Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Lett Appl Microbiol ; 77(2)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38244231

ABSTRACT

The ecological relationships among antimicrobial producing, resistant, and sensitive strains have been proposed to follow rock-paper-scissors dynamics, but evidence is mainly based on Gram-negative bacteriocins in vitro. The ecological relevance of antimicrobials in vivo or in situ has not been systematically studied. This study therefore aimed to analyze binary and ternary competitions among reutericyclin-producing strain Limosilactobacillus reuteri TMW1.656, its reutericyclin-resistant, nonproducing isogenic derivative L. reuteri TMW1.656∆rtcN, and the reutericyclin-sensitive, nonproducing L. reuteri TMW1.656∆rtcN∆rtcT in vitro (liquid culture and static plate), in situ (sourdough fermentation), and in vivo (gut of germ-free mice). In liquid culture, L. reuteri TMW1.656 had a higher fitness than TMW1.656∆rtcN and TMW1.656∆rtcN∆rtcT. Limosilactobacillus reuteri TMW1.656∆rtcN∆rtcT had a higher fitness than TMW1.656∆rtcN. On agar plates, L. reuteri TMW1.656 had a higher fitness than TMW1.656∆rtcN∆rtcT. In situ, reutericyclin production and resistance had no influence on the fitness of the strains. In vivo, TMW1.656 had an advantage over TMW1.656∆rtcN and TMW1.656∆rtcN∆rtcT. Ternary competitions showed reutericyclin production was ecologically beneficial in all ecosystems. The findings support the ecological importance of reutericyclin in a variety of environments/niches, providing an explanation for the acquisition of the reutericyclin gene cluster in L. reuteri and its contribution to the ecological fitness of Streptococcus mutans.


Subject(s)
Limosilactobacillus reuteri , Mice , Animals , Ecosystem , Tenuazonic Acid
2.
Gut Microbes ; 15(1): 2178799, 2023.
Article in English | MEDLINE | ID: mdl-37610979

ABSTRACT

Waxy starches from cereal grains contain >90% amylopectin due to naturally occurring mutations that block amylose biosynthesis. Waxy starches have unique organoleptic characteristics (e.g. sticky rice) as well as desirable physicochemical properties for food processing. Using isogenic pairs of wild type sorghum lines and their waxy derivatives, we studied the effects of waxy starches in the whole grain context on the human gut microbiome. In vitro fermentations with human stool microbiomes show that beneficial taxonomic and metabolic signatures driven by grain from wild type parental lines are lost in fermentations of grain from the waxy derivatives and the beneficial signatures can be restored by addition of resistant starch. These undesirable effects are conserved in fermentations of waxy maize, wheat, rice and millet. We also demonstrate that humanized gnotobiotic mice fed low fiber diets supplemented with 20% grain from isogenic pairs of waxy vs. wild type parental sorghum have significant differences in microbiome composition and show increased weight gain. We conclude that the benefits of waxy starches on food functionality can have unintended tradeoff effects on the gut microbiome and host physiology that could be particularly relevant in human populations consuming large amounts of waxy grains.


Subject(s)
Gastrointestinal Microbiome , Sorghum , Humans , Animals , Mice , Starch/chemistry , Edible Grain/genetics , Edible Grain/metabolism , Sorghum/chemistry , Sorghum/genetics , Sorghum/metabolism , Amylopectin , Mutation
3.
Sci Adv ; 9(19): eadf5499, 2023 05 12.
Article in English | MEDLINE | ID: mdl-37184968

ABSTRACT

Mammalian species harbor compositionally distinct gut microbial communities, but the mechanisms that maintain specificity of symbionts to host species remain unclear. Here, we show that natural selection within house mice (Mus musculus domesticus) drives deterministic assembly of the house-mouse gut microbiota from mixtures of native and non-native microbiotas. Competing microbiotas from wild-derived lines of house mice and other mouse species (Mus and Peromyscus spp.) within germ-free wild-type (WT) and Rag1-knockout (Rag1-/-) house mice revealed widespread fitness advantages for native gut bacteria. Native bacterial lineages significantly outcompeted non-native lineages in both WT and Rag1-/- mice, indicating home-site advantage for native microbiota independent of host adaptive immunity. However, a minority of native Bacteriodetes and Firmicutes favored by selection in WT hosts were not favored or disfavored in Rag1-/- hosts, indicating that Rag1 mediates fitness advantages of these strains. This study demonstrates home-site advantage for native gut bacteria, consistent with local adaptation of gut microbiota to their mammalian species.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Animals , Mice , Bacteria , Homeodomain Proteins/genetics , Mammals
4.
mSphere ; 8(2): e0047822, 2023 04 20.
Article in English | MEDLINE | ID: mdl-36883813

