Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 157
Filter
1.
J Biochem ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38843068

ABSTRACT

Most autophagy-related genes, or ATG genes, have been identified in studies using budding yeast. Although the functions of the ATG genes are well understood, the contributions of individual genes to non-selective and various types of selective autophagy remain to be fully elucidated. In this study, we quantified the activity of non-selective autophagy, the cytoplasm-to-vacuole targeting (Cvt) pathway, mitophagy, endoplasmic reticulum (ER)-phagy, and pexophagy in all Saccharomyces cerevisiae atg mutants. Among the mutants of the core autophagy genes considered essential for autophagy, the atg13 mutant and mutants of the genes involved in the two ubiquitin-like conjugation systems retained residual autophagic functionality. In particular, mutants of the Atg8 ubiquitin-like conjugation system (the Atg8 system) exhibited substantial levels of non-selective autophagy, the Cvt pathway, and pexophagy, although mitophagy and ER-phagy were undetectable. Atg8-system mutants also displayed intravacuolar vesicles resembling autophagic bodies, albeit at significantly reduced size and frequency. Thus, our data suggest that membranous sequestration and vacuolar delivery of autophagic cargo can occur in the absence of the Atg8 system. Alongside these findings, the comprehensive analysis conducted here provides valuable datasets for future autophagy research.

2.
Acta Neuropathol ; 147(1): 84, 2024 05 15.
Article in English | MEDLINE | ID: mdl-38750212

ABSTRACT

Amyotrophic Lateral Sclerosis/Parkinsonism-Dementia Complex (ALS/PDC), a rare and complex neurological disorder, is predominantly observed in the Western Pacific islands, including regions of Japan, Guam, and Papua. This enigmatic condition continues to capture medical attention due to affected patients displaying symptoms that parallel those seen in either classical amyotrophic lateral sclerosis (ALS) or Parkinson's disease (PD). Distinctly, postmortem examinations of the brains of affected individuals have shown the presence of α-synuclein aggregates and TDP-43, which are hallmarks of PD and classical ALS, respectively. These observations are further complicated by the detection of phosphorylated tau, accentuating the multifaceted proteinopathic nature of ALS/PDC. The etiological foundations of this disease remain undetermined, and genetic investigations have yet to provide conclusive answers. However, emerging evidence has implicated the contribution of astrocytes, pivotal cells for maintaining brain health, to neurodegenerative onset, and likely to play a significant role in the pathogenesis of ALS/PDC. Leveraging advanced induced pluripotent stem cell technology, our team cultivated multiple astrocyte lines to further investigate the Japanese variant of ALS/PDC (Kii ALS/PDC). CHCHD2 emerged as a significantly dysregulated gene when disease astrocytes were compared to healthy controls. Our analyses also revealed imbalances in the activation of specific pathways: those associated with astrocytic cilium dysfunction, known to be involved in neurodegeneration, and those related to major neurological disorders, including classical ALS and PD. Further in-depth examinations revealed abnormalities in the mitochondrial morphology and metabolic processes of the affected astrocytes. A particularly striking observation was the reduced expression of CHCHD2 in the spinal cord, motor cortex, and oculomotor nuclei of patients with Kii ALS/PDC. In summary, our findings suggest a potential reduction in the support Kii ALS/PDC astrocytes provide to neurons, emphasizing the need to explore the role of CHCHD2 in maintaining mitochondrial health and its implications for the disease.


