Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Clin Pharmacokinet ; 63(5): 561-588, 2024 May.
Article in English | MEDLINE | ID: mdl-38748090

ABSTRACT

Human milk is a remarkable biofluid that provides essential nutrients and immune protection to newborns. Breastfeeding women consuming medications could pass the drug through their milk to neonates. Drugs can be transferred to human milk by passive diffusion or active transport. The physicochemical properties of the drug largely impact the extent of drug transfer into human milk. A comprehensive understanding of the physiology of human milk formation, composition of milk, mechanisms of drug transfer, and factors influencing drug transfer into human milk is critical for appropriate selection and use of medications in lactating women. Quantification of drugs in the milk is essential for assessing the safety of pharmacotherapy during lactation. This can be achieved by developing specific, sensitive, and reproducible analytical methods using techniques such as liquid chromatography coupled with mass spectrometry. The present review briefly discusses the physiology of human milk formation, composition of human milk, mechanisms of drug transfer into human milk, and factors influencing transfer of drugs from blood to milk. We further expand upon and critically evaluate the existing analytical approaches/assays used for the quantification of drugs in human milk.


Subject(s)
Milk, Human , Humans , Milk, Human/chemistry , Milk, Human/metabolism , Pharmaceutical Preparations/metabolism , Female , Lactation/metabolism , Breast Feeding , Infant, Newborn , Chromatography, Liquid/methods , Mass Spectrometry/methods
2.
Xenobiotica ; : 1-23, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38634455

ABSTRACT

Lack of data on drug secretion in human milk is a concern for safe use of drugs during postpartum.Clinical studies are often difficult to perform; despite substantial improvements in computational methodologies such as physiologically based pharmacokinetic modelling, there is limited clinical data to validate such models for many drugs.Various factors that are likely to impact milk to plasma ratio were identified. A literature search was performed to gather available data on milk composition, total volume of milk produced per day, milk pH, haematocrit, and renal blood flow and glomerular filtration rate in various animal models.BLAST nucleotide and protein tools were used to evaluate the similarities between humans and animals in the expression and predominance of selected drug transporters, metabolic enzymes, and blood proteins.A multistep analysis of all the potential variables affecting drug secretion was considered to identify most appropriate animal model. The practicality of using the animal in a lab setting was also considered.Donkeys and goats were identified as the most suitable animals for studying drug secretion in milk.

3.
J Mass Spectrom ; 59(4): e5015, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38501738

ABSTRACT

Opioid use disorder (OUD) is a chronic neurobehavioral ailment and is prevalent in pregnancy. OUD is commonly treated with methadone or buprenorphine (BUP). Pregnancy is known to alter the pharmacokinetics of drugs and may lead to changes in drug exposure and response. A simple, specific, and sensitive analytical method for measuring the parent drug and its metabolites is valuable for assessing the impact of pregnancy on drug exposure. A new liquid chromatography-tandem mass spectrometric method that utilized a simple protein precipitation procedure for sample preparation and four deuterated internal standards for quantification was developed and validated for BUP and its major metabolites (norbuprenorphine [NBUP], buprenorphine-glucuronide [BUP-G], and norbuprenorphine-glucuronide [NBUP-G]) in human plasma. The standard curve was linear over the concentration range of 0.05-100 ng/mL for BUP and NBUP, and 0.1-200 ng/mL for BUP-G and NBUP-G. Intra- and inter-day bias and precision were within ±15% of nominal values for all the analytes. Quality controls assessed at four levels showed high recovery consistently for all the analytes with minimal matrix effect. Adequate analyte stability was observed at various laboratory conditions tested. Overall, the developed method is simple, sensitive, accurate and reproducible, and was successfully applied for the quantification of BUP and its metabolites in plasma samples collected from pregnant women in a clinical study assessing BUP exposure during OUD treatment.


Subject(s)
Buprenorphine , Buprenorphine/analogs & derivatives , Opioid-Related Disorders , Humans , Female , Pregnancy , Narcotic Antagonists/pharmacokinetics , Narcotic Antagonists/therapeutic use , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Liquid Chromatography-Mass Spectrometry , Glucuronides , Buprenorphine/analysis , Buprenorphine/therapeutic use , Opioid-Related Disorders/drug therapy
4.
Magn Reson Med ; 92(1): 246-256, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38469671

