Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters










Publication year range
1.
PLoS Biol ; 22(6): e3002682, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38843310

ABSTRACT

In exploring the evolutionary trajectories of both pathogenesis and karyotype dynamics in fungi, we conducted a large-scale comparative genomic analysis spanning the Cryptococcus genus, encompassing both global human fungal pathogens and nonpathogenic species, and related species from the sister genus Kwoniella. Chromosome-level genome assemblies were generated for multiple species, covering virtually all known diversity within these genera. Although Cryptococcus and Kwoniella have comparable genome sizes (about 19.2 and 22.9 Mb) and similar gene content, hinting at preadaptive pathogenic potential, our analysis found evidence of gene gain (via horizontal gene transfer) and gene loss in pathogenic Cryptococcus species, which might represent evolutionary signatures of pathogenic development. Genome analysis also revealed a significant variation in chromosome number and structure between the 2 genera. By combining synteny analysis and experimental centromere validation, we found that most Cryptococcus species have 14 chromosomes, whereas most Kwoniella species have fewer (11, 8, 5, or even as few as 3). Reduced chromosome number in Kwoniella is associated with formation of giant chromosomes (up to 18 Mb) through repeated chromosome fusion events, each marked by a pericentric inversion and centromere loss. While similar chromosome inversion-fusion patterns were observed in all Kwoniella species with fewer than 14 chromosomes, no such pattern was detected in Cryptococcus. Instead, Cryptococcus species with less than 14 chromosomes showed reductions primarily through rearrangements associated with the loss of repeat-rich centromeres. Additionally, Cryptococcus genomes exhibited frequent interchromosomal translocations, including intercentromeric recombination facilitated by transposons shared between centromeres. Overall, our findings advance our understanding of genetic changes possibly associated with pathogenicity in Cryptococcus and provide a foundation to elucidate mechanisms of centromere loss and chromosome fusion driving distinct karyotypes in closely related fungal species, including prominent global human pathogens.


Subject(s)
Chromosomes, Fungal , Cryptococcus , Evolution, Molecular , Genome, Fungal , Genomics , Karyotype , Cryptococcus/genetics , Cryptococcus/pathogenicity , Cryptococcus/classification , Chromosomes, Fungal/genetics , Genomics/methods , Phylogeny , Synteny , Centromere/genetics , Cryptococcosis/microbiology , Humans
2.
Proc Natl Acad Sci U S A ; 121(10): e2310852121, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38416678

ABSTRACT

Enterococci are gut microbes of most land animals. Likely appearing first in the guts of arthropods as they moved onto land, they diversified over hundreds of millions of years adapting to evolving hosts and host diets. Over 60 enterococcal species are now known. Two species, Enterococcus faecalis and Enterococcus faecium, are common constituents of the human microbiome. They are also now leading causes of multidrug-resistant hospital-associated infection. The basis for host association of enterococcal species is unknown. To begin identifying traits that drive host association, we collected 886 enterococcal strains from widely diverse hosts, ecologies, and geographies. This identified 18 previously undescribed species expanding genus diversity by >25%. These species harbor diverse genes including toxins and systems for detoxification and resource acquisition. Enterococcus faecalis and E. faecium were isolated from diverse hosts highlighting their generalist properties. Most other species showed a more restricted distribution indicative of specialized host association. The expanded species diversity permitted the Enterococcus genus phylogeny to be viewed with unprecedented resolution, allowing features to be identified that distinguish its four deeply rooted clades, and the entry of genes associated with range expansion such as B-vitamin biosynthesis and flagellar motility to be mapped to the phylogeny. This work provides an unprecedentedly broad and deep view of the genus Enterococcus, including insights into its evolution, potential new threats to human health, and where substantial additional enterococcal diversity is likely to be found.


Subject(s)
Enterococcus faecium , Gram-Positive Bacterial Infections , Animals , Humans , Enterococcus/genetics , Anti-Bacterial Agents/pharmacology , Enterococcus faecium/genetics , Enterococcus faecalis/genetics , Phylogeny , Microbial Sensitivity Tests , Drug Resistance, Bacterial
3.
bioRxiv ; 2024 Jan 13.
Article in English | MEDLINE | ID: mdl-38234769

ABSTRACT

A large-scale comparative genomic analysis was conducted for the global human fungal pathogens within the Cryptococcus genus, compared to non-pathogenic Cryptococcus species, and related species from the sister genus Kwoniella. Chromosome-level genome assemblies were generated for multiple species of both genera, resulting in a dataset encompassing virtually all of their known diversity. Although Cryptococcus and Kwoniella have comparable genome sizes (about 19.2 and 22.9 Mb) and similar gene content, hinting at pre-adaptive pathogenic potential, our analysis found evidence in pathogenic Cryptococcus species of specific examples of gene gain (via horizontal gene transfer) and gene loss, which might represent evolutionary signatures of pathogenic development. Genome analysis also revealed a significant variation in chromosome number and structure between the two genera. By combining synteny analysis and experimental centromere validation, we found that most Cryptococcus species have 14 chromosomes, whereas most Kwoniella species have fewer (11, 8, 5 or even as few as 3). Reduced chromosome number in Kwoniella is associated with formation of giant chromosomes (up to 18 Mb) through repeated chromosome fusion events, each marked by a pericentric inversion and centromere loss. While similar chromosome inversion-fusion patterns were observed in all Kwoniella species with fewer than 14 chromosomes, no such pattern was detected in Cryptococcus. Instead, Cryptococcus species with less than 14 chromosomes, underwent chromosome reductions primarily through rearrangements associated with the loss of repeat-rich centromeres. Additionally, Cryptococcus genomes exhibited frequent interchromosomal translocations, including intercentromeric recombination facilitated by transposons shared between centromeres. Taken together, our findings advance our understanding of genomic changes possibly associated with pathogenicity in Cryptococcus and provide a foundation to elucidate mechanisms of centromere loss and chromosome fusion driving distinct karyotypes in closely related fungal species, including prominent global human pathogens.

4.
Microbiol Resour Announc ; 12(7): e0033823, 2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37289095

ABSTRACT

Lichtheimia ornata is an emerging opportunistic Mucorales pathogen that is associated with fatal infections in immunocompromised individuals. While these environmentally acquired infections have rarely been reported to date, cases were noted in a recent analysis of coronavirus disease 2019 (COVID-19)-associated mucormycosis in India. Here, we report the annotated genome sequence of the environmental isolate CBS 291.66.

5.
Brief Bioinform ; 24(2)2023 03 19.
Article in English | MEDLINE | ID: mdl-36804804

ABSTRACT

Recent technological and computational advances have made metagenomic assembly a viable approach to achieving high-resolution views of complex microbial communities. In previous benchmarking, short-read (SR) metagenomic assemblers had the highest accuracy, long-read (LR) assemblers generated the most contiguous sequences and hybrid (HY) assemblers balanced length and accuracy. However, no assessments have specifically compared the performance of these assemblers on low-abundance species, which include clinically relevant organisms in the gut. We generated semi-synthetic LR and SR datasets by spiking small and increasing amounts of Escherichia coli isolate reads into fecal metagenomes and, using different assemblers, examined E. coli contigs and the presence of antibiotic resistance genes (ARGs). For ARG assembly, although SR assemblers recovered more ARGs with high accuracy, even at low coverages, LR assemblies allowed for the placement of ARGs within longer, E. coli-specific contigs, thus pinpointing their taxonomic origin. HY assemblies identified resistance genes with high accuracy and had lower contiguity than LR assemblies. Each assembler type's strengths were maintained even when our isolate was spiked in with a competing strain, which fragmented and reduced the accuracy of all assemblies. For strain characterization and determining gene context, LR assembly is optimal, while for base-accurate gene identification, SR assemblers outperform other options. HY assembly offers contiguity and base accuracy, but requires generating data on multiple platforms, and may suffer high misassembly rates when strain diversity exists. Our results highlight the trade-offs associated with each approach for recovering low-abundance taxa, and that the optimal approach is goal-dependent.


Subject(s)
Metagenome , Microbiota , Sequence Analysis, DNA/methods , Escherichia coli/genetics , Microbiota/genetics , Metagenomics/methods , High-Throughput Nucleotide Sequencing/methods
6.
Methods Mol Biol ; 2517: 205-214, 2022.
Article in English | MEDLINE | ID: mdl-35674956

ABSTRACT

Genomic studies of Candida auris are underpinned by the generation of high-quality genome assemblies. These reference genomes have been essential for investigations of the evolution and epidemiology of this emerging fungal pathogen. In addition to genomic epidemiology studies of local outbreaks and analysis of the global emergence of this species, comparisons of genomes of isolates from the five major clades have revealed differences in gene content and genomic structure. Here, we provide a detailed protocol for generating complete genome assemblies for C. auris.


Subject(s)
Candida , Candidiasis , Antifungal Agents/therapeutic use , Candida/genetics , Candida auris , Candidiasis/microbiology , Disease Outbreaks , Genomics , Microbial Sensitivity Tests
7.
Elife ; 112022 06 17.
Article in English | MEDLINE | ID: mdl-35713948

ABSTRACT

eLife digest.Fungi are enigmatic organisms that flourish in soil, on decaying plants, or during infection of animals or plants. Growing in myriad forms, from single-celled yeast to multicellular molds and mushrooms, fungi have also evolved a variety of strategies to reproduce. Normally, fungi reproduce in one of two ways: either they reproduce asexually, with one individual producing a new individual identical to itself, or they reproduce sexually, with two individuals of different 'mating types' contributing to produce a new individual. However, individuals of some species exhibit 'homothallism' or self-fertility: these individuals can produce reproductive cells that are universally compatible, and therefore can reproduce sexually with themselves or with any other cell in the population.Homothallism has evolved multiple times throughout the fungal kingdom, suggesting it confers advantage when population numbers are low or mates are hard to find. Yet some homothallic fungi been overlooked compared to heterothallic species, whose mating types have been well characterised. Understanding the genetic basis of homothallism and how it evolved in different species can provide insights into pathogenic species that cause fungal disease.With that in mind, Passer, Clancey et al. explored the genetic basis of homothallism in Cryptococcus depauperatus, a close relative of C. neoformans, a species that causes fungal infections in humans. A combination of genetic sequencing techniques and experiments were applied to analyse, compare, and manipulate C. depauperatus' genome to see how this species evolved self-fertility.Passer, Clancey et al. showed that C. depauperatus evolved the ability to reproduce sexually by itself via a unique evolutionary pathway. The result is a form of homothallism never reported in fungi before. C. depauperatus lost some of the genes that control mating in other species of fungi, and acquired genes from the opposing mating types of a heterothallic ancestor to become self-fertile.Passer, Clancey et al. also found that, unlike other Cryptococcus species that switch between asexual and sexual reproduction, C. depauperatus grows only as long, branching filaments called hyphae, a sexual form. The species reproduces sexually with itself throughout its life cycle and is unable to produce a yeast (asexual) form, in contrast to other closely related species.This work offers new insights into how different modes of sexual reproduction have evolved in fungi. It also provides another interesting case of how genome plasticity and evolutionary pressures can produce similar outcomes, homothallism, via different evolutionary paths. Lastly, assembling the complete genome of C. depauperatus will foster comparative studies between pathogenic and non-pathogenic Cryptococcus species.


Fungi are enigmatic organisms that flourish in soil, on decaying plants, or during infection of animals or plants. Growing in myriad forms, from single-celled yeast to multicellular molds and mushrooms, fungi have also evolved a variety of strategies to reproduce. Normally, fungi reproduce in one of two ways: either they reproduce asexually, with one individual producing a new individual identical to itself, or they reproduce sexually, with two individuals of different 'mating types' contributing to produce a new individual. However, individuals of some species exhibit 'homothallism' or self-fertility: these individuals can produce reproductive cells that are universally compatible, and therefore can reproduce sexually with themselves or with any other cell in the population. Homothallism has evolved multiple times throughout the fungal kingdom, suggesting it confers advantage when population numbers are low or mates are hard to find. Yet some homothallic fungi been overlooked compared to heterothallic species, whose mating types have been well characterised. Understanding the genetic basis of homothallism and how it evolved in different species can provide insights into pathogenic species that cause fungal disease. With that in mind, Passer, Clancey et al. explored the genetic basis of homothallism in Cryptococcus depauperatus, a close relative of C. neoformans, a species that causes fungal infections in humans. A combination of genetic sequencing techniques and experiments were applied to analyse, compare, and manipulate C. depauperatus' genome to see how this species evolved self-fertility. Passer, Clancey et al. showed that C. depauperatus evolved the ability to reproduce sexually by itself via a unique evolutionary pathway. The result is a form of homothallism never reported in fungi before. C. depauperatus lost some of the genes that control mating in other species of fungi, and acquired genes from the opposing mating types of a heterothallic ancestor to become self-fertile. Passer, Clancey et al. also found that, unlike other Cryptococcus species that switch between asexual and sexual reproduction, C. depauperatus grows only as long, branching filaments called hyphae, a sexual form. The species reproduces sexually with itself throughout its life cycle and is unable to produce a yeast (asexual) form, in contrast to other closely related species. This work offers new insights into how different modes of sexual reproduction have evolved in fungi. It also provides another interesting case of how genome plasticity and evolutionary pressures can produce similar outcomes, homothallism, via different evolutionary paths. Lastly, assembling the complete genome of C. depauperatus will foster comparative studies between pathogenic and non-pathogenic Cryptococcus species.