Subject(s)
Amyotrophic Lateral Sclerosis , Astrocytes , DNA-Binding Proteins , Mitochondrial Proteins , Transcription Factors , Astrocytes/pathology , Astrocytes/metabolism , Amyotrophic Lateral Sclerosis/pathology , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Humans , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Mitochondria/pathology , Mitochondria/metabolism , Male , Female , Middle Aged , Aged
3.
Autophagy ; : 1-9, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38818923

ABSTRACT

Mitochondria undergo fission and fusion, and their coordinated balance is crucial for maintaining mitochondrial homeostasis. In yeast, the dynamin-related protein Dnm1 is a mitochondrial fission factor acting from outside the mitochondria. We recently reported the mitochondrial intermembrane space protein Atg44/mitofissin/Mdi1/Mco8 as a novel fission factor, but the relationship between Atg44 and Dnm1 remains elusive. Here, we show that Atg44 is required to complete Dnm1-mediated mitochondrial fission under homeostatic conditions. Atg44-deficient cells often exhibit enlarged mitochondria with accumulated Dnm1 and rosary-like mitochondria with Dnm1 foci at constriction sites. These mitochondrial constriction sites retain the continuity of both the outer and inner membranes within an extremely confined space, indicating that Dnm1 is unable to complete mitochondrial fission without Atg44. Moreover, accumulated Atg44 proteins are observed at mitochondrial constriction sites. These findings suggest that Atg44 and Dnm1 cooperatively execute mitochondrial fission from inside and outside the mitochondria, respectively.Abbreviation: ATG: autophagy related; CLEM: correlative light and electron microscopy; EM: electron microscopy; ER: endoplasmic reticulum; ERMES: endoplasmic reticulum-mitochondria encounter structure; GA: glutaraldehyde; GFP: green fluorescent protein; GTP: guanosine triphosphate: IMM: inner mitochondrial membrane; IMS: intermembrane space; OMM: outer mitochondrial membrane; PB: phosphate buffer; PBS: phosphate-buffered saline; PFA: paraformaldehyde; RFP: red fluorescent protein; WT: wild type.

4.
J Hand Surg Eur Vol ; : 17531934241251670, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38780096

ABSTRACT

The aim of the study was to investigate the repair strength and the biocompatibility of Alaska pollock-derived gelatin (ApGltn) sheet for nerve repair. Cadaveric digital nerves were repaired with double suture, single suture + ApGltn sheet, single suture + fibrin glue, single suture, ApGltn sheet and fibrin. Maximum failure loads were measured (20 nerves each). Rat sciatic nerves were repaired with double suture, single suture + ApGltn sheet, single suture, ApGltn sheet, fibrin glue and resection (10 nerves each). Macroscopic appearance, muscle weight and histopathological findings were examined 8 weeks postoperatively. The mean failure load of ApGltn sheet (0.39 N) was significantly higher than that of a fibrin (0.05 N), and that of single suture + ApGltn sheet (1.32 N) was significantly higher than that of a single suture alone (0.97 N). Functional and histological assessments showed similar nerve recovery among the suture, ApGltn and fibrin groups. ApGltn sheet has potential for clinical application as an alternative to fibrin.

5.
Gastroenterology ; 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38583723

ABSTRACT

BACKGROUND & AIMS: Gastric cancer is often accompanied by a loss of mucin 6 (MUC6), but its pathogenic role in gastric carcinogenesis remains unclear. METHODS: Muc6 knockout (Muc6-/-) mice and Muc6-dsRED mice were newly generated. Tff1Cre, Golph3-/-, R26-Golgi-mCherry, Hes1flox/flox, Cosmcflox/flox, and A4gnt-/- mice were also used. Histology, DNA and RNA, proteins, and sugar chains were analyzed by whole-exon DNA sequence, RNA sequence, immunohistochemistry, lectin-binding assays, and liquid chromatography-mass spectrometry analysis. Gastric organoids and cell lines were used for in vitro assays and xenograft experiments. RESULTS: Deletion of Muc6 in mice spontaneously causes pan-gastritis and invasive gastric cancers. Muc6-deficient tumor growth was dependent on mitogen-activated protein kinase activation, mediated by Golgi stress-induced up-regulation of Golgi phosphoprotein 3. Glycomic profiling revealed aberrant expression of mannose-rich N-linked glycans in gastric tumors, detected with banana lectin in association with lack of MUC6 expression. We identified a precursor of clusterin as a binding partner of mannose glycans. Mitogen-activated protein kinase activation, Golgi stress responses, and aberrant mannose expression are found in separate Cosmc- and A4gnt-deficient mouse models that lack normal O-glycosylation. Banana lectin-drug conjugates proved an effective treatment for mannose-rich murine and human gastric cancer. CONCLUSIONS: We propose that Golgi stress responses and aberrant glycans are important drivers of and promising new therapeutic targets for gastric cancer.