ABSTRACT

PURPOSE: To reduce the inter-scanner variability of diffusion MRI (dMRI) measures between scanners from different vendors by developing a vendor-neutral dMRI pulse sequence using the open-source vendor-agnostic Pulseq platform. METHODS: We implemented a standard EPI based dMRI sequence in Pulseq. We tested it on two clinical scanners from different vendors (Siemens Prisma and GE Premier), systematically evaluating and comparing the within- and inter-scanner variability across the vendors, using both the vendor-provided and Pulseq dMRI sequences. Assessments covered both a diffusion phantom and three human subjects, using standard error (SE) and Lin's concordance correlation to measure the repeatability and reproducibility of standard DTI metrics including fractional anisotropy (FA) and mean diffusivity (MD). RESULTS: Identical dMRI sequences were executed on both scanners using Pulseq. On the phantom, the Pulseq sequence showed more than a 2.5× reduction in SE (variability) across Siemens and GE scanners. Furthermore, Pulseq sequences exhibited markedly reduced SE in-vivo, maintaining scan-rescan repeatability while delivering lower variability in FA and MD (more than 50% reduction in cortical/subcortical regions) compared to vendor-provided sequences. CONCLUSION: The Pulseq diffusion sequence reduces the cross-scanner variability for both phantom and in-vivo data, which will benefit multi-center neuroimaging studies and improve the reproducibility of neuroimaging studies.


Subject(s)
Brain , Diffusion Magnetic Resonance Imaging , Phantoms, Imaging , Humans , Reproducibility of Results , Diffusion Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Image Processing, Computer-Assisted/methods , Anisotropy , Algorithms , Male , Adult , Female
5.
J Pharm Biomed Anal ; 234: 115502, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37311376

ABSTRACT

There is a paucity of data on the transfer of ketamine from maternal blood into human milk. Quantification of ketamine in human milk provides information about the potential exposure of the infant to ketamine and its metabolites from the mother during lactation. A highly specific, reproducible, and sensitive UPLC-MS/MS based analytical method was developed and validated for the quantitation of ketamine and its metabolites (norketamine and dehydronorketamine) in human milk. Samples were subjected to a simple protein precipitation and ketamine-d4 and norketamine-d4 were used as internal standards. Separation of the analytes was achieved using an Acquity UPLC equipped with BEH RP18 1.7 µm, 2.1 × 100 mm column. Mass spectrometric analysis of the analyte ions was carried out using electrospray with positive ionization and multiple reaction monitoring mode. The assay was linear over a concentration range of 1-100 ng/mL for ketamine and norketamine, and 0.1-10 ng/mL for dehydronorketamine. Acceptable intra-day and inter-day accuracy and precision were observed for all the analytes. High recovery of the analytes and minimal matrix effect were observed. Stability of analytes was confirmed at the tested conditions. This assay was successfully used to measure analytes in human milk samples collected from lactating women enrolled in a clinical research study. This is the first validated method that simultaneously quantified ketamine and its metabolites in human milk.


Subject(s)
Ketamine , Humans , Female , Chromatography, High Pressure Liquid/methods , Ketamine/chemistry , Chromatography, Liquid/methods , Milk, Human/chemistry , Lactation , Tandem Mass Spectrometry/methods , Reproducibility of Results
6.
Toxicol Appl Pharmacol ; 469: 116527, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37080362

ABSTRACT

BACKGROUND: The effectiveness of sildenafil in the management of pulmonary hypertension in congenital diaphragmatic hernia (CDH) has been reported but has not been systematically evaluated. Our studies have also demonstrated that intra-amniotic (IA) sildenafil administration improves pulmonary hypertension in CDH. METHODS: We evaluated the pharmacokinetics of sildenafil after IA administration in pregnant rabbits. Following maternal laparotomy, fetuses received IA injection of 0.8 mg of sildenafil. Maternal blood, amniotic fluid, and fetal tissues were collected at various time points. The concentrations of sildenafil and its major metabolite in samples were analyzed by liquid chromatography-mass spectrometry. To assess organ toxicity, 7 days after IA sildenafil administration, fetal organs were examined histologically. RESULTS: After IA dosing, sildenafil was absorbed quickly with an absorption half-life of 0.03-0.07 h into the fetal organs. All the organs showed a maximum concentration within 1 h and the disposition half-life ranged from 0.56 to 0.73 h. Most of the sildenafil was eliminated from both mothers and fetuses within 24 h after a single dose. There was no histological evidence of organ toxicity in the fetuses after a single dose of IA administration of sildenafil. CONCLUSION: IA sildenafil is rapidly absorbed into the fetus, distributes into the mother, and is eliminated by the mother without accumulation or fetal organ toxicity. This study confirms the feasibility and the safety of IA administration of sildenafil and enables future applications in the treatment of CDH fetuses.


Subject(s)
Hernias, Diaphragmatic, Congenital , Hypertension, Pulmonary , Pregnancy , Female , Animals , Rabbits , Sildenafil Citrate/toxicity , Sildenafil Citrate/pharmacokinetics , Lung , Hernias, Diaphragmatic, Congenital/drug therapy , Fetus
7.
Eur J Clin Pharmacol ; 79(6): 815-827, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37060457

ABSTRACT

PURPOSE: Pregnancy-mediated physiological and biochemical changes contribute to alterations in the pharmacokinetics of certain drugs. There is a paucity of data on the systematic evaluation of the underlying mechanisms. The objective of the current study was to examine the impact of changes in circulating and tissue hormonal concentration during the late stage of pregnancy on the activity and expression of hepatic cytochrome P450 (CYP) enzymes using a cocktail probe approach. METHODS: Freshly isolated primary human hepatocytes were incubated with third trimester physiologic (plasma) and projected liver (ten-fold higher) concentrations of female hormones: progesterone (2 µM), estradiol (0.3 µM), estriol (0.8 µM), estrone (0.2 µM), 17α-hydroxyprogesterone (0.1 µM), and human growth hormone (0.005 µM). The metabolic activity of the hepatocytes was assessed using a cocktail of isozyme-specific P450 probe substrates (CYP1A2 (phenacetin), CYP2C9 (diclofenac), CYP2C19 (S-mephenytoin), CYP2D6 (dextromethorphan), and CYP3A4 (testosterone)). A validated LC-MS/MS assay was used to measure the corresponding metabolite concentrations. CYP450 protein and mRNA levels were measured using western blot and qRT-PCR, respectively. RESULTS: Female hormones at projected third-semester hepatic concentrations significantly enhanced mRNA and protein expression and increased the metabolic activity of CYP3A4. The expression and activity of other CYP450 enzymes studied were not affected by mixtures of female hormones at concentrations used. CONCLUSION: The increased activity of CYP3A4 is consistent with the clinically observed increase in clearance of CYP3A4 substrates during pregnancy. Overall expression and activity of CYP450 isozymes are differentially regulated during pregnancy.


Subject(s)
Cytochrome P-450 CYP3A , Tandem Mass Spectrometry , Humans , Female , Pregnancy , Cytochrome P-450 CYP3A/metabolism , Chromatography, Liquid , Cytochrome P-450 Enzyme System/metabolism , Hepatocytes/metabolism , Hormones/metabolism , Hormones/pharmacology , Microsomes, Liver
8.
Xenobiotica ; 53(3): 193-200, 2023 Mar.
Article in English | MEDLINE | ID: mdl-37039113

ABSTRACT

Weekly intramuscular (250 mg/week) or subcutaneous (275 mg/week) injections of 17-hydroxyprogesterone caproate (17-OHPC) is the only treatment option for the prevention of preterm birth in women with a prior history of preterm delivery.The objective of the current study was to determine the relative distribution of 17-OHPC in selected tissues in adult female SD rats after IM (oily formulation or solution), IV (solution), PO (solution), or intravaginal (suppository) administration.Plasma, uterus, adipose, and liver samples were collected at various times and analysed by LC-MS-MS.The highest concentrations of 17-OHPC were observed in the adipose tissue, after IM (oily formulation), and intravaginal administration.Substantial concentrations of 17-OHPC were also observed in the uterus after IM, intravaginal and IV administration.17-OHPC was not detected in the liver and in any of the tissues tested after PO administration.17-OHPC levels in plasma after intravaginal suppository administration were low despite substantial concentrations in the adipose and the uterus.The distribution of 17-OHPC depends on the formulation, the route of administration, and the sampling time.Low systemic concentrations and substantial distribution in the tissues of interest after intravaginal administration warrants future studies to evaluate the potential of the daily intravaginal route of administration of 17-OHPC.


Subject(s)
Hydroxyprogesterones , Premature Birth , Infant, Newborn , Humans , Female , Rats , Animals , 17 alpha-Hydroxyprogesterone Caproate , 17-alpha-Hydroxyprogesterone , Premature Birth/prevention & control , Rats, Sprague-Dawley
9.
Xenotransplantation ; 30(2): e12795, 2023 03.
Article in English | MEDLINE | ID: mdl-36820525

ABSTRACT

With pig kidney xenotransplantation nearing clinical reality, it is imperative to measure pig kidney function in the graft recipients. Our aims were (i) to compare inulin clearance after a short intravenous (IV) bolus with steady-state inulin IV infusion, (ii) to use this method to measure the glomerular filtration rate (GFR), and (iii) to determine the tubular secretory function using cefoxitin in a pig-to-baboon renal transplant model. A short IV infusion of inulin and cefoxitin were followed by a maintenance IV infusion of inulin over 5 h in seven healthy baboons, three healthy pigs, and five baboons after bilateral native nephrectomy and intra-abdominal pig renal transplantation. Blood and urine samples were collected. Serum and urinary inulin and serum cefoxitin concentrations measured by validated assays were used to calculate GFR and renal secretion. GFR calculated were similar by both methods. The body weight normalized total body clearance of inulin was similar in pigs and baboons despite differences in absolute clearances. Pig kidney transplanted into baboons provided similar clearance in baboons when normalized to baboon body weight and sustained filtration and secretory functions. The study documented that pig kidneys support the physiologic needs of baboons and are likely to support human recipients as well.


