Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Immunol ; 203(8): 2328-2338, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31541025

ABSTRACT

The T cell-specific adaptor protein (TSAd), encoded by the SH2D2A gene, is an intracellular molecule that binds Lck to elicit signals that result in cytokine production in CD4+ T effector cells (Teff). Nevertheless, using Sh2d2a knockout (KO; also called TSAd-/-) mice, we find that alloimmune CD4+ Teff responses are fully competent in vivo. Furthermore, and contrary to expectations, we find that allograft rejection is accelerated in KO recipients of MHC class II-mismatched B6.C-H-2bm12 heart transplants versus wild-type (WT) recipients. Also, KO recipients of fully MHC-mismatched cardiac allografts are resistant to the graft-prolonging effects of costimulatory blockade. Using adoptive transfer models, we find that KO T regulatory cells (Tregs) are less efficient in suppressing Teff function and they produce IFN-γ following mitogenic activation. In addition, pyrosequencing demonstrated higher levels of methylation of CpG regions within the Treg-specific demethylated region of KO versus WT Tregs, suggesting that TSAd, in part, promotes Treg stability. By Western blot, Lck is absent in the mitochondria of KO Tregs, and reactive oxygen species production by mitochondria is reduced in KO versus WT Tregs. Full transcriptomic analysis demonstrated that the key mechanism of TSAd function in Tregs relates to its effects on cellular activation rather than intrinsic effects on mitochondria/metabolism. Nevertheless, KO Tregs compensate for a lack of activation by increasing the number of mitochondria per cell. Thus, TSAd serves as a critical cell-intrinsic molecule in CD4+Foxp3+ Tregs to regulate the translocation of Lck to mitochondria, cellular activation responses, and the development of immunoregulation following solid organ transplantation.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , CD4-Positive T-Lymphocytes/immunology , Mitochondria/metabolism , Transplantation , Adaptor Proteins, Signal Transducing/deficiency , Adoptive Transfer , Animals , CD4-Positive T-Lymphocytes/cytology , Cell Proliferation , Cells, Cultured , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout
2.
J Assist Reprod Genet ; 31(5): 521-6, 2014 May.
Article in English | MEDLINE | ID: mdl-24643631

ABSTRACT

Varicocele is a pathologic enlargement of the pampiniform venous plexus within the spermatic cord, a condition that is a common cause of impaired sperm production and decreased quality of sperm. While varicocele is the most common surgically correctable risk factor for male infertility, not all males with varicocele experience infertility. In fact, most men with varicocele have normal spermatogenesis. Despite its prevalence, the molecular mechanisms of varicocele and its effect on testicular function are yet to be completely understood. We postulate that men with varicocele-associated infertility could have preexisting genetic lesions or defects in molecular mechanisms that make them more susceptible to varicocele-mediated testicular injury affecting spermatogenesis.


Subject(s)
Infertility, Male/etiology , Varicocele/complications , Humans , Infertility, Male/chemically induced , Male , Oxidative Stress , Smoking/adverse effects , Spermatogenesis , Stress, Physiological , Testosterone/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL