kg/day) for three days; MCP, which received MCP orally (100 mg/kg/day) for seven days, followed by sterile saline i.p. for three days; MCP+CIS, which received MCP orally for seven days followed by cisplatin i.p. for three days. The blood, heart, and kidneys were collected six hours after the last treatment. MCP treatment did not change Gal-3 protein levels in the blood and heart, but it did reduce them in the kidneys of the MCP groups compared to the SHAM group. While no morphological changes were evident in the cardiac tissue, increased malondialdehyde (MDA) levels and deregulation of the mitochondrial oxidative phosphorylation system were observed in the heart homogenates of the MCP+CIS group. Cisplatin administration caused acute tubular degeneration in the kidneys; the MCP+CIS group also showed increased MDA levels. In conclusion, MCP therapy in the acute model of cisplatin-induced toxicity increases oxidative stress in cardiac and renal tissues. Further investigations are needed to determine the beneficial and harmful roles of Gal-3 in the cardiorenal system since it can act differently in acute and chronic diseases/conditions.


Subject(s)
Antineoplastic Agents , Cisplatin , Galectin 3 , Kidney , Pectins , Rats, Wistar , Animals , Cisplatin/toxicity , Pectins/pharmacology , Male , Galectin 3/metabolism , Galectin 3/antagonists & inhibitors , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Antineoplastic Agents/toxicity , Rats , Cardiotoxicity , Myocardium/metabolism , Myocardium/pathology , Malondialdehyde/metabolism , Heart/drug effects , Oxidative Stress/drug effects , Galectins/metabolism , Kidney Diseases/chemically induced , Kidney Diseases/pathology , Kidney Diseases/prevention & control
2.
Inflammation ; 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38198110

ABSTRACT

Annexin A1 (AnxA1) is a glucocorticoid-inducible protein and an important endogenous modulator of inflammation. However, its effect in the endometrial microenvironment is poorly explained. This study aimed to evaluate the role of endogenous AnxA1 in an endometritis mouse model induced by lipopolysaccharide (LPS). Female C57BL/6 wild-type (WT) and AnxA1-/- mice were divided into two groups: SHAM and LPS. To induce endometritis, mice received a vaginal infusion of 50 µL of LPS (1 mg/mL) dissolved in phosphate-buffered saline. After 24 h, the mice were euthanized, and blood and uteri samples were collected. The endometrium inflammatory scores were significantly increased in the LPS-treated group. AnxA1-/- mice from the LPS group demonstrated a significant increase in the number of degranulated mast cell levels compared to AnxA1-/- SHAM mice. The Western blotting analysis revealed that a lack of AnxA1 promoted the upregulation of NLRP3 and pro-IL-1ß in the acute endometritis animal model compared to WT LPS animals. LPS-induced endometritis increased the number of blood peripheral leukocytes in both WT and AnxA1-/- mice compared with SHAM group mice (p < 0.001). AnxA1-/- mice also showed increased plasma levels of IL-1ß (p < 0.01), IL-6, IL-10, IL-17, and TNF-α (p < 0.05) following LPS-induced endometritis. In conclusion, a lack of endogenous AnxA1 exacerbated the inflammatory response in an endometritis model via NLRP3 dysregulation, increased uterine mast cell activation, and plasma pro-inflammatory cytokine release.

3.
Life Sci ; 318: 121505, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36804309

ABSTRACT

AIMS: Evaluate the role of galectin-3 in the liver using an acute model of cisplatin-induced toxicity. MATERIAL AND METHODS: Modified citrus pectin (MCP) treatment was used to inhibit galectin-3. Rats were distributed into four groups: SHAM, CIS, MCP and MCP + CIS. On days 1-7, animals were treated by oral gavage with 100 mg/kg/day of MCP (MCP and MCP + CIS groups). On days 8, 9 and 10, animals received intraperitoneal injection of 10 mg/kg/day of cisplatin (CIS and MCP + CIS groups) or saline (SHAM and MCP groups). KEY FINDINGS: Cisplatin administration caused a marked increase in hepatic leukocyte influx and liver degeneration, and promoted reactive oxygen species production and STAT3 activation in hepatocytes. Plasma levels of cytokines (IL-6, IL-10), and hepatic toxicity biomarkers (hepatic arginase 1, α-glutathione S-transferase, sorbitol dehydrogenase) were also elevated. Decreased galectin-3 levels in the livers of animals in the MCP + CIS group were also associated with increased hepatic levels of malondialdehyde and mitochondrial respiratory complex I. Animals in the MCP + CIS group also exhibited increased plasma levels of IL-1ß, TNF-α, and aspartate transaminase 1. Furthermore, MCP therapy efficiently antagonized hepatic galectin-9 in liver, but not galectin-1, the latter of which was increased. SIGNIFICANCE: Reduction of the endogenous levels of galectin-3 in hepatocytes favors the process of cell death and increases oxidative stress in the acute model of cisplatin-induced toxicity.


Subject(s)
Cisplatin , Galectin 3 , Animals , Rats , Antioxidants/pharmacology , Cisplatin/pharmacology , Galectin 3/metabolism , Liver/metabolism , Oxidative Stress
4.
Life Sci ; 304: 120677, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35654117

ABSTRACT

AIMS: In this study we evaluated the effect of pharmacological treatment with AnxA1-derived peptide Ac2-26 in an experimental model of toxicity induced by cisplatin. MAIN METHODS: Male rats were divided into Sham (control), Cisplatin (received intraperitoneal injections of 10 mg/kg/day of cisplatin for 3 days) and Ac2-26 (received intraperitoneal injections of 1 mg/kg/day of peptide, 15 min before cisplatin) groups. KEY FINDINGS: After 6 h of the last dose of cisplatin, an acute inflammatory response was observed characterized by a marked increase in the number of neutrophils and GM-CSF, IL-ß, IL-6, IL-10 and TNF-α plasma levels. These findings were associated with increased AnxA1 protein levels in liver and kidneys, as well as positive AnxA1/Fpr2 circulating leukocytes. Treatment with Ac2-26 produced higher levels of GM-CSF, corroborating the high numbers of neutrophils, and the anti-inflammatory cytokine IL-4. Ac2-26 preserved the morphology of liver structures and increased Fpr1 expression, preventing the damage caused by cisplatin. In the kidneys, Ac2-26 caused downregulation of renal Fpr1 and Fpr2 levels and abrogated the increased levels of the CLU and KIM-1 biomarkers of kidney damage induced by cisplatin. However, no effect of peptide treatment was detected in cisplatin-induced kidney morphology injury. SIGNIFICANCE: Despite activation of the anti-inflammatory AnxA1/Fpr axis during cisplatin administration, treatment with Ac2-26 did not efficiently prevent its deleterious effects on the liver and kidneys.


Subject(s)
Annexin A1 , Animals , Annexin A1/chemistry , Annexin A1/metabolism , Annexin A1/pharmacology , Anti-Inflammatory Agents/pharmacology , Cisplatin/metabolism , Cisplatin/toxicity , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Kidney/metabolism , Liver/metabolism , Male , Peptides/chemistry , Rats
5.
Toxicol Lett ; 363: 27-35, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35561849

ABSTRACT

Cisplatin is an antineoplastic agent widely used, and no effective treatments capable of preventing cisplatin-induced ototoxicity and neurotoxicity in humans have yet been identified. This study evaluated the effect of the anti-inflammatory annexin A1 (AnxA1)-derived peptide Ac2-26 in a cisplatin-induced ototoxicity model. Wistar rats received intraperitoneal injections of cisplatin (10 mg/kg/day) for 3 days to induce hearing loss, and Ac2-26 (1 mg/kg) was administered 15 min before cisplatin administration. Control animals received an equal volume of saline. Hearing thresholds were measured by distortion product otoacoustic emissions (DPOAE) before and after treatments. Pharmacological treatment with Ac2-26 protected against cisplatin-induced hearing loss, as evidenced by DPOAE results showing similar signal-noise ratios between the control and Ac2-26-treated groups. These otoprotective effects of Ac2-26 were associated with an increased number of ganglion neurons compared with the untreated cisplatin group. Additionally, Ac2-26 treatment produced reduced immunoreactivity on cleaved caspase 3 and phosphorylated ERK levels in the ganglion neurons, compared to the untreated group, supporting the neuroprotective effects of the Ac2-26. Our results suggest that Ac2-26 has a substantial otoprotective effect in this cisplatin-induced ototoxicity model mediated by neuroprotection and the regulation of the ERK pathway.


