Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 175
Filter
1.
Am J Clin Nutr ; 119(4): 896-907, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38373694

ABSTRACT

BACKGROUND: Many individuals reduce their bread intake because they believe wheat causes their gastrointestinal (GI) symptoms. Different wheat species and processing methods may affect these responses. OBJECTIVES: We investigated the effects of 6 different bread types (prepared from 3 wheat species and 2 fermentation conditions) on GI symptoms in individuals with self-reported noncoeliac wheat sensitivity (NCWS). METHODS: Two parallel, randomized, double-blind, crossover, multicenter studies were conducted. NCWS individuals, in whom coeliac disease and wheat allergy were ruled out, received 5 slices of yeast fermented (YF) (study A, n = 20) or sourdough fermented (SF) (study B, n = 20) bread made of bread wheat, spelt, or emmer in a randomized order on 3 separate test days. Each test day was preceded by a run-in period of 3 d of a symptom-free diet and separated by a wash-out period of ≥7 d. GI symptoms were evaluated by change in symptom score (test day minus average of the 3-d run-in period) on a 0-100 mm visual analogue scale (ΔVAS), comparing medians using the Friedman test. Responders were defined as an increase in ΔVAS of ≥15 mm for overall GI symptoms, abdominal discomfort, abdominal pain, bloating, and/or flatulence. RESULTS: GI symptoms did not differ significantly between breads of different grains [YF bread wheat median ΔVAS 10.4 mm (IQR 0.0-17.8 mm), spelt 4.9 mm (-7.6 to 9.4 mm), emmer 11.0 mm (0.0-21.3 mm), P = 0.267; SF bread wheat 10.5 mm (-3.1 to 31.5 mm), spelt 11.3 mm (0.0-15.3 mm), emmer 4.0 mm (-2.9 to 9.3 mm), P = 0.144]. The number of responders was also comparable for both YF (6 to wheat, 5 to spelt, and 7 to emmer, P = 0.761) and SF breads (9 to wheat, 7 to spelt, and 8 to emmer, P = 0.761). CONCLUSIONS: The majority of NCWS individuals experienced some GI symptoms for ≥1 of the breads, but on a group level, no differences were found between different grains for either YF or SF breads. CLINICAL TRIAL REGISTRY: clinicaltrials.gov, NCT04084470 (https://classic. CLINICALTRIALS: gov/ct2/show/NCT04084470).


Subject(s)
Gastrointestinal Diseases , Wheat Hypersensitivity , Humans , Bread , Diet , Fermentation
2.
Lancet Gastroenterol Hepatol ; 9(2): 110-123, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38040019

ABSTRACT

BACKGROUND: Many individuals without coeliac disease or wheat allergy reduce their gluten intake because they believe that gluten causes their gastrointestinal symptoms. Symptoms could be affected by negative expectancy. Therefore, we aimed to investigate the effects of expectancy versus actual gluten intake on symptoms in people with non-coeliac gluten sensitivity (NCGS). METHODS: This randomised, double-blind, placebo-controlled, international, multicentre study was done at the University of Leeds (Leeds, UK), Maastricht University (Maastricht, the Netherlands), and Wageningen University and Research (Wageningen, the Netherlands). People aged 18-70 years with self-reported NCGS (ie, gastrointestinal symptoms within 8 h of gluten consumption) without coeliac disease and wheat allergy were recruited. Participants had to follow a gluten-free or gluten-restricted diet for at least 1 week before (and throughout) study participation and had to be asymptomatic or mildly symptomatic (overall gastrointestinal symptom score ≤30 mm on the Visual Analogue Scale [VAS]) while on the diet. Participants were randomly assigned (1:1:1:1; blocks of eight; stratified by site and gender) to one of four groups based on the expectation to consume gluten-containing (E+) or gluten-free (E-) oat bread for breakfast and lunch (two slices each) and actual intake of gluten-containing (G+) or gluten-free (G-) oat bread. Participants, investigators, and those assessing outcomes were masked to the actual gluten assignment, and participants were also masked to the expectancy part of the study. The primary outcome was overall gastrointestinal symptom score on the VAS, which was measured at and corrected for baseline (before breakfast) and hourly for 8 h, with lunch served after 4 h, and analysed per-protocol. Safety analysis included all participants incorporated in the per-protocol analysis. The study is registered at ClinicalTrials.gov, NCT05779358, and has ended. FINDINGS: Between Oct 19, 2018, and Feb 14, 2022, 165 people were screened and 84 were randomly assigned to E+G+ (n=21), E+G- (n=21), E-G+ (n=20), or E-G- (n=22). One person in the E+G+ group was excluded due to not following test day instructions, leaving 83 participants in the per-protocol analysis. Median age was 27·0 years (IQR 21·0-45·0), 71 (86%) of 83 people were women, and 12 (14%) were men. Mean overall gastrointestinal symptom score was significantly higher for E+G+ (16·6 mm [95% CI 13·1 to 20·0]) than for E-G+ (6·9 mm [3·5 to 10·4]; difference 9·6 mm [95% CI 3·0 to 16·2], p=0·0010) and E-G- (7·4 mm [4·2 to 10·7]; difference 9·1 mm [2·7 to 15·6], p=0·0016), but not for E+G- (11·7 mm [8·3 to 15·1]; difference 4·9 mm [-1·7 to 11·5], p=0·28). There was no difference between E+G- and E-G+ (difference 4·7 mm [-1·8 to 11·3], p=0·33), E+G- and E-G- (difference 4·2 mm [-2·2 to 10·7], p=0·47), and E-G+ and E-G- (difference -0·5 mm [-7·0 to 5·9], p=1·0). Adverse events were reported by two participants in the E+G- group (itching jaw [n=1]; feeling lightheaded and stomach rumbling [n=1]) and one participant in the E-G+ group (vomiting). INTERPRETATION: The combination of expectancy and actual gluten intake had the largest effect on gastrointestinal symptoms, reflecting a nocebo effect, although an additional effect of gluten cannot be ruled out. Our results necessitate further research into the possible involvement of the gut-brain interaction in NCGS. FUNDING: Government of the Netherlands Topsector Agri & Food Top Consortium for Knowledge and Innovation, AB Mauri Global Bakery Ingredients, Baking Industry Research Trust, Borgesius-Albert Heijn, CSM Innovation Centre, the International Maize and Wheat Improvement Center (CIMMYT), DSM Food Specialties, Fazer, Healthgrain Forum, the International Association for Cereal Science and Technology, the International Wheat Gluten Association, Lantmännen, Mondelez International, Nederlands Bakkerij Centrum, Nutrition & Santé, Puratos, Rademaker, Sonneveld Group, and Zeelandia HJ Doeleman.


Subject(s)
Celiac Disease , Wheat Hypersensitivity , Male , Humans , Female , Adult , Celiac Disease/diagnosis , Wheat Hypersensitivity/diagnosis , Glutens/adverse effects , Diet, Gluten-Free , Double-Blind Method
3.
Nutr Bull ; 48(4): 587-593, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37904716

ABSTRACT

Dietary fibre is beneficial for human health, but dietary intakes are below recommended levels in most countries. Cereals are the major source of dietary fibre in Western diets, with bread providing about 20% of the daily intake in the United Kingdom. Despite the promotion of fibre-rich wholegrain products, white bread (which has a lower fibre content) remains dominant in many countries due to cultural preferences. Increasing the fibre content of white bread and other products made from white flour is therefore an attractive strategy for increasing fibre intake. This can be achieved by exploiting genetic variation in wheat without major effects on the processing quality or the consumer acceptability of products. Modelling data for food consumption in the United Kingdom shows that increasing the fibre content of white flour by 50% (from about 4% to 6% dry weight) and in wholegrain by 20% will increase total fibre intake by 1.04 g/day and 1.41 g/day in adult females and males, respectively. Furthermore, in vitro studies indicate that the increased fibre content of white bread should reduce the rate of starch digestion and glucose release in the human gastrointestinal tract.


Subject(s)
Bread , Flour , Male , Adult , Female , Humans , Starch , Dietary Fiber , Gastrointestinal Tract , Triticum
4.
J Sci Food Agric ; 103(15): 7664-7672, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37458104

ABSTRACT

BACKGROUND: Nitrogen fertiliser is the major input and cost for wheat production, being required to support the development of the canopy to maximise yield and for the synthesis of the gluten proteins that are necessary for breadmaking. Consequently, current high-yielding cultivars require the use of nitrogen fertilisation levels above the yield optimum to achieve the grain protein content needed for breadmaking. This study aimed to reduce this requirement by identifying traits that allow the use of lower levels of nitrogen fertiliser to produce wheat for breadmaking. RESULTS: A range of commercial wheat genotypes (cultivars) were grown in multiple field trials (six sites over 3 years) in the UK with optimal (200 kg Ha-1 ) and suboptimal (150 kg Ha-1 ) application of nitrogen. Bulked grain samples from four sites per year were milled and white flours were baked using three types of breadmaking process. This identified five cultivars that consistently exhibited good breadmaking quality when grown with the lower nitrogen application. Chemical and biochemical analyses showed that the five cultivars were characterised by exhibiting grain protein deviation (GPD) and high dough elasticity. CONCLUSIONS: It is possible to develop novel types of wheat that exhibit good breadmaking quality by selecting for GPD and high dough strength. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Grain Proteins , Triticum/chemistry , Nitrogen/metabolism , Fertilizers , Bread/analysis , Fertilization
5.
Food Chem ; 423: 136312, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37182491

ABSTRACT

Three genotypes each of bread wheat, durum wheat and tritordeum were grown in randomized replicated field trials in Andalusia (Spain) for two years and wholemeal flours analysed for a range of components to identify differences in composition. The contents of all components that were determined varied widely between grain samples of the individual species and in most cases also overlapped between the three species. Nevertheless, statistically significant differences between the compositions of the three species were observed. Notably, tritordeum had significantly higher contents of protein, some minerals (magnesium and iron), total phenolics and methyl donors. Tritordeum also had higher levels of total amino acids (but not asparagine) and total sugars, including raffinose. By contrast, bread wheat and tritordeum had similar contents of the two major dietary fibre components in white flour, arabinoxylan and ß-glucan, with significantly lower contents in durum wheat.


Subject(s)
Bread , Triticum , Triticum/chemistry , Bread/analysis , Poaceae/chemistry , Edible Grain/chemistry , Flour/analysis
6.
Foods ; 12(4)2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36832918

ABSTRACT

Five cultivars of bread wheat and spelt and three of emmer were grown in replicate randomised field trials on two sites for two years with 100 and 200 kg nitrogen fertiliser per hectare, reflecting low input and intensive farming systems. Wholemeal flours were analysed for components that are suggested to contribute to a healthy diet. The ranges of all components overlapped between the three cereal types, reflecting the effects of both genotype and environment. Nevertheless, statistically significant differences in the contents of some components were observed. Notably, emmer and spelt had higher contents of protein, iron, zinc, magnesium, choline and glycine betaine, but also of asparagine (the precursor of acrylamide) and raffinose. By contrast, bread wheat had higher contents of the two major types of fibre, arabinoxylan (AX) and ß-glucan, than emmer and a higher AX content than spelt. Although such differences in composition may be suggested to result in effects on metabolic parameters and health when studied in isolation, the final effects will depend on the quantity consumed and the composition of the overall diet.

7.
Article in English | MEDLINE | ID: mdl-36584432

ABSTRACT

Ingestion of gluten proteins from wheat, and related prolamin proteins from barley, rye, and oats, can cause adverse reactions in individuals with coeliac disease and IgE-mediated allergies. As there is currently no cure for these conditions, patients must practice avoidance of gluten-containing foods. In order to support patients in making safe food choices, foods making a "gluten-free" claim must contain no more than 20 mg/Kg of gluten. Mass spectrometry methods have the potential to provide an alternative method for confirmatory analysis of gluten that is complementary to analysis currently undertaken by immunoassay. As part of the development of such methodology the effectiveness of two different extraction procedures was investigated using wholemeal wheat flour before and after defatting with water-saturated butan-1-ol. A single step extraction with 50 % (v/v) propan-2-ol containing 2 M urea and reducing agent (buffer 1) was compared with a two-step extraction using 60 % (v/v) aqueous ethanol (buffer 2) followed by re-extraction of the pellet using buffer 1, using either wheel mixing under ambient conditions (19 °C) or sonication at 60 °C. The procedures were compared based on total protein extraction efficiency and the composition of the extracts determined using a combination of HPLC, SDS-PAGE and immunoblotting with a panel of four gluten-specific monoclonal antibodies. Defatting generally had a detrimental effect on extraction efficiency and sonication at 60 °C only improved extraction efficiency with buffer 2. Although the single-step and two-step procedures were equally effective at extracting protein from the samples, analysis of extracts showed that the two-step method gave a more complete extraction of gluten proteins. Future studies will compare the effectiveness of these procedures when applied in the sample workflows for mass spectrometry based methods for determination of gluten in food.


Subject(s)
Flour , Glutens , Flour/analysis , Glutens/analysis , Triticum/chemistry , Workflow , Chromatography
8.
Nutr Bull ; 47(2): 186-198, 2022 06.
Article in English | MEDLINE | ID: mdl-35915782

ABSTRACT

Observations from animal and in vitro laboratory research, and anecdotal evidence, have led to the suggestion that gluten consumption stimulates weight gain by the presence of peptides expressing opioid activity. Another proposed mechanism is that gluten peptides decrease resting energy expenditure resulting in a positive energy balance. In order to induce such effects in vivo, intact food peptides must be absorbed in sufficient quantities, remain intact in the blood for sufficient time to have long-lasting biological activity and bind to receptors involved in appetite, satiety and energy regulation. However, although peptides from food may pass from the intestine into the blood in extremely low quantities, they are generally rapidly degraded by plasma and vasculum-bound aminopeptidases, resulting in very short half-lives and loss of bioactivity. At present, gluten peptide sequences that influence regulators of energy metabolism have not been identified. Furthermore, data on the quantitative absorption of gluten peptides in the blood stream, their stability and lasting bioactivity are also lacking. Therefore, there is no evidence for proposed effects on driving appetite by the brain, nor on energy expenditure and weight gain. Furthermore, the level of overweight observed in various countries appears to be independent of the level of wheat consumption, and abundant observational evidence in humans shows that the levels of gluten consumption are neither related to daily calorie intake nor to BMI. This narrative review therefore discusses the proposed effects of gluten on bodyweight (BW) and putative biological mechanisms in the light of the current evidence.


Subject(s)
Glutens , Weight Gain , Animals , Appetite , Energy Intake , Glutens/adverse effects , Humans , Peptides/metabolism
9.
Nutr Bull ; 47(2): 157-167, 2022 06.
Article in English | MEDLINE | ID: mdl-35915783

ABSTRACT

Popular media messaging has led to increased public perception that gluten-containing foods are bad for health. In parallel, 'ancient grains' have been promoted with claims that they contain less gluten. There appears to be no clear definition of 'ancient grains' but the term usually includes einkorn, emmer, spelt and Khorasan wheat. Gluten is present in all wheat grains and all can induce coeliac disease (CD) in genetically susceptible individuals. Analyses of 'ancient' and 'modern' wheats show that the protein content of modern bread wheat (Triticum aestivum) has decreased over time while the starch content increased. In addition, it was shown that, compared to bread wheat, ancient wheats contain more protein and gluten and greater contents of many CD-active epitopes. Consequently, no single wheat type can be recommended as better for reducing the risks of or mitigating the severity of CD. An estimated 10% of the population of Western countries suffers from gastrointestinal symptoms that lack a clear organic cause and is often referred to as irritable bowel syndrome (IBS). Many of these patients consider themselves gluten sensitive, but in most cases this is not confirmed when tested in a medical setting. Instead, it may be caused by gas formation due to fermentation of fructans present in wheat or, in some patients, effects of non-gluten proteins. A significant overlap of symptoms with those of CD, IBS and inflammatory bowel disease makes a medical diagnosis a priority. This critical narrative review examines the suggestion that 'ancient' wheat types are preferred for health and better tolerance.


Subject(s)
Celiac Disease , Irritable Bowel Syndrome , Bread , Celiac Disease/diagnosis , Glutens/adverse effects , Humans , Irritable Bowel Syndrome/chemically induced , Triticum
11.
Foods ; 11(9)2022 May 05.
Article in English | MEDLINE | ID: mdl-35564066

ABSTRACT

Wheat is a well-known source of B vitamins but also contains significant amounts of vitamin E and related tocols, which have a number of positive health benefits. However, there are no reports on increasing the tocol content of wheat. A prerequisite for increasing the tocol content is the identification of variation in its amount within wheat and related cereals. We therefore determined the tocol content and composition in the grain of 230 recombinant inbred lines (RILs) of a diverse biparental wheat population (Mv Toborzó/Tommi), showing variation in the total content from 13.69 to 45.18 µg/g d.m. The total content also showed transgressive segregation in the population. The effect of the genotype on the variance components of tocols was studied, and the broad-sense heritability was calculated to be 0.71. The lines were also grouped based on their tocol content and analyzed for their chemical composition and breadmaking quality. The high heritability value and the wide variation found in the total amount indicate that increasing the content of tocols is a possible breeding strategy.

12.
Plants (Basel) ; 11(7)2022 Mar 26.
Article in English | MEDLINE | ID: mdl-35406869

ABSTRACT

Wheat (Triticum aestivum L.) is one of the major staple crops in the world and is used to prepare a range of foods. The development of new varieties with wider variation in grain composition could broaden their use. We characterized grains and flours from oil-accumulating transgenic wheat expressing the oat (Avena sativa L.) endosperm WRINKLED1 (AsWRI1) grown under field conditions. Lipid and starch accumulation was determined in developing caryopses of AsWRI1-wheat and X-ray microtomography was used to study grain morphology. The developing caryopses of AsWRI1-wheat grains had increased triacylglycerol content and decreased starch content compared to the control. Mature AsWRI1-wheat grains also had reduced weight, were wrinkled and had a shrunken endosperm and X-ray tomography revealed that the proportion of endosperm was decreased while that of the aleurone was increased. Grains were milled to produce two white flours and one bran fraction. Mineral and lipid analyses showed that the flour fractions from the AsWRI1-wheat were contaminated with bran, due to the effects of the changed morphology on milling. This study gives a detailed analysis of grains from field grown transgenic wheat that expresses a gene that plays a central regulatory role in carbon allocation and significantly affects grain composition.

13.
Food Chem ; 374: 131710, 2022 Apr 16.
Article in English | MEDLINE | ID: mdl-34891089

ABSTRACT

Wholemeal flours from blends of bread wheat, emmer and spelt were processed into bread using yeast-based and sourdough fermentation. The bread wheat flour contained significantly higher concentrations of total dietary fibre and fructans than the spelt and emmer flours, the latter having the lowest contents. Breadmaking using sourdough and yeast systems resulted in changes in composition from flour to dough to bread including increases in organic acids and mannitol in the sourdough system and increases in amino acids and sugars (released by hydrolysis of proteins and starch, respectively) in both processing systems. The concentrations of fructans and raffinose (the major endogenous FODMAPs) were reduced by yeast and sourdough fermentation, with yeast having the greater effect. Both systems resulted in greater increases in sugars and glycerol in emmer than in bread wheat and spelt, but the significance of these differences for human health has not been established.


Subject(s)
Bread , Triticum , Dietary Fiber , Fermentation , Flour , Humans , Saccharomyces cerevisiae
14.
PLoS One ; 16(8): e0256350, 2021.
Article in English | MEDLINE | ID: mdl-34411179

ABSTRACT

The xylan backbone of arabinoxylan (AX), the major cell wall polysaccharide in the wheat starchy endosperm, is synthesised by xylan synthase which is a complex of three subunits encoded by the GT43_1, GT43_2 and GT47_2 genes. RNAi knock-down of either GT43_1 or all three genes (triple lines) resulted in decreased AX measured by digestion with endoxylanase (to 33 and 34.9% of the controls) and by monosaccharide analysis (to 45.9% and 47.4% of the controls) with greater effects on the amount of water-extractable AX (to 20.6 and 19.9% of the controls). Both sets of RNAi lines also had greater decreases in the amounts of substituted oligosaccharides released by digestion of AX with endoxylanase than in fragments derived only from the xylan backbone. Although the GT43_1 and triple lines had similar effects on AX they did differ in their contents of soluble sugars (increased in triple only) and on grain size (decreased in triple only). Both sets of transgenic lines had decreased grain hardness, indicating effects on cell wall mechanics. These results, and previously published studies of RNAi suppression of GT43_2 and GT47_2 and of a triple mutant of GT43_2, are consistent with the model of xylan synthase comprising three subunits one of which (GT47_2) is responsible for catalysis with the other two subunits being required for correct functioning but indicate that separate xylan synthase complexes may be responsible for the synthesis of populations of AX which differ in their structure and solubility.


Subject(s)
Pentosyltransferases , Triticum , RNA Interference , Xylans/metabolism
15.
J Cereal Sci ; 98: 103167, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33897098

ABSTRACT

A combination of lipidomics, transcriptomics and bioimaging has been used to study triacylglycerol synthesis and deposition in the developing starchy endosperm of wheat. The content of TAG increased between 14 and 34 days after anthesis, from 50 to 115 mg/100 g dry wt and from about 35 to 175 mg/100 g dry wt in two experiments. The major fatty acids were C16 (palmitic C16:0 and palmitoleic C16:1) and C18 (stearic C18:0, oleic C18:1, linoleic C18:2 and linolenic C18:3), with unsaturated fatty acids accounting for about 75-80% of the total throughout development. Linoleic acid (C18:2) was the major component at all stages and the proportion increased during development. Transcript profiling indicated that predominant route to TAG synthesis and oil accumulation is via the Kennedy pathway and diacylglycerol acyltransferase (DGAT) activity. Confocal microscopy of stained tissue sections showed that TAG accumulated in droplets which are associated with protein and concentrated in the starchy endosperm cells below the sub-aleurone cells. Transcripts encoding 16kd oleosins were also expressed, indicating that the oil droplets are in part stabilised by oleosin proteins.

16.
New Phytol ; 231(4): 1644-1657, 2021 08.
Article in English | MEDLINE | ID: mdl-33914919

ABSTRACT

Understanding the mechanisms of iron trafficking in plants is key to enhancing the nutritional quality of crops. Because it is difficult to image iron in transit, we currently have an incomplete picture of the route(s) of iron translocation in developing seeds and how the tissue-specific distribution is established. We have used a novel approach, combining iron-57 (57 Fe) isotope labelling and nanoscale secondary ion mass spectrometry (NanoSIMS), to visualize iron translocation between tissues and within cells in immature wheat grain, Triticum aestivum. This enabled us to track the main route of iron transport from maternal tissues to the embryo through the different cell types. Further evidence for this route was provided by genetically diverting iron into storage vacuoles, with confirmation provided by histological staining and transmission electron microscopy energy dispersive X-ray spectroscopy (TEM-EDS). Almost all iron in both control and transgenic grains was found in intracellular bodies, indicating symplastic rather than apoplastic transport. Furthermore, a new type of iron body, highly enriched in 57 Fe, was observed in aleurone cells and may represent iron being delivered to phytate globoids. Correlation of the 57 Fe enrichment profiles obtained by NanoSIMS with tissue-specific gene expression provides an updated model of iron homeostasis in cereal grains with relevance for future biofortification strategies.


Subject(s)
Iron , Triticum , Edible Grain , Phytic Acid , Seeds
17.
PLoS One ; 16(2): e0246763, 2021.
Article in English | MEDLINE | ID: mdl-33606697

ABSTRACT

Amino acids are delivered into developing wheat grains to support the accumulation of storage proteins in the starchy endosperm, and transporters play important roles in regulating this process. RNA-seq, RT-qPCR, and promoter-GUS assays showed that three amino acid transporters are differentially expressed in the endosperm transfer cells (TaAAP2), starchy endosperm cells (TaAAP13), and aleurone cells and embryo of the developing grain (TaAAP21), respectively. Yeast complementation revealed that all three transporters can transport a broad spectrum of amino acids. RNAi-mediated suppression of TaAAP13 expression in the starchy endosperm did not reduce the total nitrogen content of the whole grain, but significantly altered the composition and distribution of metabolites in the starchy endosperm, with increasing concentrations of some amino acids (notably glutamine and glycine) from the outer to inner starchy endosperm cells compared with wild type. Overexpression of TaAAP13 under the endosperm-specific HMW-GS (high molecular weight glutenin subunit) promoter significantly increased grain size, grain nitrogen concentration, and thousand grain weight, indicating that the sink strength for nitrogen transport was increased by manipulation of amino acid transporters. However, the total grain number was reduced, suggesting that source nitrogen remobilized from leaves is a limiting factor for productivity. Therefore, simultaneously increasing loading of amino acids into the phloem and delivery to the spike would be required to increase protein content while maintaining grain yield.


Subject(s)
Amino Acid Transport Systems/metabolism , Amino Acids/metabolism , Edible Grain/metabolism , Triticum/metabolism , Amino Acid Transport Systems/genetics , Amino Acid Transport Systems, Acidic/genetics , Amino Acid Transport Systems, Acidic/metabolism , Chromatography, High Pressure Liquid , Edible Grain/growth & development , Endosperm/metabolism , Gene Expression Regulation, Plant , Glutens/genetics , Glutens/metabolism , Magnetic Resonance Spectroscopy , Nitrogen/metabolism , Phloem/metabolism , Plant Leaves/metabolism , Plant Proteins/metabolism , Promoter Regions, Genetic , RNA Interference , RNA-Seq , Real-Time Polymerase Chain Reaction , Triticum/genetics , Up-Regulation
18.
Clin Nutr ; 40(3): 788-795, 2021 03.
Article in English | MEDLINE | ID: mdl-33077275

ABSTRACT

BACKGROUND & AIMS: Clinical trial data have indicated an association between wholegrain consumption and a reduction in surrogate markers of cardiovascular disease. Phenolics present in wholegrain bound to arabinoxylan fibre may contribute these effects, particularly when released enzymatically from the fiber prior to ingestion. The aim of the present study was therefore to determine whether the intake of high fibre bread containing higher free ferulic acid (FA) levels (enzymatically released during processing) enhances human endothelium-dependent vascular function. METHODS: A randomized, single masked, controlled, crossover, human intervention study was conducted on 19 healthy men. Individuals consumed either a high fibre flatbread with enzymatically released free FA (14.22 mg), an equivalent standard high fibre bread (2.34 mg), or a white bread control (0.48 mg) and markers of vascular function and plasma phenolic acid concentrations were measured at baseline, 2, 5 and 7 h post consumption. RESULTS: Significantly increased brachial arterial dilation was observed following consumption of the high free FA ('enzyme-treated') high fibre bread verses both a white bread (2 h: p < 0.05; 5 h: p < 0.01) and a standard high fibre bread (5 h: p < 0.05). Concurrently, significant increases in plasma FA levels were observed, at 2 h (p < 0.01) after consumption of the enzyme-treated bread, relative to control treatments. Blood pressure, heart rate, DVP-SI and DVP-RI were not significantly altered following intake of any of the breads (p > 0.05). CONCLUSION: Dietary intake of bread, processed enzymatically to release FA from arabinoxylan fiber during production increases the bioavailability of FA, and induces acute endothelium-dependent vasodilation. CLINICAL TRIAL REGISTRY: NO: NCT03946293. WEBSITE: www.clinicaltrials.gov.


