Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.415
Filter
1.
Adv Mater ; : e2401589, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38744437

ABSTRACT

Constructing an anti-counterfeiting material with non-interference dual optical modes is an effective way to improve information security. However, it remains challenging to achieve multistage secure information encryption due to the limited stimulus responsiveness and color tunability of the current dual-mode materials. Herein, a dual-mode hydrogel with both independently tunable structural and fluorescent colors towards multistage information encryption is reported. In this hydrogel system, the rigid lamellar structure of poly(dodecylglyceryl itaconate) (pDGI) formed by shear flow-induced self-assembly provides the restricted domains wherein monomers undergo polymerization to form a hydrogel network, producing structural color. The introduction of fluorescent monomer 6-acrylamidopicolinate (6APA) as a complexation site provides the possibility of fluorescent color formation. The hydrogel's angle-dependent structural color can be controlled by adjusting the crosslinking density and water content. Additionally, the fluorescence color can be modulated by adjusting the ratio of lanthanide ions. Information of dual-mode can be displayed separately in different channels and synergistically overlayed to read the ultimate message. Thus, a multistage information encryption system based on this hydrogel is devised through the programmed decryption process. This strategy holds tremendous potential as a platform for encrypting and safeguarding valuable and authentic information in the field of anti-counterfeiting. This article is protected by copyright. All rights reserved.

2.
J Hepatocell Carcinoma ; 11: 787-800, 2024.
Article in English | MEDLINE | ID: mdl-38737384

ABSTRACT

Background: Anti-programmed death-1 (PD1) antibodies have changed the treatment landscape for hepatocellular carcinoma (HCC) and exhibit promising treatment efficacy. However, the majority of HCCs still do not respond to anti-PD-1 therapy. Methods: We analyzed the expression of CXCL9 in blood samples from patients who received anti-PD-1 therapy and evaluated its correlation with clinicopathological characteristics and treatment outcomes. Based on the results of Cox regression analysis, a nomogram was established for predicting HCC response to anti-PD-1 therapy. qRT‒PCR and multiple immunofluorescence assays were utilized to analyze the proportions of N1-type neutrophils in vitro and in tumor samples, respectively. Results: The nomogram showed good predictive efficacy in the training and validation cohorts and may be useful for guiding clinical treatment of HCC patients. We also found that HCC cell-derived CXCL9 promoted N1 polarization of neutrophils in vitro and that AMG487, a specific CXCR3 inhibitor, significantly blocked this process. Moreover, multiple immunofluorescence (mIF) showed that patients with higher serum CXCL9 levels had greater infiltration of the N1 phenotype of tumor-associated neutrophils (TANs). Conclusion: Our study highlights the critical role of CXCL9 as an effective biomarker of immunotherapy efficacy and in promoting the polarization of N1-type neutrophils; thus, targeting the CXCL9-CXCR3 axis could represent a novel pharmaceutical strategy to enhance immunotherapy for HCC.

3.
PLoS One ; 19(5): e0303189, 2024.
Article in English | MEDLINE | ID: mdl-38768165

ABSTRACT

OBJECTIVES: To establish a rat model that accurately replicates the clinical characteristics of male infertility (MI) with Liver Depression and Kidney Deficiency (LD & KD) and investigate the pathogenesis. METHODS: After subjecting the rats to chronic restraint stress (CRS) and adenine treatment, a series of tests were conducted, including ethological assessments, evaluations of reproductive characteristics, measurements of biochemical parameters, histopathological examinations, and analyses of urinary metabolites. Additionally, bioinformatics predictions were performed for comprehensive analysis. RESULTS: Compared to the control, the model exhibited significant manifestations of MI with LD & KD, including reduced responsiveness, diminished frequency of capturing estrous female rats, and absence of mounting behavior. Additionally, the kidney coefficient increased markedly, while the coefficients of the testis and epididymis decreased significantly. Sperm counts and viabilities decreased notably, accompanied by an increase in sperm abnormalities. Dysregulation of reproductive hormone levels in the serum was observed, accompanied by an upregulation of proinflammatory cytokines expressions in the liver and kidney, as well as exacerbated oxidative stress in the penile corpus cavernosum and testis. The seminiferous tubules in the testis exhibited a loose arrangement, loss of germ cells, and infiltration of inflammatory cells. Furthermore, utilizing urinary metabolomics and bioinformatics analysis, 5 key biomarkers and 2 crucial targets most closely linked to MI were revealed. CONCLUSION: The study successfully established a clinically relevant animal model of MI with LD & KD. It elucidates the pathogenesis of the condition, identifies key biomarkers and targets, and provides a robust scientific foundation for the prediction, diagnosis, and treatment of MI with LD & KD.