6.
J Plant Res ; 137(4): 659-667, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38598067

ABSTRACT

Chloroplast-actin (cp-actin) filaments are crucial for light-induced chloroplast movement, and appear in the front region of moving chloroplasts when visualized using GFP-mouse Talin. They are short and thick, exist between a chloroplast and the plasma membrane, and move actively and rapidly compared to cytoplasmic long actin filaments that run through a cell. The average period during which a cp-actin filament was observed at the same position was less than 0.5 s. The average lengths of the cp-actin filaments calculated from those at the front region of the moving chloroplast and those around the chloroplast periphery after stopping the movement were almost the same, approximately 0.8 µm. Each cp-actin filament is shown as a dotted line consisting of 4-5 dots. The vector sum of cp-actin filaments in a moving chloroplast is parallel to the moving direction of the chloroplast, suggesting that the direction of chloroplast movement is regulated by the vector sum of cp-actin filaments. However, once the chloroplasts stopped moving, the vector sum of the cp-actin filaments around the chloroplast periphery was close to zero, indicating that the direction of movement was undecided. To determine the precise structure of cp-actin filaments under electron microscopy, Arabidopsis leaves and fern Adiantum capillus-veneris gametophytes were frozen using a high-pressure freezer, and observed under electron microscopy. However, no bundled microfilaments were found, suggesting that the cp-actin filaments were unstable even under high-pressure freezing.


Subject(s)
Actin Cytoskeleton , Arabidopsis , Chloroplasts , Light , Chloroplasts/physiology , Chloroplasts/metabolism , Chloroplasts/radiation effects , Chloroplasts/ultrastructure , Arabidopsis/physiology , Arabidopsis/radiation effects , Adiantum/physiology , Adiantum/radiation effects , Plant Leaves/physiology , Plant Leaves/radiation effects , Actins/metabolism , Movement
7.
Cells ; 13(5)2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38474376

ABSTRACT

There is no choice other than rehabilitation as a practical medical treatment to restore impairments or improve activities after acute treatment in people with spinal cord injury (SCI); however, the effect is unremarkable. Therefore, researchers have been seeking effective pharmacological treatments. These will, hopefully, exert a greater effect when combined with rehabilitation. However, no review has specifically summarized the combinatorial effects of rehabilitation with various medical agents. In the current review, which included 43 articles, we summarized the combinatorial effects according to the properties of the medical agents, namely neuromodulation, neurotrophic factors, counteraction to inhibitory factors, and others. The recovery processes promoted by rehabilitation include the regeneration of tracts, neuroprotection, scar tissue reorganization, plasticity of spinal circuits, microenvironmental change in the spinal cord, and enforcement of the musculoskeletal system, which are additive, complementary, or even synergistic with medication in many cases. However, there are some cases that lack interaction or even demonstrate competition between medication and rehabilitation. A large fraction of the combinatorial mechanisms remains to be elucidated, and very few studies have investigated complex combinations of these agents or targeted chronically injured spinal cords.