Subject(s)
Cryptococcus neoformans , Genes, Mating Type, Fungal , Biological Evolution , Cryptococcus neoformans/genetics , Genes, Mating Type, Fungal/genetics , Humans , Reproduction , Saccharomyces cerevisiae/genetics
8.
Genome Med ; 14(1): 37, 2022 04 05.
Article in English | MEDLINE | ID: mdl-35379360

ABSTRACT

BACKGROUND: Carbapenem-resistant Enterobacterales (CRE) are an urgent global health threat. Inferring the dynamics of local CRE dissemination is currently limited by our inability to confidently trace the spread of resistance determinants to unrelated bacterial hosts. Whole-genome sequence comparison is useful for identifying CRE clonal transmission and outbreaks, but high-frequency horizontal gene transfer (HGT) of carbapenem resistance genes and subsequent genome rearrangement complicate tracing the local persistence and mobilization of these genes across organisms. METHODS: To overcome this limitation, we developed a new approach to identify recent HGT of large, near-identical plasmid segments across species boundaries, which also allowed us to overcome technical challenges with genome assembly. We applied this to complete and near-complete genome assemblies to examine the local spread of CRE in a systematic, prospective collection of all CRE, as well as time- and species-matched carbapenem-susceptible Enterobacterales, isolated from patients from four US hospitals over nearly 5 years. RESULTS: Our CRE collection comprised a diverse range of species, lineages, and carbapenem resistance mechanisms, many of which were encoded on a variety of promiscuous plasmid types. We found and quantified rearrangement, persistence, and repeated transfer of plasmid segments, including those harboring carbapenemases, between organisms over multiple years. Some plasmid segments were found to be strongly associated with specific locales, thus representing geographic signatures that make it possible to trace recent and localized HGT events. Functional analysis of these signatures revealed genes commonly found in plasmids of nosocomial pathogens, such as functions required for plasmid retention and spread, as well survival against a variety of antibiotic and antiseptics common to the hospital environment. CONCLUSIONS: Collectively, the framework we developed provides a clearer, high-resolution picture of the epidemiology of antibiotic resistance importation, spread, and persistence in patients and healthcare networks.


Subject(s)
Carbapenems , Gene Transfer, Horizontal , Anti-Bacterial Agents/pharmacology , Carbapenems/pharmacology , Humans , Plasmids/genetics , Prospective Studies
9.
mBio ; 13(1): e0257421, 2022 02 22.
Article in English | MEDLINE | ID: mdl-35089059

ABSTRACT

Histoplasma capsulatum, a dimorphic fungal pathogen, is the most common cause of fungal respiratory infections in immunocompetent hosts. Histoplasma is endemic in the Ohio and Mississippi River Valleys in the United States and is also distributed worldwide. Previous studies have revealed at least eight clades, each specific to a geographic location: North American classes 1 and 2 (NAm 1 and NAm 2), Latin American groups A and B (LAm A and LAm B), Eurasian, Netherlands, Australian and African, and an additional distinct lineage (H81) comprised of Panamanian isolates. Previously assembled Histoplasma genomes are highly fragmented, with the highly repetitive G217B (NAm 2) strain, which has been used for most whole-genome-scale transcriptome studies, assembled into over 250 contigs. In this study, we set out to fully assemble the repeat regions and characterize the large-scale genome architecture of Histoplasma species. We resequenced five Histoplasma strains (WU24 [NAm 1], G217B [NAm 2], H88 [African], G186AR [Panama], and G184AR [Panama]) using Oxford Nanopore Technologies long-read sequencing technology. Here, we report chromosomal-level assemblies for all five strains, which exhibit extensive synteny among the geographically distant Histoplasma isolates. The new assemblies revealed that RYP2, a major regulator of morphology and virulence, is duplicated in G186AR. In addition, we mapped previously generated transcriptome data sets onto the newly assembled chromosomes. Our analyses revealed that the expression of transposons and transposon-embedded genes are upregulated in yeast phase compared to mycelial phase in the G217B and H88 strains. This study provides an important resource for fungal researchers and further highlights the importance of chromosomal-level assemblies in analyzing high-throughput data sets. IMPORTANCE Histoplasma species are dimorphic fungi causing significant morbidity and mortality worldwide. These fungi grow as mold in the soil and as budding yeast within the human host. Histoplasma can be isolated from soil in diverse regions, including North America, South America, Africa, and Europe. Phylogenetically distinct species of Histoplasma have been isolated and sequenced. However, for the commonly used strains, genome assemblies have been fragmented, leading to underutilization of genome-scale data. This study provides chromosome-level assemblies of the commonly used Histoplasma strains using long-read sequencing technology. Comparative analysis of these genomes shows largely conserved gene order within the chromosomes. Mapping existing transcriptome data on these new assemblies reveals clustering of transcriptionally coregulated genes. The results of this study highlight the importance of obtaining chromosome-level assemblies in understanding the biology of human fungal pathogens.