Subject(s)
Kidney Transplantation , Animals , Swine , Humans , Papio , Inulin , Cefoxitin , Transplantation, Heterologous , Kidney
10.
Pharm Res ; 39(11): 2979-2990, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36071353

ABSTRACT

PURPOSE: IR injury is an unavoidable consequence in deceased donor liver transplantation. Cold preservation and warm reperfusion may change the expression and function of drug transporters in the liver due to vasoconstriction, infiltration of neutrophils and release of cytokines. We hypothesize that vasodilation, anti-platelet aggregation and proinflammatory downregulation activities of treprostinil will diminish the IR injury and its associated effects. METHODS: Livers obtained from male SD rats (n = 20) were divided into 1) Control, 2) IR, 3) Treprostinil-1 (preservation only), and 4) Treprostinil-2 (preservation and reperfusion) groups. Control livers were procured and immediately reperfused. Livers in the other groups underwent preservation for 24 h and were reperfused. All the livers were perfused using an Isolated Perfused Rat Liver (IPRL) system. Periodic perfusate, cumulative bile samples and liver tissue at the end of perfusion were collected. Liver injury markers, bile flow rates, m-RNA levels for uptake and efflux transporters (qRT-PCR) were measured. RESULTS: Cold preservation and warm reperfusion significantly increased the release of AST and ALT in untreated livers. Treprostinil supplementation substantially reduced liver injury. Bile flow rate was significantly improved in treprostinil-2 group. m-RNA levels of Slc10a1, Slc22a1, and Slc22a7 in liver were increased and m-RNA levels of Mdr1a were decreased by IR. Treprostinil treatment increased Abcb11 and Abcg2 m-RNA levels and maintained Slc22a1m-RNA similar to control livers. CONCLUSIONS: Treprostinil treatment significantly reduced liver injury. IR injury changed expression of both uptake and efflux transporters in rat livers. Treprostinil significantly altered the IR injury mediated changes in m-RNA expression of transporters.


Subject(s)
Liver Transplantation , Reperfusion Injury , Animals , Male , Rats , ATP Binding Cassette Transporter, Subfamily B, Member 11/metabolism , Dietary Supplements , Liver/metabolism , Living Donors , Organ Preservation , Rats, Sprague-Dawley , Reperfusion Injury/drug therapy , Reperfusion Injury/prevention & control , Reperfusion Injury/metabolism , RNA/metabolism , RNA/pharmacology
11.
Pharmaceutics ; 14(5)2022 May 07.
Article in English | MEDLINE | ID: mdl-35631590

ABSTRACT

The revised consensus guidelines for optimizing vancomycin doses suggest that maintaining the area under the concentration-time curve to minimal inhibitory concentration ratio (AUC/MIC) of 400-600 mg·h/L is the target pharmacokinetic/pharmacodynamic (PK/PD) index for efficacy. AUC-guided dosing approach uses a first-order pharmacokinetics (PK) equation to estimate AUC using two samples obtained at steady state and one-compartment model, which can cause inaccurate AUC estimation and fail to achieve the effective PK/PD target early in therapy (days 1 and 2). To achieve an efficacy target from the third or fourth dose, two innovative approaches (Method 1 and Method 2) to estimate vancomycin AUC at steady state (AUCSS) using two-compartment model and three or four levels after the first dose are proposed. The feasibility of the proposed methods was evaluated and compared with another published dosing algorithm (Method 3), which uses two samples and a one-compartment approach. Monte Carlo simulation was performed using a well-established population PK model, and concentration-time profiles for virtual patients with various degrees of renal function were generated, with 1000 subjects per group. AUC extrapolated to infinity (AUC0-∞) after the first dose was estimated using the three methods, whereas reference AUC (AUCref) was calculated using the linear-trapezoidal method at steady state after repeated doses. The ratio of AUC0-∞: AUCref and % bias were selected as the indicators to evaluate the accuracy of three methods. Sensitivity analysis was performed to examine the influence of change in each sampling time on the estimated AUC0-∞ using the two proposed approaches. For simulated patients with various creatinine clearance, the mean of AUC0-∞: AUCref obtained from Method 1, Method 2 and Method 3 ranged between 0.98 to 1, 0.96 to 0.99, and 0.44 to 0.69, respectively. The mean bias observed with the three methods was -0.10% to -2.09%, -1.30% to -3.59% and -30.75% to -55.53%, respectively. The largest mean bias observed by changing sampling time while using Method 1 and Method 2 were -4.30% and -10.50%, respectively. Three user-friendly and easy-to-use excel calculators were built based on the two proposed methods. The results showed that our approaches ensured sufficient accuracy and achieved target PK/PD index early and were superior to the published methodologies. Our methodology has the potential to be used for vancomycin dose optimization and can be easily implemented in clinical practice.