Subject(s)
Biomarkers , Disease Models, Animal , Infertility, Male , Animals , Male , Rats , Biomarkers/metabolism , Infertility, Male/metabolism , Infertility, Male/etiology , Testis/metabolism , Testis/pathology , Kidney/metabolism , Kidney/pathology , Rats, Sprague-Dawley , Liver/metabolism , Liver/pathology , Oxidative Stress , Liver Diseases/metabolism , Liver Diseases/pathology , Renal Insufficiency/metabolism , Renal Insufficiency/pathology , Renal Insufficiency/etiology
4.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732130

ABSTRACT

Parkinson's disease (PD), as a neurologically implemented disease with complex etiological factors, has a complex and variable pathogenesis. Accompanying further research, neuroinflammation has been found to be one of the possible factors in its pathogenesis. Microglia, as intrinsic immune cells in the brain, play an important role in maintaining microenvironmental homeostasis in the brain. However, over-activation of neurotoxic microglia in PD promotes neuroinflammation, which further increases dopaminergic (DA) neuronal damage and exacerbates the disease process. Therefore, targeting and regulating the functional state of microglia is expected to be a potential avenue for PD treatment. In addition, plant extracts have shown great potential in the treatment of neurodegenerative disorders due to their abundant resources, mild effects, and the presence of multiple active ingredients. However, it is worth noting that some natural products have certain toxic side effects, so it is necessary to pay attention to distinguish medicinal ingredients and usage and dosage when using to avoid aggravating the progression of diseases. In this review, the roles of microglia with different functional states in PD and the related pathways inducing microglia to transform into neuroprotective states are described. At the same time, it is discussed that abscisic acid (ABA) may regulate the polarization of microglia by targeting them, promote their transformation into neuroprotective state, reduce the neuroinflammatory response in PD, and provide a new idea for the treatment of PD and the selection of drugs.


Subject(s)
Abscisic Acid , Microglia , Neuroinflammatory Diseases , Parkinson Disease , Microglia/drug effects , Microglia/metabolism , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Parkinson Disease/pathology , Humans , Abscisic Acid/metabolism , Abscisic Acid/pharmacology , Animals , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/etiology , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use
5.
Mol Immunol ; 171: 12-21, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38735126

ABSTRACT

Macrophages are critical in mediating immune and inflammatory responses, while monocyte-to-macrophage differentiation is one of the main macrophage resources that involves various matrix proteins. Matrix remodeling associated 7 (MXRA7) was recently discovered to affect a variety of physiological and pathological processes related to matrix biology. In the present study, we investigated the role of MXRA7 in monocyte-to-macrophage differentiation in vitro. We found that knockdown of MXRA7 inhibited the proliferation of THP-1 human monocytic cells. Knockdown of MXRA7 increased the adhesion ability of THP-1 cells through upregulation the expression of adhesion molecules VCAM-1 and ICAM1. Knockdown of MXRA7 alone could promoted the differentiation of THP-1 cells to macrophages. Furthermore, the MXRA7-knockdown THP-1 cells produced a more significant upregulation pattern with M1-type cytokines (TNF-α, IL-1ß and IL-6) than with those M2-type molecules (TGF-ß1 and IL-1RA) upon PMA stimulation, indicating that knockdown of MXRA7 facilitated THP-1 cells differentiation toward M1 macrophages. RNA sequencing analysis revealed the potential biological roles of MXRA7 in cell adhesion, macrophage and monocyte differentiation. Moreover, MXRA7 knockdown promoted the expression of NF-κB p52/p100, while PMA stimulation could increase the expression of NF-κB p52/p100 and activating MAPK signaling pathways in MXRA7 knockdown cells. In conclusion, MXRA7 affected the differentiation of THP-1 cells toward macrophages possibly through NF-κB signaling pathways.