Subject(s)
Histoplasma , Mycoses , Humans , Synteny , Australia , Histoplasma/genetics , Saccharomyces cerevisiae/genetics , Chromosomes , Genome, Fungal
10.
Nat Commun ; 12(1): 6688, 2021 11 18.
Article in English | MEDLINE | ID: mdl-34795258

ABSTRACT

While emerging fungi threaten global biodiversity, the paucity of fungal genome assemblies impedes thoroughly characterizing epidemics and developing effective mitigation strategies. Here, we generate de novo genomic assemblies for six outbreaks of the emerging pathogen Batrachochytrium salamandrivorans (Bsal). We reveal the European epidemic currently damaging amphibian populations to comprise multiple, highly divergent lineages demonstrating isolate-specific adaptations and metabolic capacities. In particular, we show extensive gene family expansions and acquisitions, through a variety of evolutionary mechanisms, and an isolate-specific saprotrophic lifecycle. This finding both explains the chytrid's ability to divorce transmission from host density, producing Bsal's enigmatic host population declines, and is a key consideration in developing successful mitigation measures.


Subject(s)
Batrachochytrium/genetics , Evolution, Molecular , Genetic Variation , Mycoses/epidemiology , Acclimatization/genetics , Amphibians/microbiology , Animals , Batrachochytrium/classification , Batrachochytrium/physiology , Chytridiomycota/classification , Chytridiomycota/genetics , Chytridiomycota/physiology , Disease Outbreaks , Epidemics , Europe/epidemiology , Genes, Fungal/genetics , Genome, Fungal/genetics , Mycoses/microbiology , Phylogeny , Sequence Analysis, DNA/methods , Urodela/microbiology
11.
Genetics ; 218(1)2021 05 17.
Article in English | MEDLINE | ID: mdl-33769478

ABSTRACT

Candida auris is an emerging fungal pathogen of rising concern due to global spread, the ability to cause healthcare-associated outbreaks, and antifungal resistance. Genomic analyses revealed that early contemporaneously detected cases of C. auris were geographically stratified into four major clades. While Clades I, III, and IV are responsible for ongoing outbreaks of invasive and multidrug-resistant infections, Clade II, also termed the East Asian clade, consists primarily of cases of ear infection, is often susceptible to all antifungal drugs, and has not been associated with outbreaks. Here, we generate chromosome-level assemblies of twelve isolates representing the phylogenetic breadth of these four clades and the only isolate described to date from Clade V. This Clade V genome is highly syntenic with those of Clades I, III, and IV, although the sequence is highly divergent from the other clades. Clade II genomes appear highly rearranged, with translocations occurring near GC-poor regions, and large subtelomeric deletions in most chromosomes, resulting in a substantially different karyotype. Rearrangements and deletion lengths vary across Clade II isolates, including two from a single patient, supporting ongoing genome instability. Deleted subtelomeric regions are enriched in Hyr/Iff-like cell-surface proteins, novel candidate cell wall proteins, and an ALS-like adhesin. Cell wall proteins from these families and other drug-related genes show clade-specific signatures of selection in Clades I, III, and IV. Subtelomeric dynamics and the conservation of cell surface proteins in the clades responsible for global outbreaks causing invasive infections suggest an explanation for the different phenotypes observed between clades.


