Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Microorganisms ; 12(4)2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38674605

ABSTRACT

The identification of four potential nonstructural 5 (NS5) residues-K28, K45, V335, and S749-that share the same amino acid preference in STAT2-interacting flaviviruses [Dengue virus (DENV) and Zika virus (ZIKV)], but not in STAT2-non-interacting flaviviruses [West Nile virus (WNV) and/or Yellow fever virus (YFV)] from an alignment of multiple flavivirus NS5 sequences, implied a possible association with the efficiency of ZIKV to antagonize the human signal transducer and activator of transcription factor 2 (STAT2). Through site-directed mutagenesis and reverse genetics, mutational impacts of these residues on ZIKV growth in vitro and STAT2 antagonism were assessed using virus growth kinetics assays and STAT2 immunoblotting. The results showed that mutations at the residue K28 significantly reduced the efficiency of ZIKV to antagonize STAT2. Further investigation involving residue K28 demonstrated its additional effects on the phenotypes of ZIKV-NS5 nuclear bodies. These findings demonstrate that K28, identified from sequence alignment, is an important determinant of replication and STAT2 antagonism by ZIKV.

2.
mBio ; 14(4): e0138823, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37489888

ABSTRACT

Powassan virus (POWV) is an emerging tick-borne Flavivirus that causes lethal encephalitis and long-term neurologic damage. Currently, there are no POWV therapeutics, licensed vaccines, or reverse genetics systems for producing infectious POWVs from recombinant DNA. Using a circular polymerase extension reaction (CPER), we generated recombinant LI9 (recLI9) POWVs with attenuating NS1 protein mutations and a recLI9-split-eGFP reporter virus. NS1 proteins are highly conserved glycoproteins that regulate replication, spread, and neurovirulence. POWV NS1 contains three putative N-linked glycosylation sites that we modified individually in infectious recLI9 mutants (N85Q, N208Q, and N224Q). NS1 glycosylation site mutations reduced replication kinetics and were attenuated, with 1-2 log decreases in titer. Severely attenuated recLI9-N224Q exhibited a 2- to 3-day delay in focal cell-to-cell spread and reduced NS1 secretion but was lethal when intracranially inoculated into suckling mice. However, footpad inoculation of recLI9-N224Q resulted in the survival of 80% of mice and demonstrated that NS1-N224Q mutations reduce POWV neuroinvasion in vivo. To monitor NS1 trafficking, we CPER fused a split GFP11-tag to the NS1 C-terminus and generated an infectious reporter virus, recLI9-NS1-GFP11. Cells infected with recLI9-NS1-GFP11 revealed NS1 trafficking in live cells and the novel formation of large NS1-lined intracellular vesicles. An infectious recLI9-NS1-GFP11 reporter virus permits real-time analysis of NS1 functions in POWV replication, assembly, and secretion and provides a platform for evaluating antiviral compounds. Collectively, our robust POWV reverse genetics system permits analysis of viral spread and neurovirulence determinants in vitro and in vivo and enables the rational genetic design of live attenuated POWV vaccines. IMPORTANCE Our findings newly establish a mechanism for genetically modifying Powassan viruses (POWVs), systematically defining pathogenic determinants and rationally designing live attenuated POWV vaccines. This initial study demonstrates that mutating POWV NS1 glycosylation sites attenuates POWV spread and neurovirulence in vitro and in vivo. Our findings validate a robust circular polymerase extension reaction approach as a mechanism for developing, and evaluating, attenuated genetically modified POWVs. We further designed an infectious GFP-tagged reporter POWV that permits us to monitor secretory trafficking of POWV in live cells, which can be applied to screen potential POWV replication inhibitors. This robust system for modifying POWVs provides the ability to define attenuating POWV mutations and create genetically attenuated recPOWV vaccines.


Subject(s)
Communicable Diseases , Encephalitis Viruses, Tick-Borne , Humans , Glycosylation , Reverse Genetics , Skin
3.
Sci Total Environ ; 876: 162704, 2023 Jun 10.
Article in English | MEDLINE | ID: mdl-36907397

ABSTRACT

The widespread COVID-19 pandemic caused by the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) necessitated measures aimed at preventing the spread of SARS-CoV-2. To mitigate the risk of fomite-mediated transmission, environmental cleaning and disinfection regimes have been widely implemented. However, conventional cleaning approaches such as surface wipe downs can be laborious and more efficient and effective disinfecting technologies are needed. Gaseous ozone disinfection is one technology which has been shown to be effective in laboratory studies. Here, we evaluated its efficacy and feasibility in a public bus setting, using murine hepatitis virus (a related betacoronavirus surrogate) and the bacteria Staphylococcus aureus as test organisms. An optimal gaseous ozone regime resulted in a 3.65-log reduction of murine hepatitis virus and a 4.73-log reduction of S. aureus, and decontamination efficacy correlated with exposure duration and relative humidity in the application space. These findings demonstrated gaseous ozone disinfection in field settings which can be suitably translated to public and private fleets that share analogous characteristics.