6.
Front Immunol ; 15: 1393852, 2024.
Article in English | MEDLINE | ID: mdl-38711526

ABSTRACT

Different eukaryotic cell organelles (e.g., mitochondria, endoplasmic reticulum, lysosome) are involved in various cancer processes, by dominating specific cellular activities. Organelles cooperate, such as through contact points, in complex biological activities that help the cell regulate energy metabolism, signal transduction, and membrane dynamics, which influence survival process. Herein, we review the current studies of mechanisms by which mitochondria, endoplasmic reticulum, and lysosome are related to the three major malignant gynecological cancers, and their possible therapeutic interventions and drug targets. We also discuss the similarities and differences of independent organelle and organelle-organelle interactions, and their applications to the respective gynecological cancers; mitochondrial dynamics and energy metabolism, endoplasmic reticulum dysfunction, lysosomal regulation and autophagy, organelle interactions, and organelle regulatory mechanisms of cell death play crucial roles in cancer tumorigenesis, progression, and response to therapy. Finally, we discuss the value of organelle research, its current problems, and its future directions.


Subject(s)
Genital Neoplasms, Female , Mitochondria , Organelles , Humans , Female , Genital Neoplasms, Female/pathology , Genital Neoplasms, Female/metabolism , Mitochondria/metabolism , Mitochondria/pathology , Organelles/metabolism , Cell Survival , Animals , Lysosomes/metabolism , Endoplasmic Reticulum/metabolism , Autophagy , Energy Metabolism , Signal Transduction
7.
J Cancer Res Clin Oncol ; 150(5): 239, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38713252

ABSTRACT

PURPOSE: Multiple myeloma (MM) is an incurable hematological malignancy characterized by clonal proliferation of malignant plasma B cells in bone marrow, and its pathogenesis remains unknown. The aim of this study was to determine the role of kinesin family member 22 (KIF22) in MM and elucidate its molecular mechanism. METHODS: The expression of KIF22 was detected in MM patients based upon the public datasets and clinical samples. Then, in vitro assays were performed to investigate the biological function of KIF22 in MM cell lines, and subcutaneous xenograft models in nude mice were conducted in vivo. Chromatin immunoprecipitation (ChIP) and luciferase reporter assay were used to determine the mechanism of KIF22-mediated regulation. RESULTS: The results demonstrated that the expression of KIF22 in MM patients was associated with several clinical features, including gender (P = 0.016), LDH (P < 0.001), ß2-MG (P = 0.003), percentage of tumor cells (BM) (P = 0.002) and poor prognosis (P < 0.0001). Furthermore, changing the expression of KIF22 mainly influenced the cell proliferation in vitro and tumor growth in vivo, and caused G2/M phase cell cycle dysfunction. Mechanically, KIF22 directly transcriptionally regulated cell division cycle 25C (CDC25C) by binding its promoter and indirectly influenced CDC25C expression by regulating the ERK pathway. KIF22 also regulated CDC25C/CDK1/cyclinB1 pathway. CONCLUSION: KIF22 could promote cell proliferation and cell cycle progression by transcriptionally regulating CDC25C and its downstream CDC25C/CDK1/cyclinB1 pathway to facilitate MM progression, which might be a potential therapeutic target in MM.


Subject(s)
CDC2 Protein Kinase , Cyclin B1 , DNA-Binding Proteins , Disease Progression , Kinesins , Mice, Nude , Multiple Myeloma , cdc25 Phosphatases , Humans , Kinesins/metabolism , Kinesins/genetics , Multiple Myeloma/pathology , Multiple Myeloma/metabolism , Multiple Myeloma/genetics , Animals , cdc25 Phosphatases/metabolism , cdc25 Phosphatases/genetics , Mice , Female , CDC2 Protein Kinase/metabolism , CDC2 Protein Kinase/genetics , Male , Cyclin B1/metabolism , Cyclin B1/genetics , Cell Proliferation , Cell Line, Tumor , Middle Aged , Prognosis , Gene Expression Regulation, Neoplastic , Signal Transduction , Mice, Inbred BALB C
8.
Prev Med Rep ; 41: 102707, 2024 May.
Article in English | MEDLINE | ID: mdl-38576516