Subject(s)
Candida auris/genetics , Chromosomes , Candida/genetics , Chromosome Aberrations/drug effects , Gene Rearrangement , Genome, Fungal , Genomics/methods , Karyotype , Phylogeny , Telomere/genetics , Telomere/metabolism
13.
Commun Biol ; 3(1): 50, 2020 01 31.
Article in English | MEDLINE | ID: mdl-32005944

ABSTRACT

Fusarium oxysporum is a cross-kingdom fungal pathogen that infects plants and humans. Horizontally transferred lineage-specific (LS) chromosomes were reported to determine host-specific pathogenicity among phytopathogenic F. oxysporum. However, the existence and functional importance of LS chromosomes among human pathogenic isolates are unknown. Here we report four unique LS chromosomes in a human pathogenic strain NRRL 32931, isolated from a leukemia patient. These LS chromosomes were devoid of housekeeping genes, but were significantly enriched in genes encoding metal ion transporters and cation transporters. Homologs of NRRL 32931 LS genes, including a homolog of ceruloplasmin and the genes that contribute to the expansion of the alkaline pH-responsive transcription factor PacC/Rim1p, were also present in the genome of NRRL 47514, a strain associated with Fusarium keratitis outbreak. This study provides the first evidence, to our knowledge, for genomic compartmentalization in two human pathogenic fungal genomes and suggests an important role of LS chromosomes in niche adaptation.


Subject(s)
Chromosomes, Fungal , Fusariosis/microbiology , Fusarium/genetics , Genome, Fungal , Opportunistic Infections/microbiology , Amino Acid Sequence , Fungal Proteins/chemistry , Fungal Proteins/genetics , Fusarium/isolation & purification , Gene Expression Regulation, Fungal , Humans , Models, Molecular , Phylogeny , Protein Conformation , Structure-Activity Relationship
14.
Cell ; 180(2): 263-277.e20, 2020 01 23.
Article in English | MEDLINE | ID: mdl-31955845

ABSTRACT

Cytosine methylation of DNA is a widespread modification of DNA that plays numerous critical roles. In the yeast Cryptococcus neoformans, CG methylation occurs in transposon-rich repeats and requires the DNA methyltransferase Dnmt5. We show that Dnmt5 displays exquisite maintenance-type specificity in vitro and in vivo and utilizes similar in vivo cofactors as the metazoan maintenance methylase Dnmt1. Remarkably, phylogenetic and functional analysis revealed that the ancestral species lost the gene for a de novo methylase, DnmtX, between 50-150 mya. We examined how methylation has persisted since the ancient loss of DnmtX. Experimental and comparative studies reveal efficient replication of methylation patterns in C. neoformans, rare stochastic methylation loss and gain events, and the action of natural selection. We propose that an epigenome has been propagated for >50 million years through a process analogous to Darwinian evolution of the genome.


Subject(s)
Cryptococcus neoformans/genetics , DNA Methylation/genetics , Methyltransferases/genetics , Biological Evolution , Cryptococcus neoformans/metabolism , DNA/metabolism , DNA (Cytosine-5-)-Methyltransferase 1/genetics , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA Methylation/physiology , DNA Modification Methylases/genetics , DNA Transposable Elements/genetics , Epigenomics/methods , Evolution, Molecular , Genome/genetics , Methyltransferases/metabolism , Phylogeny
15.
Microbiol Resour Announc ; 9(2)2020 Jan 09.
Article in English | MEDLINE | ID: mdl-31919177

ABSTRACT

Talaromyces marneffei is a thermally dimorphic fungus endemic in China and Southeast Asia that causes fatal infections in immunocompromised individuals, particularly in patients with advanced HIV disease. Here, we report the complete genome sequences of two clinical isolates from northern and southern Vietnam.