ABSTRACT

Enrichment of adherent-invasive Escherichia coli (AIEC) has been consistently detected in subsets of inflammatory bowel disease (IBD) patients. Although some AIEC strains cause colitis in animal models, these studies did not systematically compare AIEC with non-AIEC strains, and causal links between AIEC and disease are still disputed. Specifically, it remains unclear whether AIEC shows enhanced pathogenicity compared to that of commensal E. coli found in the same ecological microhabitat and if the in vitro phenotypes used to classify strains as AIEC are pathologically relevant. Here, we utilized in vitro phenotyping and a murine model of intestinal inflammation to systematically compare strains identified as AIEC with those identified as non-AIEC and relate AIEC phenotypes to pathogenicity. Strains identified as AIEC caused, on average, more severe intestinal inflammation. Intracellular survival/replication phenotypes routinely used to classify AIEC positively correlated with disease, while adherence to epithelial cells and tumor necrosis factor alpha production by macrophages did not. This knowledge was then applied to design and test a strategy to prevent inflammation by selecting E. coli strains that adhered to epithelial cells but poorly survived/replicated intracellularly. Two E. coli strains that ameliorated AIEC-mediated disease were subsequently identified. In summary, our results show a relationship between intracellular survival/replication in E. coli and pathology in murine colitis, suggesting that strains possessing these phenotypes might not only become enriched in human IBD but also contribute to disease. We provide new evidence that specific AIEC phenotypes are pathologically relevant and proof of principle that such mechanistic information can be therapeutically exploited to alleviate intestinal inflammation. IMPORTANCE Inflammatory bowel disease (IBD) is associated with an altered gut microbiota composition, including expansion of Proteobacteria. Many species in this phylum are thought to contribute to disease under certain conditions, including adherent-invasive Escherichia coli (AIEC) strains, which are enriched in some patients. However, whether this bloom contributes to disease or is just a response to IBD-associated physiological changes is unknown. Although assigning causality is challenging, appropriate animal models can test the hypothesis that AIEC strains have an enhanced ability to cause colitis in comparison to other gut commensal E. coli strains and to identify bacterial traits contributing to virulence. We observed that AIEC strains are generally more pathogenic than commensal E. coli and that bacterial intracellular survival/replication phenotypes contributed to disease. We also found that E. coli strains lacking primary virulence traits can prevent inflammation. Our findings provide critical information on E. coli pathogenicity that may inform development of IBD diagnostic tools and therapies.


Subject(s)
Colitis , Escherichia coli Infections , Inflammatory Bowel Diseases , Humans , Mice , Animals , Escherichia coli/genetics , Escherichia coli Infections/microbiology , Inflammatory Bowel Diseases/microbiology , Inflammation/pathology
5.
Gut Microbes ; 14(1): 2126275, 2022.
Article in English | MEDLINE | ID: mdl-36130094

ABSTRACT

Little is known about how interactions among grain processing, grain type, and carbohydrate utilization (CU) by the microbiome influence the health benefits of whole grains. Therefore, two whole grains - brown rice and whole wheat - and two processing methods - boiling (porridge) and extrusion - were studied for their effects on host metabolic outcomes in mice harboring human microbiomes previously shown in vitro to have high or low CU. Mice carrying either microbiome experienced increases in body weight and glycemia when consuming Western diets supplemented with extruded grains versus porridge. However, mice with the high but not low CU microbiome also gained more weight and fat over time and were less glucose tolerant when consuming extruded grain diets. In high CU microbiome mice, the exacerbated negative health outcomes associated with extrusion were related to altered abundances of Lachnospiraceae and Ruminococcaceae as well as elevated sugar degradation and colonic acetate production. The amplicon sequence variants (ASVs) associated with extruded and porridge diets in this in vivo study were not the same as those identified in our prior in vitro study; however, the predicted functions were highly correlated. In conclusion, mice harboring both high and low CU microbiomes responded to the whole grain diets similarly, except the high CU microbiome mice exhibited exacerbated effects due to excessive acetate production, indicating that CU by the microbiome is linked to host metabolic health outcomes. Our work demonstrates that a greater understanding of food processing effects on the microbiome is necessary for developing foods that promote rather than diminish host health.Abbreviations: CU- carbohydrate utilization; SCFA- short-chain fatty acids; GF- germ-free; HMA, human-microbiome associated; ipGTT- intraperitoneal glucose tolerance test; HOMA-IR- Homeostatic Model Assessment for Insulin Resistance; AUC- area under the glycemia curve; ASV- amplicon sequence variant; lf- low-fat; wd- Western diet; wd_wwp- Western diet containing whole wheat porridge; wd_wwe- Western diet containing whole wheat extrudate; wd_bre- Western diet containing brown rice extrudate; wd_extr- Western diet containing either whole wheat or brown rice extrudate.