Subject(s)
Medicine , Spinal Cord Injuries , Humans , Spinal Cord Injuries/therapy , Neuroprotection
8.
Stem Cell Reports ; 19(3): 383-398, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38366597

ABSTRACT

The transplantation of neural stem/progenitor cells (NS/PCs) derived from human induced pluripotent stem cells (hiPSCs) has shown promise in spinal cord injury (SCI) model animals. Establishing a functional synaptic connection between the transplanted and host neurons is crucial for motor function recovery. To boost therapeutic outcomes, we developed an ex vivo gene therapy aimed at promoting synapse formation by expressing the synthetic excitatory synapse organizer CPTX in hiPSC-NS/PCs. Using an immunocompromised transgenic rat model of SCI, we evaluated the effects of transplanting CPTX-expressing hiPSC-NS/PCs using histological and functional analyses. Our findings revealed a significant increase in excitatory synapse formation at the transplantation site. Retrograde monosynaptic tracing indicated extensive integration of transplanted neurons into the surrounding neuronal tracts facilitated by CPTX. Consequently, locomotion and spinal cord conduction significantly improved. Thus, ex vivo gene therapy targeting synapse formation holds promise for future clinical applications and offers potential benefits to individuals with SCI.


Subject(s)
Induced Pluripotent Stem Cells , Spinal Cord Injuries , Humans , Rats , Animals , Induced Pluripotent Stem Cells/pathology , Cell Differentiation/genetics , Stem Cell Transplantation , Spinal Cord Injuries/genetics , Spinal Cord Injuries/therapy , Spinal Cord Injuries/pathology , Spinal Cord , Genetic Therapy , Recovery of Function/physiology
9.
Inflamm Regen ; 44(1): 8, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38419091

ABSTRACT

BACKGROUND: The development of induced pluripotent stem cells (iPSCs) technology has enabled human cellular disease modeling for inaccessible cell types, such as neural cells in the brain. However, many of the iPSC-derived disease models established to date typically involve only a single cell type. These monoculture models are inadequate for accurately simulating the brain environment, where multiple cell types interact. The limited cell type diversity in monoculture models hinders the accurate recapitulation of disease phenotypes resulting from interactions between different cell types. Therefore, our goal was to create cell models that include multiple interacting cell types to better recapitulate disease phenotypes. METHODS: To establish a co-culture model of neurons and astrocytes, we individually induced neurons and astrocytes from the same iPSCs using our novel differentiation methods, and then co-cultured them. We evaluated the effects of co-culture on neurons and astrocytes using immunocytochemistry, immuno-electron microscopy, and Ca2+ imaging. We also developed a co-culture model using iPSCs from a patient with familial Alzheimer's disease (AD) patient (APP V717L mutation) to investigate whether this model would manifest disease phenotypes not seen in the monoculture models. RESULTS: The co-culture of the neurons and astrocytes increased the branching of astrocyte processes, the number of GFAP-positive cells, neuronal activities, the number of synapses, and the density of presynaptic vesicles. In addition, immuno-electron microscopy confirmed the formation of a tripartite synaptic structure in the co-culture model, and inhibition of glutamate transporters increased neuronal activity. Compared to the co-culture model of the control iPSCs, the co-culture model of familial AD developed astrogliosis-like phenotype, which was not observed in the monoculture model of astrocytes. CONCLUSIONS: Co-culture of iPSC-derived neurons and astrocytes enhanced the morphological changes mimicking the in vivo condition of both cell types. The formation of the functional tripartite synaptic structures in the co-culture model suggested the mutual interaction between the cells. Furthermore, the co-culture model with the APP V717L mutation expressed in neurons exhibited an astrocytic phenotype reminiscent of AD brain pathology. These results suggest that our co-culture model is a valuable tool for disease modeling of neurodegenerative diseases.