16.
mBio ; 10(6)2019 11 12.
Article in English | MEDLINE | ID: mdl-31719178

ABSTRACT

We discovered a new lineage of the globally important fungal pathogen Cryptococcus gattii on the basis of analysis of six isolates collected from three locations spanning the Central Miombo Woodlands of Zambia, Africa. All isolates were from environments (middens and tree holes) that are associated with a small mammal, the African hyrax. Phylogenetic and population genetic analyses confirmed that these isolates form a distinct, deeply divergent lineage, which we name VGV. VGV comprises two subclades (A and B) that are capable of causing mild lung infection with negligible neurotropism in mice. Comparing the VGV genome to previously identified lineages of C. gattii revealed a unique suite of genes together with gene loss and inversion events. However, standard URA5 restriction fragment length polymorphism (RFLP) analysis could not distinguish between VGV and VGIV isolates. We therefore developed a new URA5 RFLP method that can reliably identify the newly described lineage. Our work highlights how sampling understudied ecological regions alongside genomic and functional characterization can broaden our understanding of the evolution and ecology of major global pathogens.IMPORTANCECryptococcus gattii is an environmental pathogen that causes severe systemic infection in immunocompetent individuals more often than in immunocompromised humans. Over the past 2 decades, researchers have shown that C. gattii falls within four genetically distinct major lineages. By combining field work from an understudied ecological region (the Central Miombo Woodlands of Zambia, Africa), genome sequencing and assemblies, phylogenetic and population genetic analyses, and phenotypic characterization (morphology, histopathological, drug-sensitivity, survival experiments), we discovered a hitherto unknown lineage, which we name VGV (variety gattii five). The discovery of a new lineage from an understudied ecological region has far-reaching implications for the study and understanding of fungal pathogens and diseases they cause.


Subject(s)
Cryptococcus gattii/classification , Cryptococcus gattii/genetics , Environmental Microbiology , Forests , Animal Diseases/microbiology , Animals , Genome, Fungal , Genomics/methods , Phenotype , Phylogeny , Plant Diseases/microbiology , Soil Microbiology , Zambia/epidemiology
17.
Proc Natl Acad Sci U S A ; 115(12): 3108-3113, 2018 03 20.
Article in English | MEDLINE | ID: mdl-29507212

ABSTRACT

The centromere DNA locus on a eukaryotic chromosome facilitates faithful chromosome segregation. Despite performing such a conserved function, centromere DNA sequence as well as the organization of sequence elements is rapidly evolving in all forms of eukaryotes. The driving force that facilitates centromere evolution remains an enigma. Here, we studied the evolution of centromeres in closely related species in the fungal phylum of Basidiomycota. Using ChIP-seq analysis of conserved inner kinetochore proteins, we identified centromeres in three closely related Cryptococcus species: two of which are RNAi-proficient, while the other lost functional RNAi. We find that the centromeres in the RNAi-deficient species are significantly shorter than those of the two RNAi-proficient species. While centromeres are LTR retrotransposon-rich in all cases, the RNAi-deficient species lost all full-length retroelements from its centromeres. In addition, centromeres in RNAi-proficient species are associated with a significantly higher level of cytosine DNA modifications compared with those of RNAi-deficient species. Furthermore, when an RNAi-proficient Cryptococcus species and its RNAi-deficient mutants were passaged under similar conditions, the centromere length was found to be occasionally shortened in RNAi mutants. In silico analysis of predicted centromeres in a group of closely related Ustilago species, also belonging to the Basidiomycota, were found to have undergone a similar transition in the centromere length in an RNAi-dependent fashion. Based on the correlation found in two independent basidiomycetous species complexes, we present evidence suggesting that the loss of RNAi and cytosine DNA methylation triggered transposon attrition, which resulted in shortening of centromere length during evolution.


Subject(s)
Centromere/genetics , Cryptococcus/genetics , DNA, Fungal/genetics , Evolution, Molecular , RNA Interference , Base Sequence , Chromosomes, Fungal/genetics
18.
Genetics ; 208(4): 1657-1669, 2018 04.
Article in English | MEDLINE | ID: mdl-29467168

ABSTRACT

Dermatophytes include fungal species that infect humans, as well as those that also infect other animals or only grow in the environment. The dermatophyte species Trichophyton rubrum is a frequent cause of skin infection in immunocompetent individuals. While members of the T. rubrum species complex have been further categorized based on various morphologies, their population structure and ability to undergo sexual reproduction are not well understood. In this study, we analyze a large set of T. rubrum and T. interdigitale isolates to examine mating types, evidence of mating, and genetic variation. We find that nearly all isolates of T. rubrum are of a single mating type, and that incubation with T. rubrum "morphotype" megninii isolates of the other mating type failed to induce sexual development. While the region around the mating type locus is characterized by a higher frequency of SNPs compared to other genomic regions, we find that the population is remarkably clonal, with highly conserved gene content, low levels of variation, and little evidence of recombination. These results support a model of recent transition to asexual growth when this species specialized to growth on human hosts.