ABSTRACT

Objectives: Abdominal obesity is recognized as a significant determinant of Arteriosclerotic cardiovascular disease (ASCVD), with sagittal abdominal diameter (SAD) being considered a more precise indicator of visceral fat. Nevertheless, the association between SAD and ASCVD remains unexplored in large-scale general-population studies. Methods: The study included 11,211 participants aged 20 to 80 from the National Health and Nutrition Examination Survey. Logistic regression models were utilized to evaluate the association between the SAD-to-height ratio (SADHtR) and ASCVD. Subgroup analyses based on age categories, sex, diabetes, and hypertension were conducted to assess result robustness. Results: The median SADHtR value was 0.13 (0.12-0.15), and 1,006 cases (7.46 %) of ASCVD were recorded. Multivariable models showed that each standard deviation increase in SADHtR was positively associated with higher odds of ASCVD (OR 1.48, 95 % CI 1.36-1.62 in model 1; OR 1.41, 95 % CI 1.28-1.54 in model 2; OR 1.18, 95 % CI 1.08-1.30 in model 3). Comparing the first quartile of SADHtR to the second to fourth quartiles, positive associations with ASCVD were observed in models 1 and 2. However, in model 3, only the fourth quartile of SADHtR remained statistically significant (OR 1.58, 95 % CI 1.17-2.15), with all p-values for the trend being less than 0.05. No interactions were found in the subgroup analyses. Conclusion: This study demonstrates a positive association between SADHtR and ASCVD in the general adult population of the United States. Our findings indicate that SADHtR, especially when ≥ 0.155, could be a valuable metric for assessing the risk of ASCVD.

9.
Br J Cancer ; 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38582810

ABSTRACT

BACKGROUND: Mitochondrial dynamics play a fundamental role in determining stem cell fate. However, the underlying mechanisms of mitochondrial dynamics in the stemness acquisition of cancer cells are incompletely understood. METHODS: Metabolomic profiling of cells were analyzed by MS/MS. The genomic distribution of H3K27me3 was measured by CUT&Tag. Oral squamous cell carcinoma (OSCC) cells depended on glucose or glutamine fueling TCA cycle were monitored by 13C-isotope tracing. Organoids and tumors from patients and mice were treated with DRP1 inhibitors mdivi-1, ferroptosis inducer erastin, or combination with mdivi-1 and erastin to evaluate treatment effects. RESULTS: Mitochondria of OSCC stem cells own fragment mitochondrial network and DRP1 is required for maintenance of their globular morphology. Imbalanced mitochondrial dynamics induced by DRP1 knockdown suppressed stemness of OSCC cells. Elongated mitochondria increased α-ketoglutarate levels and enhanced glutaminolysis to fuel the TCA cycle by increasing glutamine transporter ASCT2 expression. α-KG promoted the demethylation of histone H3K27me3, resulting in downregulation of SNAI2 associated with stemness and EMT. Significantly, suppressing DRP1 enhanced the anticancer effects of ferroptosis. CONCLUSION: Our study reveals a novel mechanism underlying mitochondrial dynamics mediated cancer stemness acquisition and highlights the therapeutic potential of mitochondria elongation to increase the susceptibility of cancer cells to ferroptosis.

10.
Int J Impot Res ; 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38653801

ABSTRACT

Visceral adipose tissue (VAT) is regarded as an important risk factor for obesity-related diseases. The results of the association between VAT and total testosterone (TT) are controversial and whether this association is nonlinear is still unknown. 3971 male participants who were aged 20-59 years from the National Health and Nutrition Examination Surveys 2011-2016 were included. VAT area was measured by dual-energy x-ray absorptiometry. TT in serum was assessed utilizing the isotope dilution liquid chromatography-tandem mass spectrometry technique. Linear regression models assessed the associations between VAT area and TT. A restricted cubic spline model was employed to investigate nonlinear relationships. A two-piecewise linear regression model was applied to determine the threshold effect. Subgroup analyses were conducted. The weighted methods were utilized in all analyses. VAT area was inversely associated with TT in the crude and adjusted models. In the fully adjusted model, VAT area was associated with TT (ß = -0.59, 95% confidence interval [CI] = -0.74, -0.43) and compared to the first tertile of VAT area, the second and the third tertile had a lower TT level, the ß and 95% CI = -65.49 (-83.72, -47.25) and -97.57 (-121.86, -73.27) respectively. We found these inverse associations were nonlinear. The cutoff point of the VAT area was 126 cm2. When the VAT area was <126 cm2, VAT area was significantly associated with a lower TT level (ß = -1.55, 95% CI = -1.93 to -1.17, p < 0.0001). However, when the VAT area was ≥126 cm2, this association was less apparent (ß = -0.26, 95% CI = -0.52 to 0.01, p = 0.06). No significant interactions among different ages (<50 or ≥50 years), marital, and physical activity status were found. These findings underscore the potential for VAT area as a modifiable indicator for improving testosterone deficiency.