Subject(s)
Anti-Infective Agents , COVID-19 , Ozone , Mice , Animals , Humans , COVID-19/prevention & control , SARS-CoV-2 , Decontamination/methods , Staphylococcus aureus , Pandemics/prevention & control , Disinfection/methods
4.
Int J Infect Dis ; 131: 40-45, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36933611

ABSTRACT

We conducted a prospective environmental surveillance study to investigate the air, surface, dust, and water contamination of a room occupied by a patient infected with mpox virus (MPXV) at various stages of the illness. The patient tested positive for MPXV from a throat swab and skin lesions. Environmental sampling was conducted in a negative pressure room with 12 unidirectional high efficiency particulate air filter (HEPA) air changes per hour and daily cleaning of the surfaces. A total of 179 environmental samples were collected on days 7, 8, 13, and 21 of illness. Among the days of sampling, air, surface, and dust contamination showed the highest contamination rates on day 7 and 8 of illness, with a gradual decline to the lowest contamination level by day 21. Viable MPXV was isolated from surfaces and dust samples and no viable virus was isolated from the air and water samples.


Subject(s)
Monkeypox virus , Patients' Rooms , Humans , Dust , Monkeypox virus/isolation & purification , Prospective Studies , Water
5.
Microbiol Spectr ; 11(1): e0279622, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36682882

ABSTRACT

The efficient and accurate diagnosis of dengue, a major mosquito-borne disease, is of primary importance for clinical care, surveillance, and outbreak control. The identification of specific dengue virus serotype 1 (DENV-1) to DENV-4 can help in understanding the transmission dynamics and spread of dengue disease. The four rapid low-resource serotype-specific dengue tests use a simple sample preparation reagent followed by reverse transcription-isothermal recombinase polymerase amplification (RT-RPA) combined with lateral flow detection (LFD) technology. Results are obtained directly from clinical sample matrices in 35 min, requiring only a heating block and pipettes for liquid handling. In addition, we demonstrate that the rapid sample preparation step inactivates DENV, improving laboratory safety. Human plasma and serum were spiked with DENV, and DENV was detected with analytical sensitivities of 333 to 22,500 median tissue culture infectious doses (TCID50)/mL. The analytical sensitivities in blood were 94,000 to 333,000 TCID50/mL. Analytical specificity testing confirmed that each test could detect multiple serotype-specific strains but did not respond to strains of other serotypes, closely related flaviviruses, or chikungunya virus. Clinical testing on 80 human serum samples demonstrated test specificities of between 94 and 100%, with a DENV-2 test sensitivity of 100%, detecting down to 0.004 PFU/µL, similar to the sensitivity of the PCR test; the other DENV tests detected down to 0.03 to 10.9 PFU/µL. Collectively, our data suggest that some of our rapid dengue serotyping tests provide a potential alternative to conventional labor-intensive RT-quantitative PCR (RT-qPCR) detection, which requires expensive thermal cycling instrumentation, technical expertise, and prolonged testing times. Our tests provide performance and speed without compromising specificity in human plasma and serum and could become promising tools for the detection of high DENV loads in resource-limited settings. IMPORTANCE The efficient and accurate diagnosis of dengue, a major mosquito-borne disease, is of primary importance for clinical care, surveillance, and outbreak control. This study describes the evaluation of four rapid low-resource serotype-specific dengue tests for the detection of specific DENV serotypes in clinical sample matrices. The tests use a simple sample preparation reagent followed by reverse transcription-isothermal recombinase polymerase amplification (RT-RPA) combined with lateral flow detection (LFD) technology. These tests have several advantages compared to RT-qPCR detection, such as a simple workflow, rapid sample processing and turnaround times (35 min from sample preparation to detection), minimal equipment needs, and improved laboratory safety through the inactivation of the virus during the sample preparation step. The low-resource formats of these rapid dengue serotyping tests have the potential to support effective dengue disease surveillance and enhance the diagnostic testing capacity in resource-limited countries with both endemic dengue and intense coronavirus disease 2019 (COVID-19) transmission.


Subject(s)
Dengue Virus , Dengue , Humans , Dengue/diagnosis , Dengue Virus/classification , Dengue Virus/isolation & purification , Rapid Diagnostic Tests , Recombinases , Sensitivity and Specificity , Serogroup
6.
Trials ; 23(1): 1023, 2022 Dec 17.
Article in English | MEDLINE | ID: mdl-36528590

ABSTRACT

BACKGROUND: Dengue is a severe environmental public health challenge in tropical and subtropical regions. In Singapore, decreasing seroprevalence and herd immunity due to successful vector control has paradoxically led to increased transmission potential of the dengue virus. We have previously demonstrated that incompatible insect technique coupled with sterile insect technique (IIT-SIT), which involves the release of X-ray-irradiated male Wolbachia-infected mosquitoes, reduced the Aedes aegypti population by 98% and dengue incidence by 88%. This novel vector control tool is expected to be able to complement current vector control to mitigate the increasing threat of dengue on a larger scale. We propose a multi-site protocol to study the efficacy of IIT-SIT at reducing dengue incidence. METHODS/DESIGN: The study is designed as a parallel, two-arm, non-blinded cluster-randomized (CR) controlled trial to be conducted in high-rise public housing estates in Singapore, an equatorial city-state. The aim is to determine whether large-scale deployment of male Wolbachia-infected Ae. aegypti mosquitoes can significantly reduce dengue incidence in intervention clusters. We will use the CR design, with the study area comprising 15 clusters with a total area of 10.9 km2, covering approximately 722,204 residents in 1713 apartment blocks. Eight clusters will be randomly selected to receive the intervention, while the other seven will serve as non-intervention clusters. Intervention efficacy will be estimated through two primary endpoints: (1) odds ratio of Wolbachia exposure distribution (i.e., probability of living in an intervention cluster) among laboratory-confirmed reported dengue cases compared to test-negative controls and (2) laboratory-confirmed reported dengue counts normalized by population size in intervention versus non-intervention clusters. DISCUSSION: This study will provide evidence from a multi-site, randomized controlled trial for the efficacy of IIT-SIT in reducing dengue incidence. The trial will provide valuable information to estimate intervention efficacy for this novel vector control approach and guide plans for integration into national vector control programs in dengue-endemic settings. TRIAL REGISTRATION: ClinicalTrials.gov, identifier: NCT05505682 . Registered on 16 August 2022. Retrospectively registered.


Subject(s)
Aedes , Dengue , Wolbachia , Animals , Male , Humans , Mosquito Control/methods , Dengue/epidemiology , Dengue/prevention & control , Mosquito Vectors , Incidence , Seroepidemiologic Studies , Singapore/epidemiology , Randomized Controlled Trials as Topic
7.
Sci Adv ; 8(48): eadd8095, 2022 12 02.
Article in English | MEDLINE | ID: mdl-36449607

ABSTRACT

All flaviviruses, including Zika virus, produce noncoding subgenomic flaviviral RNA (sfRNA), which plays an important role in viral pathogenesis. However, the exact mechanism of how sfRNA enables viral evasion of antiviral response is not well defined. Here, we show that sfRNA is required for transplacental virus dissemination in pregnant mice and subsequent fetal brain infection. We also show that sfRNA promotes apoptosis of neural progenitor cells in human brain organoids, leading to their disintegration. In infected human placental cells, sfRNA inhibits multiple antiviral pathways and promotes apoptosis, with signal transducer and activator of transcription 1 (STAT1) identified as a key shared factor. We further show that the production of sfRNA leads to reduced phosphorylation and nuclear translocation of STAT1 via a mechanism that involves sfRNA binding to and stabilizing viral protein NS5. Our results suggest the cooperation between viral noncoding RNA and a viral protein as a novel strategy for counteracting antiviral responses.


Subject(s)
Zika Virus Infection , Zika Virus , Pregnancy , Humans , Female , Animals , Mice , Phosphorylation , Viral Proteins , Placenta , RNA, Viral/genetics , Antiviral Agents , RNA, Untranslated/genetics , Zika Virus Infection/genetics , STAT1 Transcription Factor/genetics
8.
ACS Cent Sci ; 8(5): 527-545, 2022 May 25.
Article in English | MEDLINE | ID: mdl-35647275

ABSTRACT

Heparan sulfate (HS) is a cell surface polysaccharide recently identified as a coreceptor with the ACE2 protein for the S1 spike protein on SARS-CoV-2 virus, providing a tractable new therapeutic target. Clinically used heparins demonstrate an inhibitory activity but have an anticoagulant activity and are supply-limited, necessitating alternative solutions. Here, we show that synthetic HS mimetic pixatimod (PG545), a cancer drug candidate, binds and destabilizes the SARS-CoV-2 spike protein receptor binding domain and directly inhibits its binding to ACE2, consistent with molecular modeling identification of multiple molecular contacts and overlapping pixatimod and ACE2 binding sites. Assays with multiple clinical isolates of SARS-CoV-2 virus show that pixatimod potently inhibits the infection of monkey Vero E6 cells and physiologically relevant human bronchial epithelial cells at safe therapeutic concentrations. Pixatimod also retained broad potency against variants of concern (VOC) including B.1.1.7 (Alpha), B.1.351 (Beta), B.1.617.2 (Delta), and B.1.1.529 (Omicron). Furthermore, in a K18-hACE2 mouse model, pixatimod significantly reduced SARS-CoV-2 viral titers in the upper respiratory tract and virus-induced weight loss. This demonstration of potent anti-SARS-CoV-2 activity tolerant to emerging mutations establishes proof-of-concept for targeting the HS-Spike protein-ACE2 axis with synthetic HS mimetics and provides a strong rationale for clinical investigation of pixatimod as a potential multimodal therapeutic for COVID-19.

9.
PLoS Negl Trop Dis ; 16(5): e0010426, 2022 05.
Article in English | MEDLINE | ID: mdl-35536870

ABSTRACT

During 2015-2016, outbreaks of Zika virus (ZIKV) occurred in Southeast Asia and the Americas. Most ZIKV infections in humans are asymptomatic, while clinical manifestation is usually a self-limiting febrile disease with maculopapular rash. However, ZIKV is capable of inducing a range of severe neurological complications collectively described as congenital Zika syndrome (CZS). Notably, the scale and magnitude of outbreaks in Southeast Asia were significantly smaller compared to those in the Americas. Sequence comparison between epidemic-associated ZIKV strains from Southeast Asia with those from the Americas revealed a methionine to valine substitution at residue position 114 of the NS5 protein (NS5-M114V) in all the American isolates. Using an American isolate of ZIKV (Natal), we investigated the impact of NS5-M114V mutation on virus replication in cells, virulence in interferon (IFN) α/ß receptor knockout (Ifnar-/-) mice, as well as replication and transmission potential in Aedes aegypti mosquitoes. We demonstrated that NS5-M114V mutation had insignificant effect on ZIKV replication efficiency in cells, its ability to degrade STAT2, and virulence in vivo, albeit viremia was slightly prolonged in mice. Furthermore, NS5-M114V mutation decreased mosquito infection and dissemination rates but had no effect on virus secretion into the saliva. Taken together, our findings support the notion that NS5-M114V mutation is unlikely to be a major determinant for virus replication and transmission potential.


Subject(s)
Aedes , Viral Nonstructural Proteins/genetics , Zika Virus Infection , Zika Virus , Animals , Interferon-alpha , Interferon-beta/genetics , Mice , Mosquito Vectors , Mutation , United States , Virus Replication
10.
Nat Commun ; 12(1): 3431, 2021 06 08.
Article in English | MEDLINE | ID: mdl-34103499

ABSTRACT

The current COVID-19 pandemic is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We demonstrate that despite the large size of the viral RNA genome (~30 kb), infectious full-length cDNA is readily assembled in vitro by a circular polymerase extension reaction (CPER) methodology without the need for technically demanding intermediate steps. Overlapping cDNA fragments are generated from viral RNA and assembled together with a linker fragment containing CMV promoter into a circular full-length viral cDNA in a single reaction. Transfection of the circular cDNA into mammalian cells results in the recovery of infectious SARS-CoV-2 virus that exhibits properties comparable to the parental virus in vitro and in vivo. CPER is also used to generate insect-specific Casuarina virus with ~20 kb genome and the human pathogens Ross River virus (Alphavirus) and Norovirus (Calicivirus), with the latter from a clinical sample. Additionally, reporter and mutant viruses are generated and employed to study virus replication and virus-receptor interactions.


Subject(s)
Reverse Genetics , SARS-CoV-2/genetics , Amino Acid Sequence , Animals , Base Sequence , Chlorocebus aethiops , Culicidae/virology , Furin/metabolism , Genome, Viral , HEK293 Cells , Humans , Mice , Mutation/genetics , NIH 3T3 Cells , Polymerase Chain Reaction , RAW 264.7 Cells , Receptors, Virus/metabolism , Vero Cells , Viral Proteins/chemistry , Virus Replication
11.
Sci Total Environ ; 786: 147419, 2021 Sep 10.
Article in English | MEDLINE | ID: mdl-33964781

ABSTRACT

Wastewater-based surveillance for SARS-CoV-2 has been used for the early warning of transmission or objective trending of the population-level disease prevalence. Here, we describe a new use-case of conducting targeted wastewater surveillance to complement clinical testing for case identification in a small community at risk of COVID-19 transmission. On 2 July 2020, a cluster of COVID-19 cases in two unrelated households residing on different floors in the same stack of an apartment building was reported in Singapore. After cases were conveyed to healthcare facilities and six healthy household contacts were quarantined in their respective apartments, wastewater surveillance was implemented for the entire residential block. SARS-CoV-2 was subsequently detected in wastewaters in an increasing frequency and concentration, despite the absence of confirmed COVID-19 cases, suggesting the presence of fresh case/s in the building. Phone interviews of six residents in quarantine revealed that no one was symptomatic (fever/respiratory illness). However, when nasopharyngeal swabs from six quarantined residents were tested by PCR tests, one was positive for SARS-CoV-2. The positive case reported episodes of diarrhea and the case's stool sample was also positive for SARS-CoV-2, explaining the SARS-CoV-2 spikes observed in wastewaters. After the case was conveyed to a healthcare facility, wastewaters continued to yield positive signals for five days, though with a decreasing intensity. This was attributed to the return of recovered cases, who had continued to shed the virus. Our findings demonstrate the utility of wastewater surveillance as a non-intrusive tool to monitor high-risk COVID-19 premises, which is able to trigger individual tests for case detection, highlighting a new use-case for wastewater testing.


Subject(s)
COVID-19 , Humans , Prevalence , SARS-CoV-2 , Singapore , Wastewater
12.
Front Microbiol ; 12: 625136, 2021.
Article in English | MEDLINE | ID: mdl-33643253

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has been identified as the causative agent of coronavirus disease 2019 and is capable of human-to-human transmission and rapid global spread. The rapid emergence and global spread of SARS-CoV-2 has encouraged the establishment of a rapid, sensitive, and reliable viral detection and quantification methodology. Here, we present an alternative assay, termed immuno-plaque assay (iPA), which utilizes a combination of plaque assay and immunofluorescence techniques. We have extensively optimized the conditions for SARS-CoV-2 infection and demonstrated the great flexibility of iPA detection using several antibodies and dual-probing with two distinct epitope-specific antibodies. In addition, we showed that iPA could be utilized for ultra-high-throughput viral titration and neutralization assay within 24 h and is amenable to a 384-well format. These advantages will significantly accelerate SARS-CoV-2 research outcomes during this pandemic period.

13.
Environ Res ; 196: 110944, 2021 05.
Article in English | MEDLINE | ID: mdl-33647300

ABSTRACT

The COVID-19 pandemic has revealed gaps in our understanding of safe, effective and efficient means of disinfecting high use public spaces. Whilst this creates an opportunity for development and application of innovative approaches such as unmanned aerial vehicle (UAV) based disinfection, unregulated outdoor disinfection using chlorine has led to environmental and public health risks. This study has quantified the efficiency, safety and efficacy of UAV-based spraying of aqueous ozone. Optimised UAV flight characteristics of 4.7 km/h at 1.7 m elevation spraying 2.4 L/min were able to provide >97% and >92% coverage of a 1 m and 2 m wide swath respectively. During spraying operations using 1 mg/L aqueous ozone, atmospheric concentrations of ozone remained within background levels (<0.04 ppm). Highly efficient inactivation of two different isolates of SARS-CoV-2 virus was achieved at aqueous ozone concentrations of 0.75 mg/L after an incubation period of only 5 min, with 0.375 mg/L achieving 82-91.5% inactivation in this time. Exposure of diamondback moth larvae and parasitic wasps to 1 mg/L aqueous ozone did not significantly affect their survivorship. These results indicate for the first time that aqueous ozone may provide the required balance between human and environmental safety and viral inactivation efficacy for targeted application in high risk outdoor settings.


