Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
Add more filters










Publication year range
1.
Chemistry ; : e202401049, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38712686

ABSTRACT

A first metal-free protocol for the synthesis of allylic sulfones featuring aldehyde functionality at the δ-position has been reported. The formation of structurally complex δ,δ-dimethoxy allyl sulfones is enabled by the direct nucleophilic attack of methoxide onto the sulfone-containing 1,3-enynes. The present approach allows facile installation of acetal groups within the allyl sulfone scaffold, providing versatile platforms for further functionalization and drug development.

2.
J Org Chem ; 89(7): 4607-4618, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38509669

ABSTRACT

We have developed a visible-light-driven method for thioester synthesis that relies on the unique dual role of thiobenzoic acids as one-electron reducing agents and reactants leading to the formation of sulfur radical species. This synthetic process offers a wide scope, accommodating various thioacid and thiol substrates without the need for a photocatalyst.

3.
Org Lett ; 25(46): 8234-8239, 2023 Nov 24.
Article in English | MEDLINE | ID: mdl-37962336

ABSTRACT

A mild electron donor-acceptor complex-mediated approach for the synthesis of N-acyl-N,O-hemiacetals has been reported. The key feature of this protocol is that it allows for direct access to electrophilic N-acylimines at room temperature without prefunctionalization of the hydroxyl group. The in situ generated N-acylimine can react with different nucleophiles, viz., alcohols, thiols, and nitriles, to afford a diverse range of scaffolds such as N,O-, N,S-, and N,N-acetals.

4.
Curr Top Med Chem ; 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37937578

ABSTRACT

The Rosa L. genus is a significant plant family in the Rosaceae group, consisting of around 200 species, primarily shrubs. In India, it has 37 species, most located in the Western Himalayan region of Jammu and Kashmir and Himachal Pradesh. Roses are highly regarded for their beauty and growth and are popular worldwide for their nutritional, therapeutic, ornamental, and cosmetic value. The rose hips are utilized in creating various food and drink items, such as jams, jellies, teas, and alcoholic beverages. The Rosa species has various pharmacological activities, including anti-inflammatory, antidiabetic, hepatoprotective, antimicrobial, anti-proliferative/anticancer, anti-arthritic, neurological, and anti-obesity activity. This review aims to provide an in- -depth overview of the phytochemistry and pharmacology of the Rosa species in India, focusing on Rosa indica L., which has significant potential for future chemical and biological research.

5.
Cytokine ; 172: 156398, 2023 12.
Article in English | MEDLINE | ID: mdl-37820446

ABSTRACT

ß- boswellic acid, a pentacyclic triterpene derived from Boswellia serrata is extensively known for its anti-inflammatory potential. BA-25 (3-α-o-acetoxy-4ß-amino-11-oxo-24-norurs-12-ene) is an amino analogue of ß-boswellic acid that has shown anti-inflammatory potential in LPS-induced macrophages and animal models. The present study aims at investigation of the combination of BA-25 with the conventional gold standard DMARD methotrexate (MTX) for its anti-inflammatory and anti-arthritic potential using in vitro and in vivo experimental models. The anti-inflammatory potential of MTX versus the combination (BA-25 + MTX) was investigated for inhibition of NO, ROS and pro-inflammatory cytokines including TNF-α and IL-6 using ELISA in LPS-stimulated RAW-264.7 cells. The results demonstrated significant reduction in NO, ROS, TNF- α and IL-6 production with the combination treatment in comparison to MTX alone. The cytokine inhibition potential of the combination was further validated in-vivo using balb/c wherein the combination restored LPS-induced increase in pro-inflammatory cytokines. The toxicological aspect of the in vivo doses of the combination was also investigated in mice after dosing for 28 days wherein the results suggested no significant change in the hematological parameters and serum biochemical parameters in the combination versus the vehicle group. The effect of BA-25 was also investigated on MTX-induced increase in liver function tests and the expression of Bax and blc2. The results demonstrated decrease in the production of liver enzymes with BA-25 administration along with downregulating the expression of apoptotic protein Bax while increasing the expression of anti-apoptotic protein Bcl2. Furthermore, pharmacokinetic studies of BA-25 were conducted in Balb/c mice wherein the compound showed rapid absorption, high volume of distribution and a t1/2 of 13.08. Finally the anti-arthritic effect of the combination of MTX + BA-25 vs MTX alone was investigated using CIA model in DBA/1 mice wherein the treatment with the combination resulted in significant reduction in paw inflammation, IL-6 and IL-1ß levels. Furthermore, the western blot analysis demonstrated considerable decrease in the expression of p-NF-κB p65 and p-IκB in the ankle-joint tissue of the CIA mice treated with the combination therapy. The results insinuated increased anti-inflammatory and anti-arthritic potential of the combination of MTX with BA-25 as evident from in to vitro and in-vivo studies.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Mice , Animals , Methotrexate/pharmacology , Methotrexate/therapeutic use , Interleukin-6 , Lipopolysaccharides/adverse effects , Reactive Oxygen Species , bcl-2-Associated X Protein/therapeutic use , Arthritis, Experimental/metabolism , Mice, Inbred DBA , Arthritis, Rheumatoid/drug therapy , Anti-Inflammatory Agents/adverse effects , Cytokines/metabolism , Tumor Necrosis Factor-alpha/therapeutic use
6.
Chemistry ; 29(67): e202302294, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37691543