10.
Inflamm Regen ; 44(1): 6, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38347645

ABSTRACT

BACKGROUND: Severe peripheral nerve damage always requires surgical treatment. Autologous nerve transplantation is a standard treatment, but it is not sufficient due to length limitations and extended surgical time. Even with the available artificial nerves, there is still large room for improvement in their therapeutic effects. Novel treatments for peripheral nerve injury are greatly expected. METHODS: Using a specialized microfluidic device, we generated artificial neurite bundles from human iPSC-derived motor and sensory nerve organoids. We developed a new technology to isolate cell-free neurite bundles from spheroids. Transplantation therapy was carried out for large nerve defects in rat sciatic nerve with novel artificial nerve conduit filled with lineally assembled sets of human neurite bundles. Quantitative comparisons were performed over time to search for the artificial nerve with the therapeutic effect, evaluating the recovery of motor and sensory functions and histological regeneration. In addition, a multidimensional unbiased gene expression profiling was carried out by using next-generation sequencing. RESULT: After transplantation, the neurite bundle-derived artificial nerves exerted significant therapeutic effects, both functionally and histologically. Remarkably, therapeutic efficacy was achieved without immunosuppression, even in xenotransplantation. Transplanted neurite bundles fully dissolved after several weeks, with no tumor formation or cell proliferation, confirming their biosafety. Posttransplant gene expression analysis highlighted the immune system's role in recovery. CONCLUSION: The combination of newly developed microfluidic devices and iPSC technology enables the preparation of artificial nerves from organoid-derived neurite bundles in advance for future treatment of peripheral nerve injury patients. A promising, safe, and effective peripheral nerve treatment is now ready for clinical application.

11.
eNeuro ; 11(2)2024 Feb.
Article in English | MEDLINE | ID: mdl-38262737

ABSTRACT

Spinal cord injury (SCI) often results in various long-term sequelae, and chronically injured spinal cords exhibit a refractory feature, showing a limited response to cell transplantation therapies. To our knowledge, no preclinical studies have reported a treatment approach with results surpassing those of treatment comprising rehabilitation alone. In this study of rats with SCI, we propose a novel combined therapy involving a semaphorin 3A inhibitor (Sema3Ai), which enhances axonal regeneration, as the third treatment element in combination with neural stem/progenitor cell transplantation and rehabilitation. This comprehensive therapeutic strategy achieved significant improvements in host-derived neuronal and oligodendrocyte differentiation at the SCI epicenter and promoted axonal regeneration even in the chronically injured spinal cord. The elongated axons established functional electrical connections, contributing to significant enhancements in locomotor mobility when compared with animals treated with transplantation and rehabilitation. As a result, our combined transplantation, Sema3Ai, and rehabilitation treatment have the potential to serve as a critical step forward for chronic SCI patients, improving their ability to regain motor function.


Subject(s)
Neural Stem Cells , Spinal Cord Injuries , Humans , Rats , Animals , Semaphorin-3A , Spinal Cord Injuries/therapy , Stem Cell Transplantation/methods , Neurons , Neural Stem Cells/transplantation , Axons , Spinal Cord , Nerve Regeneration/physiology , Recovery of Function/physiology
12.
Nat Cell Biol ; 25(10): 1415-1425, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37798545

ABSTRACT

Bone marrow endothelial cells (BMECs) play a key role in bone formation and haematopoiesis. Although recent studies uncovered the cellular taxonomy of stromal compartments in the bone marrow (BM), the complexity of BMECs is not fully characterized. In the present study, using single-cell RNA sequencing, we defined a spatial heterogeneity of BMECs and identified a capillary subtype, termed type S (secondary ossification) endothelial cells (ECs), exclusively existing in the epiphysis. Type S ECs possessed unique phenotypic characteristics in terms of structure, plasticity and gene expression profiles. Genetic experiments showed that type S ECs atypically contributed to the acquisition of bone strength by secreting type I collagen, the most abundant bone matrix component. Moreover, these cells formed a distinct reservoir for haematopoietic stem cells. These findings provide the landscape for the cellular architecture in the BM vasculature and underscore the importance of epiphyseal ECs during bone and haematopoietic development.