Subject(s)
Genome, Fungal , Genomics , Trichophyton/classification , Trichophyton/genetics , Alleles , Animals , Computational Biology/methods , DNA Copy Number Variations , Genomics/methods , Humans , Linkage Disequilibrium , Multilocus Sequence Typing , Phylogeny , Polymorphism, Single Nucleotide , Recombination, Genetic , Tinea/microbiology , Whole Genome Sequencing
19.
G3 (Bethesda) ; 7(9): 2883-2889, 2017 09 07.
Article in English | MEDLINE | ID: mdl-28696923

ABSTRACT

Candida krusei is a diploid, heterozygous yeast that is an opportunistic fungal pathogen in immunocompromised patients. This species also is utilized for fermenting cocoa beans during chocolate production. One major concern in the clinical setting is the innate resistance of this species to the most commonly used antifungal drug fluconazole. Here, we report a high-quality genome sequence and assembly for the first clinical isolate of C. krusei, strain 81-B-5, into 11 scaffolds generated with PacBio sequencing technology. Gene annotation and comparative analysis revealed a unique profile of transporters that could play a role in drug resistance or adaptation to different environments. In addition, we show that, while 82% of the genome is highly heterozygous, a 2.0 Mb region of the largest scaffold has undergone loss of heterozygosity. This genome will serve as a reference for further genetic studies of this pathogen.


Subject(s)
Candida/genetics , Candidiasis/microbiology , Genetic Variation , Genome, Fungal , Whole Genome Sequencing , Candida/classification , Chromosomes, Fungal , Computational Biology/methods , Genes, Mating Type, Fungal , Genetic Association Studies , Genomics/methods , Heterozygote , Humans , Karyotype , Loss of Heterozygosity , Molecular Sequence Annotation , Phenotype , Phylogeny , Polymorphism, Single Nucleotide , Sequence Analysis, DNA
20.
Proc Natl Acad Sci U S A ; 114(5): 1135-1140, 2017 01 31.
Article in English | MEDLINE | ID: mdl-28096418

ABSTRACT

Carbapenem-resistant Enterobacteriaceae (CRE) are among the most severe threats to the antibiotic era. Multiple different species can exhibit resistance due to many different mechanisms, and many different mobile elements are capable of transferring resistance between lineages. We prospectively sampled CRE from hospitalized patients from three Boston-area hospitals, together with a collection of CRE from a single California hospital, to define the frequency and characteristics of outbreaks and determine whether there is evidence for transfer of strains within and between hospitals and the frequency with which resistance is transferred between lineages or species. We found eight species exhibiting resistance, with the majority of our sample being the sequence type 258 (ST258) lineage of Klebsiella pneumoniae There was very little evidence of extensive hospital outbreaks, but a great deal of variation in resistance mechanisms and the genomic backgrounds carrying these mechanisms. Local transmission was evident in clear phylogeographic structure between the samples from the two coasts. The most common resistance mechanisms were KPC (K. pneumoniae carbapenemases) beta-lactamases encoded by blaKPC2, blaKPC3, and blaKPC4, which were transferred between strains and species by seven distinct subgroups of the Tn4401 element. We also found evidence for previously unrecognized resistance mechanisms that produced resistance when transformed into a susceptible genomic background. The extensive variation, together with evidence of transmission beyond limited clonal outbreaks, points to multiple unsampled transmission chains throughout the continuum of care, including asymptomatic carriage and transmission of CRE. This finding suggests that to control this threat, we need an aggressive approach to surveillance and isolation.


Subject(s)
Carbapenems/pharmacology , DNA Transposable Elements/genetics , Disease Outbreaks , Enterobacteriaceae Infections/microbiology , Enterobacteriaceae/drug effects , R Factors/genetics , beta-Lactam Resistance/genetics , Bacterial Proteins/genetics , Boston/epidemiology , Clone Cells , Cross Infection/epidemiology , Cross Infection/microbiology , Cross Infection/transmission , Enterobacteriaceae/enzymology , Enterobacteriaceae/genetics , Enterobacteriaceae Infections/epidemiology , Enterobacteriaceae Infections/transmission , Genetic Variation , Genome, Bacterial , Humans , Prospective Studies , Sequence Alignment , Transformation, Bacterial , beta-Lactam Resistance/physiology , beta-Lactamases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...