11.
Article in English | MEDLINE | ID: mdl-38640793

ABSTRACT

24-hour urinary free cortisol (UFC) is considered as the first-line test for screening and diagnosis of Cushing's syndrome. Although 24-hour UFC assay has been extensively studied by liquid chromatography-tandem mass spectrometry (LC-MS/MS), an accurate assay coupled with a reliable sample preparation procedure and a method-specific reference interval would be very important for reasonable diagnosis. In this study, a simple dilute and shoot method has been proposed for UFC determination by LC-MS/MS. Namely, 50 µL of urine sample was mixed with 200 µL of a 50 % methanol/water solution containing the internal standard cortisol-13C3. The mixture was centrifuged and the supernatant was used for direct analysis by LC-MS/MS. This method was validated with wide linear range from 0.625 to 500 ng/ml with coefficients of variation (CVs) ≤ 3.64 %, excellent precision (intra-day CVs ≤ 5.70 % and inter-day CVs ≤ 5.33 %) and good recovery in the range of 93.3-109 %. The preservatives were further evaluated for urine storage. It was recommended that no preservatives could be used in collection of 24-hour urine for good detecting peaks. The investigation of reference interval and diagnostic performance finally confirmed the potential usage of this LC-MS/MS assay in routing clinical testing.


Subject(s)
Hydrocortisone , Tandem Mass Spectrometry , Tandem Mass Spectrometry/methods , Hydrocortisone/urine , Hydrocortisone/analysis , Humans , Reproducibility of Results , Chromatography, Liquid/methods , Linear Models , Male , Limit of Detection , Adult , Female , Middle Aged , Cushing Syndrome/urine , Cushing Syndrome/diagnosis , Young Adult , Liquid Chromatography-Mass Spectrometry
12.
J Nanobiotechnology ; 22(1): 195, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38643173

ABSTRACT

Doxorubicin (DOX) is a chemotherapeutic agent widely used for tumor treatment. Nonetheless its clinical application is heavily limited by its cardiotoxicity. There is accumulated evidence that transplantation of mesenchymal stem cell-derived exosomes (MSC-EXOs) can protect against Dox-induced cardiomyopathy (DIC). This study aimed to examine the cardioprotective effects of EXOs isolated from human induced pluripotent stem cell-derived MSCs (iPSC-MSCs) against DIC and explore the potential mechanisms. EXOs were isolated from the cultural supernatant of human BM-MSCs (BM-MSC-EXOs) and iPSC-MSCs (iPSC-MSC-EXOs) by ultracentrifugation. A mouse model of DIC was induced by intraperitoneal injection of Dox followed by tail vein injection of PBS, BM-MSC-EXOs, or iPSC-MSC-EXOs. Cardiac function, cardiomyocyte senescence and mitochondrial dynamics in each group were assessed. In vitro, neonatal mouse cardiomyocytes (NMCMs) were subjected to Dox and treated with BM-MSC-EXOs or iPSC-MSC-EXOs. The mitochondrial morphology and cellular senescence of NMCMs were examined by Mitotracker staining and senescence-associated-ß-galactosidase assay, respectively. Compared with BM-MSC-EXOs, mice treated with iPSC-MSC-EXOs displayed improved cardiac function and decreased cardiomyocyte mitochondrial fragmentation and senescence. In vitro, iPSC-MSC-EXOs were superior to BM-MSC-EXOs in attenuation of cardiomyocyte mitochondrial fragmentation and senescence caused by DOX. MicroRNA sequencing revealed a higher level of miR-9-5p in iPSC-MSC-EXOs than BM-MSC-EXOs. Mechanistically, iPSC-MSC-EXOs transported miR-9-5p into DOX-treated cardiomyocytes, thereby suppressing cardiomyocyte mitochondrial fragmentation and senescence via regulation of the VPO1/ERK signal pathway. These protective effects and cardioprotection against DIC were largely reversed by knockdown of miR-9-5p in iPSC-MSC-EXOs. Our results showed that miR-9-5p transferred by iPSC-MSC-EXOs protected against DIC by alleviating cardiomyocyte senescence via inhibition of the VPO1/ERK pathway. This study offers new insight into the application of iPSC-MSC-EXOs as a novel therapeutic strategy for DIC treatment.