Subject(s)
Bread , Carboxylic Ester Hydrolases/metabolism , Coumaric Acids/pharmacokinetics , Dietary Fiber/administration & dosage , Vasodilation , Adult , Biological Availability , Blood Pressure , Coumaric Acids/blood , Cross-Over Studies , Food Handling , Heart Rate , Humans , Male , Single-Blind Method , Xylans/metabolism
19.
Field Crops Res ; 255: 107896, 2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32943810

ABSTRACT

There is a well-established negative relationship between the yield and the concentration of protein in the mature wheat grain. However, some wheat genotypes consistently deviate from this relationship, a phenomenon known as Grain Protein Deviation (GPD). Positive GPD is therefore of considerable interest in relation to reducing the requirement for nitrogen fertilization for producing wheat for breadmaking. We have carried out two sets of field experiments on multiple sites in South East England. The first set comprised 11 field trials of 6 cultivars grown over three years (2008-2011) and the second comprised 9 field trials of 40 genotypes grown over two years (2015-2017) and 5 field trials of 30 genotypes grown in a single year (2017-2018). All trials comprised three replicate randomized plots of each genotype and nutrient regime. These studies showed strong genetic variation in GPD, which also differed in stability between genotypes, with cultivars bred in the UK generally having higher GPD and higher stability than those bred in other European countries. The heritability of GPD was estimated as 0.44, based on data from the field trials of 30 and 40 genotypes. The largest component contributing to the genetic variance was genotype (0.30), with a smaller contribution of the interaction between genotype and year/site (0.11) and a small (but statistically significant) contribution of nitrogen level. These studies suggest that selection for GPD is a viable target for breeders.

20.
Front Nutr ; 7: 87, 2020.
Article in English | MEDLINE | ID: mdl-32766270

ABSTRACT

Wheat gluten, and related prolamin proteins in rye, barley and oats cause the immune-mediated gluten intolerance syndrome, coeliac disease. Foods labelled as gluten-free which can be safely consumed by coeliac patients, must not contain gluten above a level of 20 mg/Kg. Current immunoassay methods for detection of gluten can give conflicting results and may underestimate levels of gluten in foods. Mass spectrometry methods have great potential as an orthogonal method, but require curated protein sequence databases to support method development. The GluPro database has been updated to include avenin-like sequences from bread wheat (n = 685; GluPro v1.1) and genes from the sequenced wheat genome (n = 699; GluPro v 1.2) and Triticum turgidum ssp durum (n = 210; GluPro v 2.1). Companion databases have been developed for prolamin sequences from barley (n = 64; GluPro v 3.0), rye (n = 41; GluPro v 4.0), and oats (n = 27; GluPro v 5.0) and combined to provide a complete cereal prolamin database, GluPro v 6.1 comprising 1,041 sequences. Analysis of the coeliac toxic motifs in the curated sequences showed that they were absent from the minor avenin-like proteins in bread and durum wheat and barley, unlike the related avenin proteins from oats. A comparison of prolamin proteins from the different cereal species also showed α- and γ-gliadins in bread and durum wheat, and the sulphur poor prolamins in all cereals had the highest density of coeliac toxic motifs. Analysis of ion-mobility mass spectrometry data for bread wheat (cvs Chinese Spring and Hereward) showed an increased number of identifications when using the GluPro v1.0, 1.1 and 1.2 databases compared to the limited number of verified sequences bread wheat sequences in reviewed UniProt. This family of databases will provide a basis for proteomic profiling of gluten proteins from all the gluten containing cereals and support identification of specific peptide markers for use in development of new methods for gluten quantitation based on coeliac toxic motifs found in all relevant cereal species.

SELECTION OF CITATIONS
SEARCH DETAIL
...