Subject(s)
Gastrointestinal Microbiome , Whole Grains , Animals , Blood Glucose , Diet , Edible Grain/metabolism , Fatty Acids, Volatile , Humans , Mice , Triticum/metabolism
7.
ISME J ; 16(6): 1594-1604, 2022 06.
Article in English | MEDLINE | ID: mdl-35210551

ABSTRACT

It is unclear if coexistence theory can be applied to gut microbiomes to understand their characteristics and modulate their composition. Through experiments in gnotobiotic mice with complex microbiomes, we demonstrated that strains of Akkermansia muciniphila and Bacteroides vulgatus could only be established if microbiomes were devoid of these species. Strains of A. muciniphila showed strict competitive exclusion, while B. vulgatus strains coexisted but populations were still influenced by competitive interactions. These differences in competitive behavior were reflective of genomic variation within the two species, indicating considerable niche overlap for A. muciniphila strains and a broader niche space for B. vulgatus strains. Priority effects were detected for both species as strains' competitive fitness increased when colonizing first, which resulted in stable persistence of the A. muciniphila strain colonizing first and competitive exclusion of the strain arriving second. Based on these observations, we devised a subtractive strategy for A. muciniphila using antibiotics and showed that a strain from an assembled community can be stably replaced by another strain. By demonstrating that competitive outcomes in gut ecosystems depend on niche differences and are historically contingent, our study provides novel information to explain the ecological characteristics of gut microbiomes and a basis for their modulation.


Subject(s)
Gastrointestinal Microbiome , Animals , Ecosystem , Gastrointestinal Microbiome/genetics , Germ-Free Life , Mice , Verrucomicrobia/genetics
8.
Gut Microbes ; 13(1): 1-21, 2021.
Article in English | MEDLINE | ID: mdl-33382950

ABSTRACT

Extibacter muris is a newly described mouse gut bacterium which metabolizes cholic acid (CA) to deoxycholic acid (DCA) via 7α-dehydroxylation. Although bile acids influence metabolic and inflammatory responses, few in vivo models exist for studying their metabolism and impact on the host. Mice were colonized from birth with the simplified community Oligo-MM12 with or without E. muris. As the metabolism of bile acids is known to affect lipid homeostasis, mice were fed either a low- or high-fat diet for eight weeks before sampling and analyses targeting the gut and liver. Multiple Oligo-MM12 strains were capable of deconjugating primary bile acids in vitro. E. muris produced DCA from CA either as pure compound or in mouse bile. This production was inducible by CA in vitro. Ursodeoxycholic, chenodeoxycholic, and ß-muricholic acid were not metabolized under the conditions tested. All gnotobiotic mice were stably colonized with E. muris, which showed higher relative abundances after HF diet feeding. The presence of E. muris had minor, diet-dependent effects on Oligo-MM12 communities. The secondary bile acids DCA and surprisingly LCA and their taurine conjugates were detected exclusively in E. muris-colonized mice. E. muris colonization did not influence body weight, white adipose tissue mass, liver histopathology, hepatic aspartate aminotransferase, or blood levels of cholesterol, insulin, and paralytic peptide (PP). However, proteomics revealed shifts in hepatic pathways involved in amino acid, glucose, lipid, energy, and drug metabolism in E. muris-colonized mice. Liver fatty acid composition was substantially altered by dietary fat but not by E. muris.In summary, E. muris stably colonized the gut of mice harboring a simplified community and produced secondary bile acids, which affected proteomes in the liver. This new gnotobiotic mouse model can now be used to study the pathophysiological role of secondary bile acids in vivo.