Subject(s)
COVID-19 , Disinfectants , Ozone , Disinfection , Humans , Pandemics , SARS-CoV-2
14.
Elife ; 102021 02 16.
Article in English | MEDLINE | ID: mdl-33588989

ABSTRACT

Influenza virus has a high mutation rate, such that within one host different viral variants can emerge. Evidence suggests that influenza virus variants are more prevalent in pregnant and/or obese individuals due to their impaired interferon response. We have recently shown that the non-allergic, paucigranulocytic subtype of asthma is associated with impaired type I interferon production. Here, we seek to address if this is associated with an increased emergence of influenza virus variants. Compared to controls, mice with paucigranulocytic asthma had increased disease severity and an increased emergence of influenza virus variants. Specifically, PB1 mutations exclusively detected in asthmatic mice were associated with increased polymerase activity. Furthermore, asthmatic host-derived virus led to increased disease severity in wild-type mice. Taken together, these data suggest that at least a subset of patients with asthma may be more susceptible to severe influenza and may be a possible source of new influenza virus variants.


Subject(s)
Asthma/virology , Influenza A Virus, H1N1 Subtype/pathogenicity , Orthomyxoviridae Infections/virology , Animals , Female , Host-Pathogen Interactions , Male , Mice , Mice, Inbred C57BL , Receptor for Advanced Glycation End Products/deficiency
15.
Science ; 371(6525): 190-194, 2021 01 08.
Article in English | MEDLINE | ID: mdl-33414219

ABSTRACT

There are no approved flaviviral therapies and the development of vaccines against flaviruses has the potential of being undermined by antibody-dependent enhancement (ADE). The flavivirus nonstructural protein 1 (NS1) is a promising vaccine antigen with low ADE risk but has yet to be explored as a broad-spectrum therapeutic antibody target. Here, we provide the structural basis of NS1 antibody cross-reactivity through cocrystallization of the antibody 1G5.3 with NS1 proteins from dengue and Zika viruses. The 1G5.3 antibody blocks multi-flavivirus NS1-mediated cell permeability in disease-relevant cell lines, and therapeutic application of 1G5.3 reduces viremia and improves survival in dengue, Zika, and West Nile virus murine models. Finally, we demonstrate that 1G5.3 protection is independent of effector function, identifying the 1G5.3 epitope as a key site for broad-spectrum antiviral development.


Subject(s)
Antibodies, Neutralizing/chemistry , Antibodies, Viral/chemistry , Dengue Virus/immunology , Viral Nonstructural Proteins/immunology , West Nile virus/immunology , Zika Virus/immunology , Animals , Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/immunology , Antibodies, Viral/therapeutic use , CHO Cells , Cell Line , Cricetulus , Cross Reactions , Dengue/prevention & control , Dengue/therapy , Disease Models, Animal , Humans , Mice , Protein Domains , Viral Nonstructural Proteins/chemistry , Viremia/therapy , West Nile Fever/prevention & control , West Nile Fever/therapy , Zika Virus Infection/prevention & control , Zika Virus Infection/therapy
16.
mSphere ; 5(3)2020 06 17.
Article in English | MEDLINE | ID: mdl-32554715

ABSTRACT

We describe two new insect-specific flaviviruses (ISFs) isolated from mosquitoes in Australia, Binjari virus (BinJV) and Hidden Valley virus (HVV), that grow efficiently in mosquito cells but fail to replicate in a range of vertebrate cell lines. Phylogenetic analysis revealed that BinJV and HVV were closely related (90% amino acid sequence identity) and clustered with lineage II (dual-host affiliated) ISFs, including the Lammi and Nounané viruses. Using a panel of monoclonal antibodies prepared to BinJV viral proteins, we confirmed a close relationship between HVV and BinJV and revealed that they were antigenically quite divergent from other lineage II ISFs. We also constructed chimeric viruses between BinJV and the vertebrate-infecting West Nile virus (WNV) by swapping the structural genes (prM and E) to produce BinJ/WNVKUN-prME and WNVKUN/BinJV-prME. This allowed us to assess the role of different regions of the BinJV genome in vertebrate host restriction and revealed that while BinJV structural proteins facilitated entry to vertebrate cells, the process was inefficient. In contrast, the BinJV replicative components in wild-type BinJV and BinJ/WNVKUN-prME failed to initiate replication in a wide range of vertebrate cell lines at 37°C, including cells lacking components of the innate immune response. However, trace levels of replication of BinJ/WNVKUN-prME could be detected in some cultures of mouse embryo fibroblasts (MEFs) deficient in antiviral responses (IFNAR-/- MEFs or RNase L-/- MEFs) incubated at 34°C after inoculation. This suggests that BinJV replication in vertebrate cells is temperature sensitive and restricted at multiple stages of cellular infection, including inefficient cell entry and susceptibility to antiviral responses.IMPORTANCE The globally important flavivirus pathogens West Nile virus, Zika virus, dengue viruses, and yellow fever virus can infect mosquito vectors and be transmitted to humans and other vertebrate species in which they cause significant levels of disease and mortality. However, the subgroup of closely related flaviviruses, known as lineage II insect-specific flaviviruses (Lin II ISFs), only infect mosquitoes and cannot replicate in cells of vertebrate origin. Our data are the first to uncover the mechanisms that restrict the growth of Lin II ISFs in vertebrate cells and provides new insights into the evolution of these viruses and the mechanisms associated with host switching that may allow new mosquito-borne viral diseases to emerge. The new reagents generated in this study, including the first Lin II ISF-reactive monoclonal antibodies and Lin II ISF mutants and chimeric viruses, also provide new tools and approaches to enable further research advances in this field.