Subject(s)
Cardiomyopathies , Induced Pluripotent Stem Cells , MicroRNAs , Humans , Mice , Animals , Myocytes, Cardiac/metabolism , Induced Pluripotent Stem Cells/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Cardiomyopathies/chemically induced , Signal Transduction , Doxorubicin
13.
Heliyon ; 10(8): e29557, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38644901

ABSTRACT

Smilacis Glabrae Rhizoma (SGR) is recognized in traditional Chinese medicine for its distinctive therapeutic properties and abundant supply. Its phytochemical profile is diverse, encompassing flavonoids, steroids, saccharides, phenolic glycosides, volatile constituents, organic acids, phenylpropanoids, stilbenoids, among others. Recent pharmacological investigations reveal that SGR possesses a broad spectrum of pharmacological effects with multifaceted clinical applications. This review collates the current knowledge on SGR's chemical composition, pharmacological activities, and its clinical utility. Utilizing network pharmacology and molecular docking approaches, this study provides a preliminary identification of potential quality markers (Q-Markers) within SGR. The findings suggest that compounds such as astilbin, isoengelitin, neoisoastilbin, neoastilbin, astragaloside, diosgenin, resveratrol, stigmasterol, ß-sitosterol, and quercetin in SGR are promising candidates for Q-Markers. While flavonoids are the most extensively studied, there is a pressing need to further explore the active monomeric compounds within SGR. The introduction of Q-Markers is instrumental in developing standardized quality metrics. Specifically, astilbin has been noted for its antitumor, antidiabetic, antihypertensive, anti-hyperuricemic, and hepatoprotective potential, warranting further research for therapeutic applications.

14.
HGG Adv ; : 100300, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38678364

ABSTRACT

Human genetic studies of critical COVID-19 pneumonia have revealed the essential role of type I interferon-dependent innate immunity to SARS-CoV-2 infection. Conversely, an association between the HLA-B*15:01 allele and asymptomatic SARS-CoV-2 infection in unvaccinated individuals was recently reported, suggesting a contribution of pre-existing T cell-dependent adaptive immunity. We report a lack of association of classical HLA alleles, including HLA-B*15:01, with pre-omicron asymptomatic SARS-CoV-2 infection in unvaccinated participants in a prospective population-based study in the US (191 asymptomatic vs. 945 symptomatic COVID-19 cases). Moreover, we found no such association in the international COVID Human Genetic Effort cohort (206 asymptomatic vs. 574 mild or moderate COVID-19 cases and 1,625 severe or critical COVID-19 cases). Finally, in the Human Challenge Characterisation study, the three HLA-B*15:01 individuals infected with SARS-CoV-2 developed symptoms. As with other acute primary infections studied, no classical HLA alleles favoring an asymptomatic course of SARS-CoV-2 infection were identified.