Subject(s)
Bile Acids and Salts/metabolism , Clostridiales/metabolism , Gastrointestinal Microbiome/physiology , Liver/physiology , Animals , Biotransformation , Clostridiales/growth & development , Diet, High-Fat , Germ-Free Life , Intestines/microbiology , Liver/metabolism , Mice
9.
Commun Biol ; 3(1): 760, 2020 12 11.
Article in English | MEDLINE | ID: mdl-33311550

ABSTRACT

The majority of microbiome studies focused on understanding mechanistic relationships between the host and the microbiota have used mice and other rodents as the model of choice. However, the domestic pig is a relevant model that is currently underutilized for human microbiome investigations. In this study, we performed a direct comparison of the engraftment of fecal bacterial communities from human donors between human microbiota-associated (HMA) piglet and mouse models under identical dietary conditions. Analysis of 16S rRNA genes using amplicon sequence variants (ASVs) revealed that with the exception of early microbiota from infants, the more mature microbiotas tested established better in the HMA piglets compared to HMA mice. Of interest was the greater transplantation success of members belonging to phylum Firmicutes in the HMA piglets compared to the HMA mice. Together, these results provide evidence for the HMA piglet model potentially being more broadly applicable for donors with more mature microbiotas while the HMA mouse model might be more relevant for developing microbiotas such as those of infants. This study also emphasizes the necessity to exercise caution in extrapolating findings from HMA animals to humans, since up to 28% of taxa from some donors failed to colonize either model.


Subject(s)
Feces/microbiology , Gastrointestinal Microbiome , Animals , Bacteria/classification , Bacteria/genetics , Biodiversity , Computational Biology/methods , Disease Models, Animal , Germ-Free Life , Humans , Metagenome , Metagenomics/methods , Mice , Phylogeny , Reproducibility of Results
10.
Mol Nutr Food Res ; 64(17): e2000162, 2020 09.
Article in English | MEDLINE | ID: mdl-32656952

ABSTRACT

SCOPE: Previous studies have suggested that diets rich in omega-3 and low in omega-6 long-chain polyunsaturated fatty acids (PUFAs) can limit the development of metabolic syndrome (MetS). Transgenic soybeans yielding oils enriched for omega-3 PUFAs represent a new and readily-available option for incorporating omega-3 PUFAs into diets to provide health benefits. METHODS AND RESULTS: Transgenic soybean oils, enriched for either stearidonic acid (SDA) or eicosapentaenoic acid (EPA), are incorporated into diets to test their effects on limiting the development of MetS in a mouse model of diet-induced obesity. Supplementation with SDA- but not EPA-enriched oils improved features of MetS compared to feeding a control wild-type oil. Because previous studies have linked the gut microorganism Akkermansia muciniphila to the metabolic effects of feeding omega-3 PUFAs, the causal contribution of A. muciniphila to mediating the metabolic benefits provided by SDA-enriched diets is investigated. Although A. muciniphila is not required for SDA-induced metabolic improvements, this microorganism does modulate levels of saturated and mono-unsaturated fatty acids in host adipose tissues. CONCLUSION: Together, these findings support the utilization of SDA-enriched diets to modulate weight gain, glucose metabolism, and fatty acid profiles of liver and adipose tissue.


Subject(s)
Fatty Acids, Omega-3/pharmacology , Glucose/metabolism , Obesity/diet therapy , Soybean Oil/pharmacology , Adipose Tissue/drug effects , Adipose Tissue/metabolism , Akkermansia/drug effects , Akkermansia/physiology , Animals , Diet, High-Fat/adverse effects , Dietary Supplements , Eicosapentaenoic Acid/pharmacology , Fatty Acids, Unsaturated/pharmacokinetics , Food, Fortified , Gastrointestinal Microbiome/drug effects , Gastrointestinal Microbiome/physiology , Male , Mice, Inbred C57BL , Obesity/metabolism , Obesity/microbiology , Plants, Genetically Modified , Soybean Oil/chemistry , Soybean Oil/genetics , Weight Gain/drug effects
11.
Cell Rep ; 30(6): 1753-1766.e6, 2020 02 11.
Article in English | MEDLINE | ID: mdl-32049008

ABSTRACT

Growing evidence supports the importance of gut microbiota in the control of tumor growth and response to therapy. Here, we select prebiotics that can enrich bacterial taxa that promote anti-tumor immunity. Addition of the prebiotics inulin or mucin to the diet of C57BL/6 mice induces anti-tumor immune responses and inhibition of BRAF mutant melanoma growth in a subcutaneously implanted syngeneic mouse model. Mucin fails to inhibit tumor growth in germ-free mice, indicating that the gut microbiota is required for the activation of the anti-tumor immune response. Inulin and mucin drive distinct changes in the microbiota, as inulin, but not mucin, limits tumor growth in syngeneic mouse models of colon cancer and NRAS mutant melanoma and enhances the efficacy of a MEK inhibitor against melanoma while delaying the emergence of drug resistance. We highlight the importance of gut microbiota in anti-tumor immunity and the potential therapeutic role for prebiotics in this process.