ABSTRACT

A metal-free tunable 1,2-difunctionalization of the terminal alkynes showcasing a tandem installation of C-C and C-S bonds has been developed. The key enabling factor for the approach is the use of acetic acid as an acyl source to synthesize ß-substituted α,ß-unsaturated ketones. The reaction at room temperature leads to the regioselective acylation at the terminal carbon of alkynes, whereas at -78 °C, the acylation occurs at the more substituted carbon.

7.
J Mol Struct ; 1283: 135256, 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-36910907

ABSTRACT

In this work, 1-(4-bromophenyl)-2a,8a-dihydrocyclobuta[b]naphthalene-3,8­dione (1-(4-BP)DHCBN-3,8-D) has been characterized by single crystal X-ray to get it's crystal structure with R(all data) - R1 = 0.0569, wR2 = 0.0824, 13C and 1HNMR, as well as UV-Vis and IR spectroscopy. Quantum chemical calculations via DFT were used to predict the compound structural, electronic, and vibrational properties. The molecular geometry of 1-(4-BP)DHCBN-3,8-Dwas optimized utilizing the B3LYP functional at the 6-311++G(d,p) level of theory. The Infrared spectrum has been recorded in the range of 4000-550 cm-1. The Potential Energy Distribution (PED) assignments of the vibrational modes were used to determine the geometrical dimensions, energies, and wavenumbers, and to assign basic vibrations. The UV-Vis spectra of the titled compound were recorded in the range of 200-800 nm in ACN and DMSO solvents. Additionally, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy gap and electronic transitions were determined using TD-DFT calculations, which also simulate the UV-Vis absorption spectrum. Natural Bond Orbital (NBO) analysis can be used to investigate electronic interactions and transfer reactions between donor and acceptor molecules. Temperature-dependent thermodynamic properties were also calculated. To identify the interactions in the crystal structure, Hirshfeld Surface Analysis was also assessed. The Molecular Electrostatic Potential (MEP) and Fukui functions were used to determine the nucleophilic and electrophilic sites. Additionally, the biological activities of 1-(4-BP)DHCBN-3,8-D were done using molecular docking. These results demonstrate a significant therapeutic potential for 1-(4-BP)DHCBN-3,8-D in the management of Covid-19 disorders. Molecular Dynamics Simulation was used to look at the stability of biomolecules.

8.
Org Lett ; 24(42): 7757-7762, 2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36240126

ABSTRACT

A mild photoredox approach enabling the first one-step synthesis of thiolated 2-aminothiazoles has been reported. Notably, the incorporation of thio group on electron-rich heteroarenes such as aminothiazoles via conventional nucleophilic aromatic substitution (SNAr) presents a significant challenge owing to polarity mismatch. Herein, we present a remarkable site-selective installation of thio group at the C-5 position of the electron-rich aminothiazole skeleton and successfully used them for the postfunctionalization of drugs and natural products.