Subject(s)
Annexin A1 , Antineoplastic Agents , Hearing Loss , Ototoxicity , Animals , Annexin A1/pharmacology , Antineoplastic Agents/toxicity , Cisplatin/toxicity , Hearing Loss/chemically induced , Hearing Loss/prevention & control , Otoacoustic Emissions, Spontaneous , Ototoxicity/prevention & control , Peptides/pharmacology , Rats , Rats, Wistar
6.
Biomed Pharmacother ; 98: 406-415, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29276969

ABSTRACT

Estrogen maintains osteocyte viability, whereas its deficiency induces osteocyte apoptosis. As autophagy is important for osteocyte viability, we hypothesized whether the anti-apoptotic effect of estrogen is related to autophagy in osteocytes. Thirty adult female rats were sham-operated (SHAM) or ovariectomized (OVX). After three weeks, twelve rats of SHAM and OVX groups were killed before treatment (basal period), whereas the remaining rats received estrogen (OVXE) or vehicle (OVX) for 45 days. Fragments of maxilla containing alveolar process of the first molars were embedded in paraffin or Araldite. Paraffin-sections were stained with hematoxylin/eosin for histomorphometry, or subjected to the silver impregnation method for morphological analysis of osteocyte cytoplasmic processes. Autophagy was analyzed by immunohistochemical detections of beclin-1, MAP-LC3α and p62, whereas apoptosis was evaluated by immunohistochemical detections of cleaved caspase-3 and BAX, TUNEL (Terminal deoxynucleotidyl transferase dUTP nick end labeling) method and by ultrastructural analysis. Araldite-semithin sections were subjected to the Sudan-black method for detection of lipids. OVX-basal group showed high frequency of caspase-3-, TUNEL- and p62-positive osteocytes accompanied with low frequency of beclin-1- and MAP-LC3α-positive osteocytes. At 45 days, OVXE group exhibited higher number of osteocytes, higher frequency of beclin-1- and MAP-LC3α-positive osteocytes, and lower frequency of caspase-3, BAX-, TUNEL- and p62-positive osteocytes than OVX group. Significant reduction in bone area was observed in the OVX compared to OVXE and SHAM groups. The highest frequency of Sudan-Black-positive osteocytes and osteocytes with scarce cytoplasmic processes, or showing apoptotic features were mainly observed in OVX groups. Our results indicate that estrogen deficiency decreases autophagy and increases apoptosis, whereas estrogen replacement enhances osteocyte viability by inhibiting apoptosis and maintaining autophagy in alveolar process osteocytes. These results suggest that the anti-apoptotic effect of estrogen may be, at least in part, related to autophagy regulation in osteocytes.


Subject(s)
Autophagy/physiology , Cell Survival/physiology , Estrogens/metabolism , Osteocytes/metabolism , Alveolar Process/metabolism , Animals , Apoptosis/physiology , Apoptosis Regulatory Proteins/metabolism , Caspase 3/metabolism , Female , In Situ Nick-End Labeling/methods , Ovariectomy/methods , Rats , Rats, Wistar
8.
Forensic Sci Int ; 251: 186-94, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25912776

ABSTRACT

Morphological and ultrastructural data from archaeological human bones are scarce, particularly data that have been correlated with information on the preservation of molecules such as DNA. Here we examine the bone structure of macroscopically well-preserved medieval human skeletons by transmission electron microscopy and immunohistochemistry, and the quantity and quality of DNA extracted from these skeletons. DNA technology has been increasingly used for analyzing physical evidence in archaeological forensics; however, the isolation of ancient DNA is difficult since it is highly degraded, extraction yields are low and the co-extraction of PCR inhibitors is a problem. We adapted and optimised a method that is frequently used for isolating DNA from modern samples, Chelex(®) 100 (Bio-Rad) extraction, for isolating DNA from archaeological human bones and teeth. The isolated DNA was analysed by real-time PCR using primers targeting the sex determining region on the Y chromosome (SRY) and STR typing using the AmpFlSTR(®) Identifiler PCR Amplification kit. Our results clearly show the preservation of bone matrix in medieval bones and the presence of intact osteocytes with well preserved encapsulated nuclei. In addition, we show how effective Chelex(®) 100 is for isolating ancient DNA from archaeological bones and teeth. This optimised method is suitable for STR typing using kits aimed specifically at degraded and difficult DNA templates since amplicons of up to 250bp were successfully amplified.


Subject(s)
Bone and Bones/chemistry , Bone and Bones/ultrastructure , DNA/isolation & purification , Adult , Chromosomes, Human, Y , Collagen Type III/analysis , DNA Fingerprinting , DNA Primers , Female , History, Medieval , Humans , Immunohistochemistry , Male , Microsatellite Repeats , Microscopy, Electron, Transmission , Osteocalcin/analysis , Osteocytes/cytology , Real-Time Polymerase Chain Reaction , Sex Determination Analysis , Tooth/chemistry
9.
Fertil Steril ; 102(1): 291-8, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24825418

ABSTRACT

OBJECTIVE: To analyze the expression of genes related to steroidogenesis in the ovary of pinealectomized rats. DESIGN: Experimental research. SETTING: University research laboratory. ANIMAL(S): Thirty female adult rats. INTERVENTION(S): Administration of vehicle (GI), pinealectomy with vehicle (GII), or pinealectomy with melatonin replacement (10 µg/night) for 60 consecutive days (GIII), then euthanasia after 2 months of treatment, ovary collection complementary DNA microarray analyses, confirmatory quantitative reverse-transcriptase polymerase chain reaction analyses, and immunohistochemical analyses for localizing steroidogenesis changes in the ovary. MAIN OUTCOME MEASURE(S): Biologic molecular study followed by immunohistochemical analysis. RESULT(S): The changes in the expression of CYP11A1, CYP17A1, and CYP19A1 after pinealectomy (GII) compared with control (GI) showed the Cyp17a1 expression level increased in the theca interna and interstitial cells in the GII rats compared with the other groups. CONCLUSION(S): Melatonin deprivation (pinealectomy) or administration may influence the ovarian CYP17A1 expression and steroidogenesis.


Subject(s)
Estrogens/biosynthesis , Hormone Replacement Therapy , Melatonin/pharmacology , Ovary/drug effects , Pineal Gland/surgery , Progesterone/biosynthesis , Steroid Hydroxylases/metabolism , Animals , Aromatase/metabolism , Cholesterol Side-Chain Cleavage Enzyme/metabolism , Female , Melatonin/deficiency , Ovary/enzymology , Pineal Gland/metabolism , RNA, Messenger/metabolism , Rats , Rats, Wistar , Steroid 17-alpha-Hydroxylase/metabolism , Steroid Hydroxylases/genetics
10.
PLoS Negl Trop Dis ; 4(3): e613, 2010 Mar 02.
Article in English | MEDLINE | ID: mdl-20209152