Subject(s)
Gastrointestinal Microbiome/drug effects , Inulin/therapeutic use , Melanoma/drug therapy , Mucins/therapeutic use , Prebiotics/analysis , Animals , Inulin/pharmacology , Melanoma/pathology , Mice , Mucins/pharmacology
12.
mSphere ; 4(4)2019 07 10.
Article in English | MEDLINE | ID: mdl-31292233

ABSTRACT

The gut microbial communities of mammals have codiversified with host species, and changes in the gut microbiota can have profound effects on host fitness. Therefore, the gut microbiota may drive adaptation in mammalian species, but this possibility is underexplored. Here, we show that the gut microbiota has codiversified with mice in the genus Mus over the past ∼6 million years, and we present experimental evidence that the gut microbiota has driven adaptive evolution of the house mouse, Mus musculusdomesticus Phylogenetic analyses of metagenome-assembled bacterial genomic sequences revealed that gut bacterial lineages have been retained within and diversified alongside Mus species over evolutionary time. Transplantation of gut microbiotas from various Mus species into germfree M. m. domesticus showed that foreign gut microbiotas slowed growth rate and upregulated macrophage inflammatory protein in hosts. These results suggest adaptation by M. m. domesticus to its gut microbiota since it diverged from other Mus species.IMPORTANCE The communities of bacteria that reside within mammalian guts are deeply integrated with their hosts, but the impact of this gut microbiota on mammalian evolution remains poorly understood. Experimental transplantation of the gut microbiota between mouse species revealed that foreign gut microbiotas lowered the host growth rate and upregulated the expression of an immunomodulating cytokine. In addition, foreign gut microbiotas increased host liver sizes and attenuated sex-specific differences in host muscle and fat content. These results suggest that the house mouse has adapted to its species-specific gut microbiota.


Subject(s)
Adaptation, Physiological , Bacteria/classification , Gastrointestinal Microbiome , Host Microbial Interactions , Host Specificity , Animals , Female , Germ-Free Life , Male , Metagenome , Mice , Mice, Inbred C57BL , Phylogeny , RNA, Ribosomal, 16S/genetics , Species Specificity
13.
Nat Commun ; 10(1): 1492, 2019 04 02.
Article in English | MEDLINE | ID: mdl-30940817

ABSTRACT

Accumulating evidence points to an important role for the gut microbiome in anti-tumor immunity. Here, we show that altered intestinal microbiota contributes to anti-tumor immunity, limiting tumor expansion. Mice lacking the ubiquitin ligase RNF5 exhibit attenuated activation of the unfolded protein response (UPR) components, which coincides with increased expression of inflammasome components, recruitment and activation of dendritic cells and reduced expression of antimicrobial peptides in intestinal epithelial cells. Reduced UPR expression is also seen in murine and human melanoma tumor specimens that responded to immune checkpoint therapy. Co-housing of Rnf5-/- and WT mice abolishes the anti-tumor immunity and tumor inhibition phenotype, whereas transfer of 11 bacterial strains, including B. rodentium, enriched in Rnf5-/- mice, establishes anti-tumor immunity and restricts melanoma growth in germ-free WT mice. Altered UPR signaling, exemplified in Rnf5-/- mice, coincides with altered gut microbiota composition and anti-tumor immunity to control melanoma growth.


Subject(s)
Cell Proliferation , Gastrointestinal Microbiome , Melanoma/immunology , Melanoma/microbiology , Membrane Proteins/deficiency , Ubiquitin-Protein Ligases/deficiency , Animals , Antimicrobial Cationic Peptides/immunology , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Humans , Intestines/immunology , Intestines/microbiology , Melanoma/enzymology , Melanoma/physiopathology , Membrane Proteins/genetics , Membrane Proteins/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/immunology , Unfolded Protein Response
14.
Front Immunol ; 9: 2318, 2018.
Article in English | MEDLINE | ID: mdl-30356663