15.
Biomedicines ; 12(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38672132

ABSTRACT

Antibody-based bispecific T cell engagers (TCEs) that redirect T cells to kill tumor cells have shown a promising therapeutic effect on hematologic malignancies. However, tumor-specific targeting is still a challenge for TCEs, impeding the development of TCEs for solid tumor therapy. The major histocompatibility complex (MHC) presents almost all intracellular peptides (including tumor-specific peptides) on the cell surface to be scanned by the TCR on T cells. With the premise of choosing optimal peptides, the final complex peptide-MHC could be the tumor-specific target for TCEs. Here, a novel TCR-directed format of a TCE targeting peptide-MHC was designed named IgG-T-TCE, which was modified from the IgG backbone and prepared in a mammalian cell expression system. The recombinant IgG-T-TCE-NY targeting NY-ESO-1157-165/HLA-A*02:01 could be generated in HEK293 cells with a glycosylated TCR and showed potency in T cell activation and redirecting T cells to specifically kill target tumor cells. We also found that the in vitro activity of IgG-T-TCE-NY could be leveraged by various anti-CD3 antibodies and Fc silencing. The IgG-T-TCE-NY efficiently inhibited tumor growth in a tumor-PBMC co-engrafted mouse model without any obvious toxicities.

16.
Toxicol Appl Pharmacol ; 485: 116906, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38513840

ABSTRACT

Natural products can overcome the limitations of conventional chemotherapy. Acetyl-11-keto-beta-boswellic acid (AKBA) as a natural product extracted from frankincense, exhibited chemotherapeutic activities in different cancers. However, whether AKBA exerts inhibiting effect of oral squamous cell carcinoma (OSCC) cells growth and the mechanism need to be explored. We attempted to investigate the therapeutic effects of AKBA against OSCC and explore the mechanism involved. Here we attempt to disclose the cell-killing effect of AKBA on OSCC cell lines and try to figure out the specifical pathway. The presence of increase autophagosome and the production of mitochondrial reactive oxygen species were confirmed after the application of AKBA on OSCC cells, and RAB7B inhibition enhanced autophagosome accumulation. Though the increase autophagosome was detected induced by AKBA, autophagic flux was inhibited as the failure fusion of autophagosome and lysosome. Cal27 xenografts were established to verify the role of anti-OSCC cells of AKBA in vivo. Based above findings, we speculate that natural product AKBA suppresses OSCC cells growth via RAB7B-mediated autophagy and may serve as a promising strategy for the therapy of OSCC.


Subject(s)
Autophagy , Cell Proliferation , Mice, Nude , Mouth Neoplasms , Triterpenes , Xenograft Model Antitumor Assays , rab GTP-Binding Proteins , rab7 GTP-Binding Proteins , Humans , Autophagy/drug effects , Cell Proliferation/drug effects , Triterpenes/pharmacology , Animals , rab GTP-Binding Proteins/metabolism , Mouth Neoplasms/drug therapy , Mouth Neoplasms/pathology , Mouth Neoplasms/metabolism , Cell Line, Tumor , Mice , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/metabolism , Mice, Inbred BALB C , Reactive Oxygen Species/metabolism
17.
Biosens Bioelectron ; 254: 116201, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38507928

ABSTRACT

Developing highly sensitive and selective methods that incorporate specific recognition elements is crucial for detecting small molecules because of the limited availability of small molecule antibodies and the challenges in obtaining sensitive signals. In this study, a generalizable photoelectrochemical-colorimetric dual-mode sensing platform was constructed based on the synergistic effects of a molecularly imprinted polymer (MIP)-aptamer sandwich structure and nanoenzymes. The MIP functionalized peroxidase-like Fe3O4 (Fe3O4@MIPs) and alkaline phosphatase mimic Zr-MOF labeled aptamer (Zr-mof@Apt) were used as the recognition elements. By selectively accumulating dibutyl phthalate (DBP), a small molecule target model, on Fe3O4@MIPs, the formation of Zr-MOF@Apt-DBP- Fe3O4@MIPs sandwich structure was triggered. Fe3O4@MIPs oxidized TMB to form blue-colored oxTMB. However, upon selective accumulation of DBP, the catalytic activity of Fe3O4@MIPs was inhibited, resulting in a lighter color that was detectable by the colorimetric method. Additionally, Zr-mof@Apt effectively catalyzed the hydrolysis of L-Ascorbic acid 2-phosphate sesquimagnesium salt hydrate (AAPS), generating ascorbic acid (AA) that could neutralize the photogenerated holes to decrease the photocurrent signals for PEC sensing and reduce oxTMB for colorimetric testing. The dual-mode platform showed strong linearity for different concentrations of DBP from 1.0 pM to 10 µM (PEC) and 0.1 nM to 0.5 µM (colorimetry). The detection limits were 0.263 nM (PEC) and 30.1 nM (colorimetry) (S/N = 3), respectively. The integration of dual-signal measurement mode and sandwich recognition strategy provided a sensitive and accurate platform for the detection of small molecules.