12.
Br J Clin Pharmacol ; 88(2): 587-599, 2022 02.
Article in English | MEDLINE | ID: mdl-34190364

ABSTRACT

AIMS: Pulmonary arterial hypertension (PAH) is characterized by increased pulmonary arterial pressure, resulting in right ventricular overload, right heart failure and eventually death. Treprostinil is a prostacyclin analogue that is used in the treatment of PAH. As an orphan drug, limited information is available regarding its disposition and its use in special populations such as elderly, paediatric and pregnant patients. The objective of the current study was to develop a robust physiologically based pharmacokinetic (PBPK) model for treprostinil intravenous injection and extended-release tablet as the first step to optimize treprostinil pharmacotherapy in patients. METHODS: PBPK model was built using Simcyp simulator which integrated physicochemical properties, observed or predicted parameters for drug absorption, distribution and elimination for treprostinil, and population specific physiological characteristics. Three clinical trials after intravenous infusion and nine studies after oral administration of treprostinil extended-release tablet in healthy volunteers were used to develop and validate the model. The simulated PK profiles were compared with the observed data. Extrapolation of the model to patient populations including patients with hepatic impairment was conducted to validate the predictions. RESULTS: Most of the observed data were within the 5th and 95th percentile interval of the prediction. Most of the percentage error in the PK parameters were within ±50% of the corresponding observed parameters. The developed model predicted the lung exposure of treprostinil to be approximately 0.17 times of concentration in plasma. CONCLUSION: Predicted absorption, distribution, and metabolic enzyme kinetics gave an insight into the disposition of treprostinil in humans. Extrapolation of the established model to patient populations with hepatic impairment successfully documented the model reliability. The developed model has the potential to be used in the PK predictions in other special patient populations with different demographic, physiological and pathological characteristics.


Subject(s)
Epoprostenol , Liver Diseases , Administration, Oral , Aged , Antihypertensive Agents/pharmacokinetics , Child , Epoprostenol/analogs & derivatives , Female , Humans , Injections, Intravenous , Liver Diseases/metabolism , Models, Biological , Pregnancy , Reproducibility of Results , Tablets
13.
Front Pediatr ; 9: 733823, 2021.
Article in English | MEDLINE | ID: mdl-34805038

ABSTRACT

Pregnancy and the postpartum period are associated with several physiological changes that can alter the pharmacokinetics (PK) and pharmacodynamics (PD) of drugs. For certain drugs, dosing changes may be required during pregnancy and postpartum to achieve drug exposures comparable to what is observed in non-pregnant subjects. There is very limited data on fetal exposure of drugs during pregnancy, and neonatal exposure through transfer of drugs via human milk during breastfeeding. Very few systematic clinical pharmacology studies have been conducted in pregnant and postpartum women due to ethical issues, concern for the fetus safety as well as potential legal ramifications. Over the past several years, there has been an increase in the application of modeling and simulation approaches such as population PK (PopPK) and physiologically based PK (PBPK) modeling to provide guidance on drug dosing in those special patient populations. Population PK models rely on measured PK data, whereas physiologically based PK models incorporate physiological, preclinical, and clinical data into the model to predict drug exposure during pregnancy. These modeling strategies offer a promising approach to identify the drugs with PK changes during pregnancy to guide dose optimization in pregnancy, when there is lack of clinical data. PBPK modeling is also utilized to predict the fetal exposure of drugs and drug transfer via human milk following maternal exposure. This review focuses on the current status of the application of PBPK modeling to predict maternal and fetal exposure of drugs and thereby guide drug therapy during pregnancy.