ABSTRACT

Escherichia coli is a facultative anaerobic symbiont found widely among mammalian gastrointestinal tracts. Several human studies have reported increased commensal E. coli abundance in the intestine during inflammation; however, host immunological responses toward commensal E. coli during inflammation are not well-defined. Here, we show that colonization of gnotobiotic mice with different genotypes of commensal E. coli isolated from healthy conventional microbiota mice and representing distinct populations of E. coli elicited strain-specific disease phenotypes and immunopathological changes following treatment with the inflammatory stimulus, dextran sulfate sodium (DSS). Production of the inflammatory cytokines GM-CSF, IL-6, and IFN-γ was a hallmark of the severe inflammation induced by E. coli strains of Sequence Type 129 (ST129) and ST375 following DSS administration. In contrast, colonization with E. coli strains ST150 and ST468 caused mild intestinal inflammation and triggered only low levels of pro-inflammatory cytokines, a response indistinguishable from that of E. coli-free control mice treated with DSS. The disease development observed with ST129 and ST375 colonization was not directly associated with their abundance in the GI tract as their levels did not change throughout DSS treatment, and no major differences in bacterial burden in the gut were observed among the strains tested. Data mining and in vivo neutralization identified IL-6 as a key cytokine responsible for the observed differential disease severity. Collectively, our results show that the capacity to exacerbate acute intestinal inflammation is a strain-specific trait that can potentially be overcome by blocking the pro-inflammatory immune responses that mediate intestinal tissue damage.


Subject(s)
Disease Susceptibility , Enterocolitis/etiology , Enterocolitis/metabolism , Escherichia coli , Gastrointestinal Microbiome , Interleukin-6/biosynthesis , Animals , Biopsy , Cytokines/biosynthesis , Disease Models, Animal , Disease Progression , Enterocolitis/pathology , Escherichia coli/classification , Escherichia coli/genetics , Female , Gastrointestinal Microbiome/immunology , Immunomodulation , Interleukin-6/metabolism , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Intestinal Mucosa/pathology , Male , Mice , Multilocus Sequence Typing , Phylogeny
15.
Elife ; 72018 09 18.
Article in English | MEDLINE | ID: mdl-30226190

ABSTRACT

The factors that govern assembly of the gut microbiota are insufficiently understood. Here, we test the hypothesis that inter-individual microbiota variation can arise solely from differences in the order and timing by which the gut is colonized early in life. Experiments in which mice were inoculated in sequence either with two complex seed communities or a cocktail of four bacterial strains and a seed community revealed that colonization order influenced both the outcome of community assembly and the ecological success of individual colonizers. Historical contingency and priority effects also occurred in Rag1-/- mice, suggesting that the adaptive immune system is not a major contributor to these processes. In conclusion, this study established a measurable effect of colonization history on gut microbiota assembly in a model in which host and environmental factors were strictly controlled, illuminating a potential cause for the high levels of unexplained individuality in host-associated microbial communities.


Subject(s)
Bacteria/growth & development , Gastrointestinal Microbiome , Adaptive Immunity , Animals , Biodiversity , Cecum/microbiology , Colony Count, Microbial , Homeodomain Proteins/metabolism , Mice, Inbred C57BL , Models, Animal , Time Factors
16.
ISME J ; 12(11): 2770-2784, 2018 11.
Article in English | MEDLINE | ID: mdl-30013162

ABSTRACT

The eco-evolutionary interactions among members of the vertebrate gut microbiota that ultimately result in host-specific communities are poorly understood. Here we show that Lactobacillus reuteri coexists with  species that belong to the Lactobacillus johnsonii cluster (L. johnsonii, L. gasseri, and L taiwanensis) in a taxonomically wide range of rodents, suggesting cohabitation over evolutionary times. The two dominant Lactobacillus species found in wild mice establish a commensalistic relationship in gastric biofilms when introduced together into germ-free mice in which L. reuteri facilitates colonization of L. taiwanensis. Genomic analysis revealed allopatric diversification in strains of both species that originated from geographically separated locations (Scotland and France). Allopatry of the strains resulted in reduced formation of mixed biofilms in vitro, indicating that interspecies interactions in gastric Lactobacillus-biofilms are the result of an adaptive evolutionary process that occurred in a biogeographical context. In summary, these findings suggest that members within the vertebrate gut microbiota can evolve inter-dependencies through ecological facilitation, which could represent one mechanism by which host-specific bacterial communities assemble across vertebrate species and an explanation for their spatial and biogeographic patterns.