Subject(s)
Antigens, Viral/genetics , Culicidae/virology , Flavivirus/classification , Flavivirus/immunology , Phylogeny , Virus Replication , Animals , Australia , Cell Line , Chickens , Chlorocebus aethiops , Evolution, Molecular , Flavivirus/isolation & purification , Genome, Viral , Host Microbial Interactions , Humans , Mammals , Mosquito Vectors/virology , Species Specificity , Vero Cells
17.
Vaccines (Basel) ; 8(2)2020 May 29.
Article in English | MEDLINE | ID: mdl-32485930

ABSTRACT

Virulent strains of West Nile virus (WNV) are highly neuro-invasive and human infection is potentially lethal. However, no vaccine is currently available for human use. Here, we report the immunogenicity and protective efficacy of a vaccine derived from a chimeric virus, which was constructed using the structural proteins (prM and E) of the Kunjin strain of WNV (WNVKUN) and the genome backbone of the insect-specific flavivirus Binjari virus (BinJV). This chimeric virus (BinJ/WNVKUN-prME) exhibits an insect-specific phenotype and does not replicate in vertebrate cells. Importantly, it authentically presents the prM-E proteins of WNVKUN, which is antigenically very similar to other WNV strains and lineages. Therefore BinJ/WNVKUN-prME represents an excellent candidate to assess as a vaccine against virulent WNV strains, including the highly pathogenic WNVNY99. When CD1 mice were immunized with purified BinJ/WNVKUN-prME, they developed robust neutralizing antibody responses after a single unadjuvanted dose of 1 to 5 µg. We further demonstrated complete protection against viremia and mortality after lethal challenge with WNVNY99, with no clinical or subclinical pathology observed in vaccinated animals. These data suggest that BinJ/WNVKUN-prME represents a safe and effective WNV vaccine candidate that warrants further investigation for use in humans or in veterinary applications.

18.
Nat Commun ; 11(1): 2205, 2020 05 05.
Article in English | MEDLINE | ID: mdl-32371874

ABSTRACT

Flaviviruses, including Zika virus (ZIKV), utilise host mRNA degradation machinery to produce subgenomic flaviviral RNA (sfRNA). In mammalian hosts, this noncoding RNA facilitates replication and pathogenesis of flaviviruses by inhibiting IFN-signalling, whereas the function of sfRNA in mosquitoes remains largely elusive. Herein, we conduct a series of in vitro and in vivo experiments to define the role of ZIKV sfRNA in infected Aedes aegypti employing viruses deficient in production of sfRNA. We show that sfRNA-deficient viruses have reduced ability to disseminate and reach saliva, thus implicating the role for sfRNA in productive infection and transmission. We also demonstrate that production of sfRNA alters the expression of mosquito genes related to cell death pathways, and prevents apoptosis in mosquito tissues. Inhibition of apoptosis restored replication and transmission of sfRNA-deficient mutants. Hence, we propose anti-apoptotic activity of sfRNA as the mechanism defining its role in ZIKV transmission.


Subject(s)
Aedes/genetics , Apoptosis/genetics , Mosquito Vectors/genetics , RNA, Viral/genetics , Zika Virus Infection/genetics , Zika Virus/genetics , Aedes/cytology , Aedes/virology , Animals , Cells, Cultured , Chlorocebus aethiops , Gene Expression Regulation , Humans , Insect Proteins/genetics , Insect Proteins/metabolism , Mosquito Vectors/cytology , Mosquito Vectors/virology , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Untranslated/genetics , RNA, Untranslated/metabolism , RNA, Viral/metabolism , Vero Cells , Virus Replication/genetics , Zika Virus/physiology , Zika Virus Infection/transmission , Zika Virus Infection/virology
19.
Sci Transl Med ; 11(522)2019 12 11.
Article in English | MEDLINE | ID: mdl-31826984