Subject(s)
Bone Marrow , Endothelial Cells , Bone Marrow/metabolism , Hematopoietic Stem Cells/metabolism , Bone Marrow Cells , Epiphyses
13.
Inflamm Regen ; 43(1): 50, 2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37845736

ABSTRACT

BACKGROUND: Human induced pluripotent stem cell-derived neural stem/progenitor cell (hiPSC-NS/PC)-based cell transplantation has emerged as a groundbreaking method for replacing damaged neural cells and stimulating functional recovery, but its efficacy is strongly influenced by the state of the injured spinal microenvironment. This study evaluates the impact of a dual therapeutic intervention utilizing hepatocyte growth factor (HGF) and hiPSC-NS/PC transplantation on motor function restoration following spinal cord injury (SCI). METHODS: Severe contusive SCI was induced in immunocompromised rats, followed by continuous administration of recombinant human HGF protein into the subarachnoid space immediately after SCI for two weeks. Acute-phase histological and RNA sequencing analyses were conducted. Nine days after the injury, hiPSC-NS/PCs were transplanted into the lesion epicenter of the injured spinal cord, and the functional and histological outcomes were determined. RESULTS: The acute-phase HGF-treated group exhibited vascularization, diverse anti-inflammatory effects, and activation of endogenous neural stem cells after SCI, which collectively contributed to tissue preservation. Following cell transplantation into a favorable environment, the transplanted NS/PCs survived well, facilitating remyelination and neuronal regeneration in host tissues. These comprehensive effects led to substantial enhancements in motor function in the dual-therapy group compared to the single-treatment groups. CONCLUSIONS: We demonstrate that the combined therapeutic approach of HGF preconditioning and hiPSC-NS/PC transplantation enhances locomotor functional recovery post-SCI, highlighting a highly promising therapeutic strategy for acute to subacute SCI.

14.
Stem Cells Transl Med ; 12(9): 603-616, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37616288

ABSTRACT

Traumatic spinal cord injury (SCI) results in the loss of neurons, oligodendrocytes, and astrocytes. Present interventions for SCI include decompressive surgery, anti-inflammatory therapies, and rehabilitation programs. Nonetheless, these approaches do not offer regenerative solutions to replace the lost cells, fiber tracts, and circuits. Neural stem/progenitor cell (NPC) transplantation is a promising strategy that aims to encourage regeneration. However, NPC differentiation remains inconsistent, thus, contributing to suboptimal functional recovery. As such, we have previously engineered oligodendrogenically biased NPCs (oNPCs) and demonstrated their efficacy in a thoracic model of SCI. Since the majority of patients with SCI experience cervical injuries, our objective in the current study was to generate human induced pluripotent stem cell-derived oNPCs (hiPSC-oNPCs) and to characterize these cells in vitro and in vivo, utilizing a clinically relevant rodent model of cervical SCI. Following transplantation, the oNPCs engrafted, migrated to the rostral and caudal regions of the lesion, and demonstrated preferential differentiation toward oligodendrocytes. Histopathological evaluations revealed that oNPC transplantation facilitated tissue preservation while diminishing astrogliosis. Moreover, oNPC transplantation fostered remyelination of the spared tissue. Functional analyses indicated improved forelimb grip strength, gait, and locomotor function in the oNPC-transplanted rats. Importantly, oNPC transplantation did not exacerbate neuropathic pain or induce tumor formation. In conclusion, these findings underscore the therapeutic potential of oNPCs in promoting functional recovery and histopathological improvements in cervical SCI. This evidence warrants further investigation to optimize and advance this promising cell-based therapeutic approach.


Subject(s)
Cervical Cord , Induced Pluripotent Stem Cells , Neural Stem Cells , Spinal Cord Injuries , Humans , Rats , Animals , Spinal Cord Injuries/therapy , Recovery of Function
15.
Cell Mol Gastroenterol Hepatol ; 16(6): 1011-1031, 2023.
Article in English | MEDLINE | ID: mdl-37567385