14.
Nat Protoc ; 16(6): 3114-3140, 2021 06.
Article in English | MEDLINE | ID: mdl-33893470

ABSTRACT

Virus neutralization assays measure neutralizing antibodies in serum and plasma, and the plaque reduction neutralization test (PRNT) is considered the gold standard for measuring levels of these antibodies for many viral diseases. We have developed procedures for the standard PRNT, microneutralization assay (MNA) and pseudotyped virus neutralization assay (PNA) for severe acute respiratory syndrome coronavirus 2. The MNA offers advantages over the PRNT by reducing assay time, allowing increased throughput and reducing operator workload while remaining dependent upon the use of wild-type virus. This ensures that all severe acute respiratory syndrome coronavirus 2 antigens are present, but Biosafety Level 3 facilities are required. In addition to the advantages of MNA, PNA can be performed with lower biocontainment (Biosafety Level 2 facilities) and allows for further increases in throughput. For each new vaccine, it is critical to ensure good correlation of the neutralizing activity measured using PNA against the PRNT or MNA. These assays have been used in the development and licensure of the ChAdOx1 nCoV-19 (AstraZeneca; Oxford University) and Ad26.COV2.S (Janssen) coronavirus disease 2019 vaccines and are critical for demonstrating bioequivalence of future vaccines.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , Neutralization Tests/methods , SARS-CoV-2/immunology , Ad26COVS1 , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/blood , COVID-19/prevention & control , COVID-19 Vaccines/immunology , COVID-19 Vaccines/therapeutic use , ChAdOx1 nCoV-19 , Humans , Neutralization Tests/economics , Time Factors
15.
Ther Adv Respir Dis ; 15: 17534666211013688, 2021.
Article in English | MEDLINE | ID: mdl-33929912

ABSTRACT

BACKGROUND AND AIMS: Treprostinil is a prostacyclin analog used to treat pulmonary arterial hypertension. Dosing is empiric and based on tolerability. Adverse effects are common and can affect treatment persistence. Pharmacogenomic variants that may affect treprostinil metabolism and transport have not been well-characterized. We aimed to investigate the pharmacogenomic sources of variability in treatment persistence and dosing. METHODS: Patients were prospectively recruited from an IRB approved biobank registry at a single pulmonary hypertension center. A cohort of patients who received oral treprostinil were screened for participation. Pharmacogenomic analysis was for variants in CYP2C8, CYP2C9, and ABCC4. A retrospective review was conducted for demographics, clinical status, dosing, and response. Fisher's exact test was used for categorical data and Kruskal-Wallis test or Wilcoxon rank sum were used for continuous data. RESULTS: A total of 15 patients received oral treprostinil and were consented. Their median age was 53 years, 73% were female, and 93% were White. The median total daily dose was 22.5 mg (13.5, 41) at last clinical observation. 40% of patients discontinued treatment with a majority due to adverse effects. Approximately 27% of patients had a loss-of-function variant in CYP2C8 (*1/*3 or *1/*4), whereas 47% of patients had a loss-of-function variant in CYP2C9 (*1/*2, *1/*3, or *2/*2). Minor allele frequencies for ABCC4 (rs1751034 and rs3742106) were 0.17 and 0.43, respectively. Survival analysis showed that increased CYP2C9 activity score was associated with decreased risk for treatment discontinuation [hazard ratio (HR): 0.13; 95% confidence interval (CI): 0.02, 0.91; p = 0.04]. Genetic variants were not significantly associated with dosing. CONCLUSION: Genetic variants responsible for the metabolism and transport of oral treprostinil were common. Increased CYP2C9 activity score was associated with decreased risk for treatment discontinuation. However, dosing was not associated with genetic variants in metabolizing enzymes for treprostinil. Our findings suggest significant variability in treatment persistence to oral treprostinil, with pharmacogenomics being a potentially important contributor.The reviews of this paper are available via the supplemental material section.


Subject(s)
Epoprostenol/analogs & derivatives , Pulmonary Arterial Hypertension , Administration, Oral , Epoprostenol/administration & dosage , Female , Humans , Male , Middle Aged , Pharmacogenetics , Pilot Projects , Pulmonary Arterial Hypertension/drug therapy , Pulmonary Arterial Hypertension/genetics , Retrospective Studies
16.
Clin Transplant ; 35(6): e14298, 2021 06.
Article in English | MEDLINE | ID: mdl-33764591

ABSTRACT

BACKGROUND: Orthotopic liver transplantation (OLT) is the only treatment option for various end-stage liver diseases. Ischemia and reperfusion (I/R) injury is one of the unavoidable complications/conditions in OLT. In 2019, a total of 8896 livers were transplanted of which >94% organs were procured from deceased donors. An increase in the use of extended criteria donor (ECD) livers for transplantation further unraveled the role of hepatic I/R injury on short-term and long-term graft outcomes. Despite promising outcomes with the use of antioxidants, free radical scavengers, and vasodilators; I/R-mediated liver injury persists and significantly influences the overall clinical outcomes. Treprostinil, a synthetic prostacyclin I2  (PGI2 ) analog, due to its vasodilatory property, antiplatelet activity, and its ability to downregulate pro-inflammatory cytokines can potentially minimize I/R injury. AIM: We investigated the safety and preliminary efficacy of continuous intravenous infusion of treprostinil in liver transplant recipients in a prospective, single-center, non-randomized, interventional study. MATERIAL AND METHODS: This was a dose escalation (3 + 3 design) phase 1/2 study. Deceased donor liver transplant recipients received 5 ng/kg/min for two days, or 2.5, 5, and 7.5 ng/min/kg for 5 days as a continuous infusion. Multiple blood samples were collected for biochemical parameter assessment and for measuring treprostinil levels. Indocyanine green plasma disappearance rate was used as a measure of hepatic functional capacity. RESULTS: Subjects tolerated continuous infusion of treprostinil up to 5 ng/kg/min for 120 h with no occurrence of primary graft non-function (PNF), minimized need for ventilation support, reduced hospitalization time, 100% graft and patient survival, and improved hepatobiliary excretory function comparable to normal healthy adults. DISCUSSION: Treprostinil can be administered to liver transplant patients safely during the perioperative period. CONCLUSION: Based on this phase 1/2 study, further efficacy studies of treprostinil in preventing I/R injury of liver should be conducted to potentially increase the number of livers available for transplantation.