Subject(s)
Biosensing Techniques , Molecularly Imprinted Polymers , Colorimetry/methods , Peroxidase/chemistry , Peroxidases
18.
Int Immunopharmacol ; 131: 111863, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38492340

ABSTRACT

BACKGROUND: Lymphocyte-related factors were associated with survival outcome of different types of cancers. Nevertheless, the association between lymphocytes-related factors and tumor response of immunotherapy remains unclear. METHODS: This is a retrospective study. Eligible participants included patients with unresectable or advanced hepatocellular carcinoma (HCC) who underwent immunotherapy as their first-line treatment. Radiological assessment of tumor response adhered to RECIST 1.1 and HCC-specific modified RECIST (mRECIST) criteria. Univariate and multivariate logistic analyses were employed to analyze clinical factors associated with tumor response. Kaplan-Meier survivial analysis were employed to compare progression-free survival (PFS) and overall survival (OS) across different clinical factors. Furthermore, patients who received treatment with either a combination of bevacizumab and anti-PD-1(L1) antibody (Beva group) or tyrosine-kinase inhibitor (TKI) and anti-PD-1 antibody (TKI group) were examined to explore the relation between clinical factors and tumor response. RESULTS: A total of 208 patients were enrolled in this study. The median PFS and OS were 9.84 months and 24.44 months,respectively. An independent factor associated with a more favorable tumor response to immunotherapy was identified when PLR<100. Patients with PLR<100 had longer PFS than other patients, while OS showed no significant difference. Further analysis revealed that PLR exhibited superior prognostic value in patients of the Beva group as compared to those in the TKI group. CONCLUSIONS: There exisits an association between PLR and tumor response as well as survival outcomes in patients receiving immunotherapy, particularly those treated with the combination of bevacizumab and anti-PD-1.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/therapy , Bevacizumab/therapeutic use , Retrospective Studies , Liver Neoplasms/therapy , Lymphocytes , Prognosis , Immunotherapy
19.
J Nanobiotechnology ; 22(1): 85, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38429826

ABSTRACT

BACKGROUND: Impaired collateral formation is a major factor contributing to poor prognosis in type 2 diabetes mellitus (T2DM) patients with atherosclerotic cardiovascular disease. However, the current pharmacological treatments for improving collateral formation remain unsatisfactory. The induction of endothelial autophagy and the elimination of reactive oxygen species (ROS) represent potential therapeutic targets for enhancing endothelial angiogenesis and facilitating collateral formation. This study investigates the potential of molybdenum disulfide nanodots (MoS2 NDs) for enhancing collateral formation and improving prognosis. RESULTS: Our study shows that MoS2 NDs significantly enhance collateral formation in ischemic tissues of diabetic mice, improving effective blood resupply. Additionally, MoS2 NDs boost the proliferation, migration, and tube formation of endothelial cells under high glucose/hypoxia conditions in vitro. Mechanistically, the beneficial effects of MoS2 NDs on collateral formation not only depend on their known scavenging properties of ROS (H2O2, •O2-, and •OH) but also primarily involve a molecular pathway, cAMP/PKA-NR4A2, which promotes autophagy and contributes to mitigating damage in diabetic endothelial cells. CONCLUSIONS: Overall, this study investigated the specific mechanism by which MoS2 NDs mediated autophagy activation and highlighted the synergy between autophagy activation and antioxidation, thus suggesting that an economic and biocompatible nano-agent with dual therapeutic functions is highly preferable for promoting collateral formation in a diabetic context, thus, highlighting their therapeutic potential.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Humans , Mice , Animals , Diabetes Mellitus, Type 2/drug therapy , Reactive Oxygen Species/metabolism , Endothelial Cells/metabolism , Molybdenum/pharmacology , Molybdenum/therapeutic use , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Hydrogen Peroxide/metabolism , Autophagy
SELECTION OF CITATIONS
SEARCH DETAIL
...