ABSTRACT

Oral infection by Trypanosoma cruzi has been the primary cause of recent outbreaks of acute Chagas' diseases. This route of infection may involve selective binding of the metacyclic trypomastigote surface molecule gp82 to gastric mucin as a first step towards invasion of the gastric mucosal epithelium and subsequent systemic infection. Here we addressed that question by performing in vitro and in vivo experiments. A recombinant protein containing the complete gp82 sequence (J18), a construct lacking the gp82 central domain (J18*), and 20-mer synthetic peptides based on the gp82 central domain, were used for gastric mucin binding and HeLa cell invasion assays, or for in vivo experiments. Metacyclic trypomastigotes and J18 bound to gastric mucin whereas J18* failed to bind. Parasite or J18 binding to submaxillary mucin was negligible. HeLa cell invasion by metacyclic forms was not affected by gastric mucin but was inhibited in the presence of submaxillary mucin. Of peptides tested for inhibition of J18 binding to gastric mucin, the inhibitory peptide p7 markedly reduced parasite invasion of HeLa cells in the presence of gastric mucin. Peptide p7*, with the same composition as p7 but with a scrambled sequence, had no effect. Mice fed with peptide p7 before oral infection with metacyclic forms developed lower parasitemias than mice fed with peptide p7*. Our results indicate that selective binding of gp82 to gastric mucin may direct T. cruzi metacyclic trypomastigotes to stomach mucosal epithelium in oral infection.


Subject(s)
Gastric Mucins/metabolism , Protozoan Proteins/metabolism , Trypanosoma cruzi/pathogenicity , Variant Surface Glycoproteins, Trypanosoma/metabolism , Virulence Factors/metabolism , Animals , Cell Adhesion , Chagas Disease/parasitology , Epithelial Cells/parasitology , Female , HeLa Cells , Humans , Mice , Mice, Inbred BALB C , Protein Binding , Swine
11.
Microbes Infect ; 8(1): 36-44, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16153873

ABSTRACT

Experiments were performed to elucidate why Trypanosoma cruzi isolates 573 and 587 differ widely in their efficiency to infect gastric mucosal epithelium when administered orally to mice. These isolates have the same surface profile and a similar capacity to enter host cells in vitro. Metacyclic forms of isolates 573 and 587 and the control CL isolate expressed similar levels of gp82, which is a cell invasion-promoting molecule. Expression of gp90, a molecule that downregulates cell invasion, was lower in the CL isolate. Consistent with this profile, approximately threefold fewer parasites of isolates 573 and 587 entered epithelial HeLa cells, as compared to the CL isolate. No difference in the rate of intracellular parasite replication was observed between isolates. When given orally to mice, metacyclic forms of isolate 573, like the CL isolate, produced high parasitemia (>10(6) parasites per ml at the peak), killing approximately 40% of animals, whereas infection with isolate 587 resulted in low parasitemia (<10(5) parasites per ml), with zero mortality. On the fourth day post-inoculation, tissue sections of the mouse stomach stained with hematoxylin and eosin showed a four to sixfold higher number of epithelial cells infected with isolate 573 or CL than with isolate 587. The rate of intracellular parasite development was similar in all isolates. Mimicking in vivo infection, parasites were treated with pepsin at acidic pH and then assayed for their ability to enter HeLa cells or explanted gastric epithelial cells. Pepsin extensively digested gp90 from isolate 573 and significantly increased invasion of both cells, but had minor effect on gp90 or infectivity of isolates 587 and CL. The profile of g82 digestion was similar in isolates 573 and 587, with partial degradation to a approximately 70 kDa fragment, which preserved the target cell binding domain as well as the region involved in gastric mucin adhesion. Gp82 from CL isolate was resistant to pepsin. Assays with parasites recovered from the mouse stomach 2 h after oral infection showed an extensive digestion of gp90 and increased infectivity of isolate 573, but not of isolate 587 or CL. Our data indicate that T. cruzi infection in vitro does not always correlate with in vivo infection because host factors may act on parasites, modulating their infectivity, as is the case of pepsin digestion of isolate 573 gp90.


Subject(s)
Chagas Disease/pathology , Chagas Disease/parasitology , Epithelial Cells/parasitology , Gastric Mucosa/parasitology , Protozoan Proteins/metabolism , Trypanosoma cruzi/physiology , Variant Surface Glycoproteins, Trypanosoma/metabolism , Animals , Cysteine Endopeptidases/metabolism , Epithelial Cells/cytology , Epithelial Cells/metabolism , Female , Gastrointestinal Contents , HeLa Cells , Humans , Mice , Mice, Inbred BALB C , Pepsin A/metabolism , Protozoan Proteins/genetics , Trypanosoma cruzi/pathogenicity , Variant Surface Glycoproteins, Trypanosoma/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...