Subject(s)
Liver Transplantation , Reperfusion Injury , Adult , Epoprostenol/analogs & derivatives , Humans , Ischemia , Liver , Living Donors , Prospective Studies , Reperfusion Injury/etiology , Reperfusion Injury/prevention & control
17.
Cell ; 184(8): 2201-2211.e7, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33743891

ABSTRACT

SARS-CoV-2 has caused over 2 million deaths in little over a year. Vaccines are being deployed at scale, aiming to generate responses against the virus spike. The scale of the pandemic and error-prone virus replication is leading to the appearance of mutant viruses and potentially escape from antibody responses. Variant B.1.1.7, now dominant in the UK, with increased transmission, harbors 9 amino acid changes in the spike, including N501Y in the ACE2 interacting surface. We examine the ability of B.1.1.7 to evade antibody responses elicited by natural SARS-CoV-2 infection or vaccination. We map the impact of N501Y by structure/function analysis of a large panel of well-characterized monoclonal antibodies. B.1.1.7 is harder to neutralize than parental virus, compromising neutralization by some members of a major class of public antibodies through light-chain contacts with residue 501. However, widespread escape from monoclonal antibodies or antibody responses generated by natural infection or vaccination was not observed.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , CHO Cells , COVID-19/epidemiology , Chlorocebus aethiops , Cricetulus , HEK293 Cells , Humans , Pandemics , Protein Binding , Structure-Activity Relationship , Vero Cells
18.
Front Pharmacol ; 11: 729, 2020.
Article in English | MEDLINE | ID: mdl-32528285

ABSTRACT

BACKGROUND: Hypertension is one of the primary predictor of mortality among end-stage renal disease (ESRD) patients on dialysis. However, there is no consensus on an ideal blood pressure range for this population. AIMS AND OBJECTIVE: To identify an ideal systolic blood pressure range based on optimal survival among ESRD patients on dialysis. METHOD: A systematic search for clinical trials assessing the impact of different systolic blood pressure range on mortality among ESRD patients on hemodialysis was conducted through PubMed, EBSCOhost, Science Direct, Google Scholar, and Scopus. All randomized control trials (RCTs) involving ESRD patients on hemodialysis with primary or secondary outcome of assessing the impact different systolic blood pressure range (< 140 and >140 mm Hg) on all-cause mortality were included. The quality of reporting of the included studies was evaluated using the Jadad scale. Two researchers independently conducted eligibility assessment. Discrepancies were resolved by discussion and consultation with a third researcher when needed. Pooled relative risks (RRs) with 95% confidence intervals (CIs) were calculated. RESULTS: A total of 1,787 research articles were identified during the initial search, after which six RCTs met our inclusion criteria. According to the Jadad scale, all six RCTs scored 3 points each for quality of reporting. Four RCTs employed pharmacological intervention while two RCTs assessed non-pharmacological intervention. Of the six RCTs, two studies were able to achieve a systolic blood pressure of <140 mm Hg at the end of trial with a RR for reduction in mortality of 0.56 (95% CI, 0.3-1.07; P = 0.08). Four RCTs were able to achieve a systolic blood pressure of >140 mm Hg at the end of trial, with the RR for reduction of mortality of 0.72 (95% CI, 0.54-0.96; P = 0.003). Overall, pooled estimates of the six RCTs suggested the reduction in systolic blood pressure statistically reduce all cause of mortality (RR, 0.69%; 95% CI, 0.53-0.90; P = 0.006) among ESRD patients on hemodialysis. CONCLUSION: Though not statically significant, the current study identifies <140 mm Hg as a promising blood pressure range for optimum survival among ESRD patients on hemodialysis. However, further studies are required to establish an ideal blood pressure range among hemodialysis patients. SYSTEMATIC REVIEW REGISTRATION: The study protocol was registered under PROSPERO (CRD42019121102).