Subject(s)
Alkynes , Thiazoles , Electrons
9.
Org Lett ; 24(36): 6658-6663, 2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36047745

ABSTRACT

A photoredox thioformylation of terminal alkynes using nitromethane as a formyl anion equivalent, thereby leading to the synthesis of (E)-1,2-difunctionalized acrylaldehyde, has been described. The current strategy introduces an adaptable aldehyde function across an alkyne and offers a new route to synthesizing α-alkyl/aryl aldehydes.

10.
Biomed Res Int ; 2022: 9504787, 2022.
Article in English | MEDLINE | ID: mdl-36060144

ABSTRACT

Purpose: Effectively controlling the accumulation of adipose tissue can be a therapeutic strategy for treating obesity, which is a global problem. The present study was designed for comparative assessment of in vitro antiobesity activities of the Psoralea corylifolia-dichloromethane seed extract (DCME) and the isolated phytochemicals, bakuchiol, isopsoralen, and psoralen, through antiadipogenesis and pancreatic lipase (PL) inhibition assays. Material and Methods. In vitro pancreatic lipase activity was determined spectrophotometrically by measuring the hydrolysis of p-nitrophenyl butyrate (p-NPB) to p-nitrophenol at 405 nm, and adipogenesis was assayed in 3 T3-L1 adipocytes (by using Oil Red O staining) using P. corylifolia-dichloromethane seed extract (DCME) and individual compounds, isolated from the extract. Result: Antilipase as well as antiadipogenesis activity was displayed by both the DCME and the compounds. Maximum antilipase property was recorded in DCME (26.02 ± .041%) at 100 µg/ml, while, among the isolated compounds, bakuchiol exhibited a higher activity (24.2 ± 0.037%) at 100 µg/ml concentration, compared to other isolates. DCME was found to exhibit antiadipogenesis property, 75 ± 0.003% lipid accumulation, compared to the control at 100 µg/ml dose. Bakuchiol, isopsoralen, and psoralen inhibited the lipid accumulation in 3T3-L1 preadipocytes, 78.06 ± 0.002%, 80.91 ± 0.004%, and 80.91 ± 0.001%, respectively, lipid accumulation in comparison to control at 25 µM dose. Conclusion: The present study highlights the antiobesity potential of P. corylifolia and its active constituents. Thus, it can be concluded that P. corylifolia has the potential to treat obesity and related diseases; however, further research on dose standardization and clinical trials are required.


Subject(s)
Fabaceae , Furocoumarins , Psoralea , Ficusin/pharmacology , Lipase/analysis , Lipids/analysis , Methylene Chloride , Obesity/drug therapy , Plant Extracts/chemistry , Psoralea/chemistry , Seeds/chemistry
11.
Chem Commun (Camb) ; 58(61): 8508-8511, 2022 Jul 28.
Article in English | MEDLINE | ID: mdl-35801422

ABSTRACT

A photoredox approach enabling one-step synthesis of oxazetidines with a free -NH group via the combined use of alkyne, thiophenol, and azide has been reported. The synthesized oxazetidine with the free -NH group was stable enough for various late-stage transformations such as methylation, acetylation, tosylation, and ring-opening reaction to afford synthetically useful α-aminoketones.


Subject(s)
Alkynes , Azides , Catalysis , Oxidation-Reduction
12.
ACS Pharmacol Transl Sci ; 5(5): 306-320, 2022 May 13.
Article in English | MEDLINE | ID: mdl-35592435