Subject(s)
Biofilms/growth & development , Gastrointestinal Microbiome , Lactobacillus/physiology , Limosilactobacillus reuteri/physiology , Mice/microbiology , Animals , Biological Evolution , Genomics , Lactobacillus/genetics , Lactobacillus/isolation & purification , Limosilactobacillus reuteri/genetics , Limosilactobacillus reuteri/isolation & purification , Symbiosis/genetics
17.
Microbiology (Reading) ; 164(2): 154-162, 2018 02.
Article in English | MEDLINE | ID: mdl-29256851

ABSTRACT

Many enteric pathogens, including Salmonella and enteropathogenic and enterohemorrhagic Escherichia coli, express adhesins that recognize and bind to carbohydrate moieties expressed on epithelial cells. An attractive strategy for inhibiting bacterial adherence employs molecules that mimic these epithelial binding sites. Prebiotic oligosaccharides are non-digestible, fermentable fibres capable of modulating the gut microbiota. Moreover, they may act as molecular decoys that competitively inhibit adherence of pathogens to host cells. In particular, galactooligosaccharides (GOS) and other prebiotic fibres have been shown to inhibit pathogen adherence to epithelial cells in vitro. In the present study, we determined the ability of prophylactic GOS administration to reduce enteric pathogen adherence both in vitro and in vivo as well as protect against intestinal inflammation. GOS supplementation significantly reduced the adherence of the epithelial-adherent murine bacterial pathogen Citrobacter rodentium in a dose-dependent manner to the surface of epithelial cells in vitro. A 1- to 2-log reduction in bacterial adherence was observed at the lowest and highest doses tested, respectively. However, mouse studies revealed that treatment with GOS neither reduced the adherence of C. rodentium to the distal colon nor decreased its dissemination to systemic organs. Despite the absence of adherence inhibition, colonic disease scores for GOS-treated, C. rodentium-infected mice were significantly lower than those of untreated C. rodentium-infected animals (P=0.028). Together, these data suggest that GOS has a direct protective effect in ameliorating disease severity following C. rodentium infection through an anti-adherence-independent mechanism.


Subject(s)
Citrobacter rodentium/drug effects , Colitis/prevention & control , Dietary Supplements , Enterobacteriaceae Infections/prevention & control , Galactans/pharmacology , Prebiotics/administration & dosage , Animals , Bacterial Adhesion/drug effects , Cell Line, Tumor , Colitis/microbiology , Colitis/pathology , Colon/microbiology , Colon/pathology , Disease Resistance , Enterobacteriaceae Infections/microbiology , Enterobacteriaceae Infections/pathology , Epithelial Cells/microbiology , Feces/microbiology , Female , Galactans/administration & dosage , Humans , Mice, Inbred C57BL , Virulence
18.
Sci Rep ; 7(1): 17707, 2017 12 18.
Article in English | MEDLINE | ID: mdl-29255158

ABSTRACT

Inflammatory bowel diseases (IBD) are likely driven by aberrant immune responses directed against the resident microbiota. Although IBD is commonly associated with a dysbiotic microbiota enriched in putative pathobionts, the etiological agents of IBD remain unknown. Using a pathobiont-induced intestinal inflammation model and a defined bacterial community, we provide new insights into the immune-microbiota interactions during disease. In this model system, the pathobiont Helicobacter bilis instigates disease following sub-pathological dextran sulfate sodium treatment. We show that H. bilis causes mild inflammation in mono-associated mice, but severe disease in the presence of a microbiota, demonstrating synergy between the pathobiont and microbiota in exacerbating pathology. Remarkably, inflammation depends on the presence of H. bilis, but is marked by a predominant Th17 response against specific members of the microbiota and not the pathobiont, even upon the removal of the most immune-dominant taxa. Neither increases in pathobiont burden nor unique changes in immune-targeted microbiota member abundances are observed during disease. Collectively, our findings demonstrate that a pathobiont instigates inflammation without being the primary target of a Th17 response or by altering the microbiota community structure. Moreover, our findings point toward monitoring pathobiont-induced changes in microbiota immune targeting as a new concept in IBD diagnotics.