ABSTRACT

Flaviviruses such as dengue, yellow fever, Zika, West Nile, and Japanese encephalitis virus present substantial global health burdens. New vaccines are being sought to address safety and manufacturing issues associated with current live attenuated vaccines. Here, we describe a new insect-specific flavivirus, Binjari virus, which was found to be remarkably tolerant for exchange of its structural protein genes (prME) with those of the aforementioned pathogenic vertebrate-infecting flaviviruses (VIFs). Chimeric BinJ/VIF-prME viruses remained replication defective in vertebrate cells but replicated with high efficiency in mosquito cells. Cryo-electron microscopy and monoclonal antibody binding studies illustrated that the chimeric BinJ/VIF-prME virus particles were structurally and immunologically similar to their parental VIFs. Pilot manufacturing in C6/36 cells suggests that high yields can be reached up to 109.5 cell culture infectious dose/ml or ≈7 mg/liter. BinJ/VIF-prME viruses showed utility in diagnostic (microsphere immunoassays and ELISAs using panels of human and equine sera) and vaccine applications (illustrating protection against Zika virus challenge in murine IFNAR-/- mouse models). BinJ/VIF-prME viruses thus represent a versatile, noninfectious (for vertebrate cells), high-yield technology for generating chimeric flavivirus particles with low biocontainment requirements.


Subject(s)
Chimera/immunology , Flavivirus Infections/diagnosis , Flavivirus Infections/immunology , Flavivirus/immunology , Insect Viruses/physiology , Recombination, Genetic/genetics , Viral Vaccines/immunology , Animals , Antigens, Viral/immunology , Flavivirus/ultrastructure , Horses , Humans , Immunoassay , Male , Mice, Inbred C57BL , Phylogeny , Receptor, Interferon alpha-beta/deficiency , Receptor, Interferon alpha-beta/metabolism , Vaccination , Virion/metabolism , Virus Replication
20.
BMC Genomics ; 20(1): 474, 2019 Jun 10.
Article in English | MEDLINE | ID: mdl-31182021

ABSTRACT

BACKGROUND: Extracellular vesicles (EVs) are small membrane vesicles secreted by the cells that mediate intercellular transfer of molecules and contribute to transduction of various signals. Viral infection and action of pro-inflammatory cytokines has been shown to alter molecular composition of EV content. Transfer of antiviral proteins by EVs is thought to contribute to the development of inflammation and antiviral state. Altered incorporation of selected host RNAs into EVs in response to infection has also been demonstrated for several viruses, but not for WNV. Considering the medical significance of flaviviruses and the importance of deeper knowledge about the mechanisms of flavivirus-host interactions we assessed the ability of West Nile virus (WNV) and type I interferon (IFN), the main cytokine regulating antiviral response to WNV, to alter the composition of EV RNA cargo. RESULTS: We employed next generation sequencing to perform transcriptome-wide profiling of RNA cargo in EVs produced by cells infected with WNV or exposed to IFN-alpha. RNA profile of EVs secreted by uninfected cells was also determined and used as a reference. We found that WNV infection significantly changed the levels of certain host microRNAs (miRNAs), small noncoding RNAs (sncRNAs) and mRNAs incorporated into EVs. Treatment with IFN-alpha also altered miRNA and mRNA profiles in EV but had less profound effect on sncRNAs. Functional classification of RNAs differentially incorporated into EVs upon infection and in response to IFN-alpha treatment demonstrated association of enriched in EVs mRNAs and miRNAs with viral processes and pro-inflammatory pathways. Further analysis revealed that WNV infection and IFN-alpha treatment changed the levels of common and unique mRNAs and miRNAs in EVs and that IFN-dependent and IFN-independent processes are involved in regulation of RNA sorting into EVs during infection. CONCLUSIONS: WNV infection and IFN-alpha treatment alter the spectrum and the levels of mRNAs, miRNAs and sncRNAs in EVs. Differentially incorporated mRNAs and miRNAs in EVs produced in response to WNV infection and to IFN-alpha treatment are associated with viral processes and host response to infection. WNV infection affects composition of RNA cargo in EVs via IFN-dependent and IFN-independent mechanisms.


Subject(s)
Extracellular Vesicles/genetics , Interferon-alpha/pharmacology , MicroRNAs/metabolism , RNA, Messenger/metabolism , RNA, Small Untranslated/metabolism , West Nile virus/physiology , Animals , Cell Line , Extracellular Vesicles/drug effects , Gene Expression Profiling , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...