ABSTRACT

PMBA (2-Pyridin-4-yl-methylene-beta-boswellic acid), screened from among the 21 novel series of semisynthetic analogues of ß-boswellic acid, is being presented as a lead compound for integrative management of KRAS mutant colorectal cancer (CRC), upon testing and analysis for its anticancerous activity on a panel of NCI-60 cancer cell lines and in vivo models of the disease. PMBA (1.7-29 µM) exhibited potent proliferation inhibition on the cell lines and showed sensitivity in microsatellite instability and microsatellite stable (GSE39582 and GSE92921) subsets of KRAS gene (Kirsten rat sarcoma viral oncogene homolog)-mutated colon cell lines, as revealed via flow cytometry analysis. A considerable decrease in mitogen-activated protein kinase pathway downstream effectors was observed in the treated cell lines via the western blot and STRING (Search tool for the retrieval of interacting genes/proteins) analysis. PMBA was further found to target KRAS at its guanosine diphosphate site. Treatment of the cell lines with PMBA showed significant reduction in MGMT promoter methylation but restored MGMT (O6-methylguanine-DNA methyltransferase) messenger ribonucleic acid expression via significant demethylation of the hypermethylated CpG (Cytosine phosphate guanine) sites in the MGMT promoter. A significant decrease in dimethylated H3K9 (Dimethylation of lysine 9 on histone 3) levels in the MGMT promoter in DNA hypo- and hypermethylated HCT-116G13D and SW-620G12V cells was observed after treatment. In the MNU (N-methyl-N-nitrosourea)-induced CRC in vivo model, PMBA instillation restricted and repressed polyp formation, suppressed tumor proliferation marker Ki67 (Marker of proliferation), ablated KRAS-associated cytokine signaling, and decreased mortality. Clinical trial data for the parent molecule revealed its effectiveness against the disease, oral bioavailability, and system tolerance. Comprehensively, PMBA represents a new class of KRAS inhibitors having a therapeutic window in the scope of a drug candidate. The findings suggest that the PMBA analogue could inhibit the growth of human CRC in vivo through downregulation of cancer-associated biomarkers as well as reactivate expression of the MGMT gene associated with increased H3K9 acetylation and H3K4 methylation with facilitated transcriptional activation, which might be important in silencing of genes associated with upregulation in the activity of KRAS.

13.
Heliyon ; 8(4): e09103, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35445157

ABSTRACT

ß-Boswellic acid (ß-BA), a potent NF-kB signaling pathway inhibitor, has shown synergistic anti-cancerous activity (NCT03149081, NCT00243022 and NCT02977936) in various clinical trials as complementary therapies. The study has been conducted to investigate the effect and efficacy of 2-pyridin-4-yl methylene ß-boswellic acid (PMBA) and 5-Flourouracil (5-FU) in combination therapy for the treatment of KRAS mutant colon cancer. Analysis of isobologram showed synergistic combination index (CI > 1) of PMBA and 5-FU against the HCT-116 G13D and SW-620 G12V cell lines. The growth-inhibiting PMBA also caused apoptosis mediating effects with dose-dependent increase in caspase-3 activity, while inhibiting the formation of colonies in combination with 5-FU. As evident, PMBA affected colorectal 3D CSC properties including the ability to self-renew along with the expression of multi-drug resistance genes, viz., ABCB1, ABCC1 and ALDH1A1, ALDH1A2, ALDH1A3, ALDH3A1, and CSC markers like CD44, CD166, EPCAM, OCT-4, SOX-2, and NANOG compared with those in 2D model explaining the expression pattern of oncogenic KRAS G13D, G12V mutation. When examined for plasma level of PMBA (20 mg) and PMBA+5-FU (20 + 40 mg), a time-dependent increase in the level of the drug (5-FU) was detected, indicating its absorption and bioavailability with excellent half-life of the PMBA for both routes of administration (IV and Oral), thereby indicating a new adjuvant therapy for KRAS mutant colon cancer.

14.
J Org Chem ; 86(23): 16770-16784, 2021 12 03.
Article in English | MEDLINE | ID: mdl-34726928

ABSTRACT

A visible-light-mediated site-selective oxidative annulation of naphthols with alkynes for the synthesis of functionalized naphthofurans has been developed. The reaction relies on the in situ formation of an electron donor acceptor pair between phenylacetylene and thiophenol as the light-absorbing system to obviate the requirement of an added photocatalyst. The protocol facilitates the transformation of 1-naphthol and 2-naphthol as well as 1,4-naphthoquinone into a wide variety of highly functionalized naphthofurans.