Subject(s)
Dysbiosis/immunology , Gastrointestinal Microbiome/immunology , Inflammatory Bowel Diseases/pathology , Animals , Bacteria , Colitis/pathology , Colon/pathology , Dextran Sulfate/adverse effects , Disease Models, Animal , Dysbiosis/pathology , Gastrointestinal Microbiome/physiology , Helicobacter/pathogenicity , Helicobacter Infections/immunology , Homeostasis , Inflammation , Inflammatory Bowel Diseases/etiology , Inflammatory Bowel Diseases/microbiology , Intestinal Mucosa/pathology , Intestines/pathology , Mice , Mice, Inbred C3H , Mice, Inbred C57BL , Microbiota , Th17 Cells/immunology
19.
J Microbiol Methods ; 135: 52-62, 2017 04.
Article in English | MEDLINE | ID: mdl-28189782

ABSTRACT

Changes in the gastrointestinal microbial community are frequently associated with chronic diseases such as Inflammatory Bowel Diseases. However, understanding the relationship of any individual taxon within the community to host physiology is made complex due to the diversity and individuality of the gut microbiota. Defined microbial communities such as the Altered Schaedler Flora (ASF) help alleviate the challenges of a diverse microbiota by allowing one to interrogate the relationship between individual bacterial species and host responses. An important aspect of studying these relationships with defined microbial communities is the ability to measure the population abundance and dynamics of each member. Herein, we describe the development of an improved ASF species-specific and sensitive real-time quantitative polymerase chain reaction (qPCR) for use with SYBR Green chemistry to accurately assess individual ASF member abundance. This approach targets hypervariable regions V1 through V3 of the 16S rRNA gene of each ASF taxon to enhance assay specificity. We demonstrate the reproducibility, sensitivity and application of this new method by quantifying each ASF bacterium in two inbred mouse lines. We also used it to assess changes in ASF member abundance before and after acute antibiotic perturbation of the community as well as in mice fed two different diets. Additionally, we describe a nested PCR assay for the detection of lowly abundant ASF members. Altogether, this improved qPCR method will facilitate gnotobiotic research involving the ASF community by allowing for reproducible quantification of its members under various physiological conditions.


Subject(s)
Bacteria/genetics , DNA, Bacterial/genetics , DNA, Bacterial/isolation & purification , Gastrointestinal Microbiome/genetics , Germ-Free Life , Real-Time Polymerase Chain Reaction/methods , Animals , Anti-Bacterial Agents , Bacteria/classification , Cecum/microbiology , Colony Count, Microbial , Diet , Feces/microbiology , Female , Gastrointestinal Tract/microbiology , Genes, Bacterial , Host-Pathogen Interactions , Male , Mice , Mice, Inbred C3H , Mice, Inbred C57BL , Models, Biological , Polymerase Chain Reaction/methods , RNA, Ribosomal, 16S/genetics , Reproducibility of Results , Sensitivity and Specificity , Species Specificity , rRNA Operon/genetics
20.
Microbiome ; 5(1): 12, 2017 02 07.
Article in English | MEDLINE | ID: mdl-28166818

ABSTRACT

BACKGROUND: Obesity-related diseases, including type 2 diabetes and cardiovascular disease, have reached epidemic proportions in industrialized nations, and dietary interventions for their prevention are therefore important. Resistant starches (RS) improve insulin sensitivity in clinical trials, but the mechanisms underlying this health benefit remain poorly understood. Because RS fermentation by the gut microbiota results in the formation of physiologically active metabolites, we chose to specifically determine the role of the gut microbiota in mediating the metabolic benefits of RS. To achieve this goal, we determined the effects of RS when added to a Western diet on host metabolism in mice with and without a microbiota. RESULTS: RS feeding of conventionalized mice improved insulin sensitivity and redressed some of the Western diet-induced changes in microbiome composition. However, parallel experiments in germ-free littermates revealed that RS-mediated improvements in insulin levels also occurred in the absence of a microbiota. RS reduced gene expression of adipose tissue macrophage markers and altered cecal concentrations of several bile acids in both germ-free and conventionalized mice; these effects were strongly correlated with the metabolic benefits, providing a potential microbiota-independent mechanism to explain the physiological effects of RS. CONCLUSIONS: This study demonstrated that some metabolic benefits exerted by dietary RS, especially improvements in insulin levels, occur independently of the microbiota and could involve alterations in the bile acid cycle and adipose tissue immune modulation. This work also sets a precedent for future mechanistic studies aimed at establishing the causative role of the gut microbiota in mediating the benefits of bioactive compounds and functional foods.


Subject(s)
Dietary Carbohydrates/administration & dosage , Gastrointestinal Microbiome/physiology , Insulin Resistance , Starch/administration & dosage , Starch/chemistry , Adipose Tissue/immunology , Adipose Tissue/metabolism , Animals , Bile/physiology , Diet, Western , Insulin/blood , Macrophages/immunology , Macrophages/metabolism , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...