19.
Ther Drug Monit ; 42(2): 264-270, 2020 04.
Article in English | MEDLINE | ID: mdl-31929398

ABSTRACT

BACKGROUND: In the United States, drug addiction has become a nationwide health crisis. Recently, buprenorphine (BUP), a maintenance therapy approved by the Food and Drug Administration, has been increasingly used in pregnant women for the treatment of opioid use disorder. Pregnancy is associated with various anatomic and physiological changes, which may result in altered drug pharmacokinetics (PKs). Previously, we reported that dose-adjusted plasma concentrations of BUP are lower during pregnancy than after pregnancy. The mechanism(s) responsible for this difference has not yet been defined. Our study aimed to evaluate alterations in cytochromes P450 (CYP)- and uridine diphosphate glucunosyltransferases (UGT)-mediated metabolism of BUP during pregnancy to determine the mechanism(s) responsible for this observation. METHODS: Data from 2 clinical studies were included in the current analysis. Study 1 was a prospective, open-labeled, nonrandomized longitudinal BUP PK study in pregnant women with a singleton gestation, stabilized on twice-daily sublingual BUP opioid substitution therapy. Each subject participated in up to 3 studies during and after pregnancy (the second, third trimester, and postpartum). The design of study 2 was similar to study 1, with patients evaluated at different time points during the pregnancy (first, second-half of pregnancy), as well as during the postpartum period. In addition, the dosing frequency of BUP study 2 participants was not restricted to twice-daily dosing. At each study visit, blood samples were collected before a BUP dose, followed by multiple collection times (10-12) after the dose, for up to 12 hours or till the end of the dosing interval. Plasma concentrations of BUP and 3 metabolites were quantified using validated ultraperformance liquid chromatography-tandem mass spectrometric assays. RESULTS: In total, 19, 18, and 14 subjects completed the PK study during 1/2 trimester, third trimester, and postpartum, respectively. The AUC ratios of norbuprenorphine and norbuprenorphine glucuronide to buprenorphine, a measure of CYP3A mediated N-demethylation, were 1.89, 1.84, and 1.33 during the first and second, third trimesters, and postpartum, respectively. The AUC ratios of buprenorphine glucuronide to BUP, indicative of UGT activity, were 0.71, 2.07, and 0.3 at first/second trimesters, third trimester, and postpartum, respectively. Linear mixed-effect modeling analysis indicated that the AUC ratios of CYP- and UGT-mediated metabolism of BUP were significantly higher during pregnancy compared with postpartum. CONCLUSIONS: The CYP and UGT activities were significantly increased as determined by the metabolic ratios of BUP during pregnancy compared with the postpartum period. The increased UGT activity appeared to account for a substantial part of the observed change in metabolic activity during pregnancy. This is in agreement with the need for BUP dose increment in pregnant women to reach similar BUP exposure and therapeutic effect as in nonpregnant subjects.


Subject(s)
Buprenorphine/pharmacokinetics , Cytochrome P-450 Enzyme System/metabolism , Glucuronosyltransferase/metabolism , Narcotic Antagonists/pharmacokinetics , Adult , Buprenorphine/analogs & derivatives , Buprenorphine/blood , Cytochrome P-450 CYP3A/metabolism , Female , Humans , Longitudinal Studies , Narcotic Antagonists/therapeutic use , Opiate Substitution Treatment/methods , Opioid-Related Disorders/drug therapy , Postpartum Period/metabolism , Pregnancy , Pregnancy Trimesters/metabolism , Young Adult
20.
PeerJ ; 7: e8045, 2019.
Article in English | MEDLINE | ID: mdl-31772835

ABSTRACT

BACKGROUND: Arjunolic acid (AA) is a potent phytochemical with wider pharmacological activities. Despite potential medicinal properties on various in vitro and in vivo studies, there is still a dearth of scientific data related to its safety profile and toxicological parameters. The current study aimed to investigate acute toxicity of AA in normal female Sprague Dawley rats. METHODS: In this study, AA was administered orally at an individual dose of 300 and 2000 mg/kg body weight to group 1 and 2 respectively, while group 3 served as normal control. All the animals were observed for 2 weeks to determine any behavioral and physical changes. On day 15, blood was collected for hematological and biochemical investigation, later animals from all the three groups were euthanized to harvest and store essential organs for histopathological analysis. Four different staining techniques; hematoxylin and eosin, Masson trichrome, Periodic acid Schiff and Oil O Red were used to investigate any alterations in different tissues through microscopical observation. RESULTS: The results of the study showed no morbidity and mortality at two different dosage of AA treatment. Daily food & water intake, body weight, relative organ weight, hematological and biochemical parameters were detected to be normal with no severe alteration seen through microscopical investigation in the structure of harvested tissues. Our findings support the safety profile of AA, which was well tolerated at higher dose. Thus, an in-detail study on the subacute disease model is warranted.

SELECTION OF CITATIONS
SEARCH DETAIL
...