Subject(s)
Alkynes , Naphthols , Catalysis , Molecular Structure , Oxidative Stress
15.
Chem Commun (Camb) ; 57(86): 11285-11300, 2021 Oct 28.
Article in English | MEDLINE | ID: mdl-34617556

ABSTRACT

Visible light mediated functionalizations have significantly expanded the scope of alkynes by unraveling new mechanistic pathways and enabling their transformation to diverse structural entities. The photoredox reactions on alkynes rely on their innate capability to generate myriad carbon-centred radicals via single electron transfer (SET), thereby, allowing the introduction of new radical precursors. Moreover, an array of methods have been developed facilitating transformations such as vicinal or gem-difunctionalization, annulation, cycloaddition and oxidative reactions to construct numerous key building blocks of natural and pharmaceutically important molecules. In addition, the introduction of photoredox chemistry has successfully been used to deal with the challenges associated with alkyne functionalization such as stereoselective and regioselective control. This article accounts for several visible light mediated functionalization reactions of alkynes, wherein they have been transformed into α-oxo compounds, ß-keto sulfoxides, substituted olefins, N-heterocycles, internal alkynes and sulfur containing compounds. The article has been primarily categorized into various sections based on the reaction type with particular attention being paid to mechanistic details, advancement and future applications.

16.
Org Lett ; 22(14): 5661-5665, 2020 07 17.
Article in English | MEDLINE | ID: mdl-32602720

ABSTRACT

A photoredox-mediated protocol for the synthesis of α-alkoxy-ß-ketosulfoxides and α,ß-dialkoxysulfoxides using alkynes, thiol, and alcohols is reported. This work presents a rare single-step synthesis of α-substituted sulfoxides, involving tandem introduction of a thiol and alcohol as a key enabling advancement. Furthermore, the method can be easily employed to access vinyl sulfoxides and ß-ketosulfoxides.

17.
J Org Chem ; 84(14): 8948-8958, 2019 07 19.
Article in English | MEDLINE | ID: mdl-31251064

ABSTRACT

A single-step synthesis of 4-hydroxy-functionalized bi-aryl and aryl/alkyl ketones via oxidative coupling of terminal alkynes with benzoquinones is reported. Furthermore, with naphthoquinones, owing to the cross-resonance of carbonyl with the aromatic ring, alkene-alkyne cycloaddition is more favored to give four-membered carbocyclic adducts, thereby precluding the requirement of preactivated alkynes.

18.
Org Lett ; 21(12): 4793-4797, 2019 Jun 21.
Article in English | MEDLINE | ID: mdl-31184917

ABSTRACT

A photoredox-mediated gem-difunctionalization of alkynes leading to the synthesis of α,α-aminothio-substituted carbonyl compounds is reported. The work presents concomitant introduction of α-C-N and C-S bonds as a key enabling advance. Furthermore, the low bond dissociation energy of the C-S bond compared to that of C-N or C-C bonds has been exploited for selective functionalization using different nucleophiles to build diverse α,α-disubstituted carbonyl scaffolds. Mild reaction conditions, broad substrate scope, and good yields are some of the added advantages of this reaction.

19.
Chem Rec ; 19(2-3): 644-660, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30276948

ABSTRACT

The carbon-carbon and carbon-heteroatom bond formation reactions are considered as a fundamental tool in synthetic organic chemistry. They have been effectively utilized in the synthesis of medicinally significant molecules, agrochemicals and valuable compounds in material sciences. This has been primarily enabled by highly efficient protocols arising from divergent mechanistic pathways. In this personal account, we aim to discuss some recent advances in carbon-carbon or carbon-heteroatom bond formation reactions to which our group has actively contributed. More specifically, this record focuses on the use of unsaturated carbon compounds for the construction of C-C and C-X bonds.

20.
J Org Chem ; 83(23): 14443-14456, 2018 12 07.
Article in English | MEDLINE | ID: mdl-30407012

ABSTRACT

A photoredox catalyzed approach enabling use of alkynes as surrogate of 2-oxoaldehydes/1,2-diones is reported. The method overcomes the difficulty associated with application of unsubstituted aliphatic α-oxoaldehydes, which has hitherto limited their general use. Indoles, tryptamine, and tryptophan methyl ester participated in the reaction to give a variety of α-oxo based analogues. Quantum yield investigations support a radical chain mechanism.

SELECTION OF CITATIONS
SEARCH DETAIL
...