ABSTRACT

BACKGROUND & AIMS: D-amino acids, the chiral counterparts of protein L-amino acids, were primarily produced and utilized by microbes, including those in the human gut. However, little was known about how orally administered or microbe-derived D-amino acids affected the gut microbial community or gut disease progression. METHODS: The ratio of D- to L-amino acids was analyzed in feces and blood from patients with ulcerative colitis (UC) and healthy controls. Also, composition of microbe was analyzed from patients with UC. Mice were treated with D-amino acid in dextran sulfate sodium colitis model and liver cholangitis model. RESULTS: The ratio of D- to L-amino acids was lower in the feces of patients with UC than that of healthy controls. Supplementation of D-amino acids ameliorated UC-related experimental colitis and liver cholangitis by inhibiting growth of Proteobacteria. Addition of D-alanine, a major building block for bacterial cell wall formation, to culture medium inhibited expression of the ftsZ gene required for cell fission in the Proteobacteria Escherichia coli and Klebsiella pneumoniae, thereby inhibiting growth. Overexpression of ftsZ restored growth of E. coli even when D-alanine was present. We found that D-alanine not only inhibited invasion of pathological K. pneumoniae into the host via pore formation in intestinal epithelial cells but also inhibited growth of E. coli and generation of antibiotic-resistant strains. CONCLUSIONS: D-amino acids might have potential for use in novel therapeutic approaches targeting Proteobacteria-associated dysbiosis and antibiotic-resistant bacterial diseases by means of their effects on the intestinal microbiota community.


Subject(s)
Cholangitis , Colitis, Ulcerative , Colitis , Inflammatory Bowel Diseases , Humans , Animals , Mice , Amino Acids , Proteobacteria , Escherichia coli , Inflammatory Bowel Diseases/drug therapy , Colitis/chemically induced , Colitis/drug therapy , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Alanine , Cholangitis/drug therapy , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use
16.
PNAS Nexus ; 2(8): pgad236, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37559748

ABSTRACT

Pollinosis, also known as pollen allergy or hay fever, is a global problem caused by pollen produced by various plant species. The wind-pollinated Japanese cedar (Cryptomeria japonica) is the largest contributor to severe pollinosis in Japan, where increasing proportions of people have been affected in recent decades. The MALE STERILITY 4 (MS4) locus of Japanese cedar controls pollen production, and its homozygous mutants (ms4/ms4) show abnormal pollen development after the tetrad stage and produce no mature pollen. In this study, we narrowed down the MS4 locus by fine mapping in Japanese cedar and found TETRAKETIDE α-PYRONE REDUCTASE 1 (TKPR1) gene in this region. Transformation experiments using Arabidopsis thaliana showed that single-nucleotide substitution ("T" to "C" at 244-nt position) of CjTKPR1 determines pollen production. Broad conservation of TKPR1 beyond plant division could lead to the creation of pollen-free plants not only for Japanese cedar but also for broader plant species.

17.
Sci Rep ; 13(1): 11932, 2023 07 24.
Article in English | MEDLINE | ID: mdl-37488180

ABSTRACT

Chitosan has various tissue regeneration effects. This study was designed to investigate the nerve regeneration effect of Schwann cell (SC)-encapsulated chitosan-collagen hydrogel nerve conduit (CCN) transplanted into a rat model of sciatic nerve defect. We prepared a CCN consisting of an outer layer of chitosan hydrogel and an inner layer of collagen hydrogel to encapsulate the intended cells. Rats with a 10-mm sciatic nerve defect were treated with SCs encapsulated in CCN (CCN+), CCN without SCs (CCN-), SC-encapsulated silicone tube (silicone+), and autologous nerve transplanting (auto). Behavioral and histological analyses indicated that motor functional recovery, axonal regrowth, and myelination of the CCN+ group were superior to those of the CCN- and silicone+ groups. Meanwhile, the CCN- and silicone+ groups showed no significant differences in the recovery of motor function and nerve histological restoration. In conclusion, SC-encapsulated CCN has a synergistic effect on peripheral nerve regeneration, especially axonal regrowth and remyelination of host SCs. In the early phase after transplantation, SC-encapsulated CCNs have a positive effect on recovery. Therefore, using SC-encapsulated CCNs may be a promising approach for massive peripheral nerve defects.


Subject(s)
Chitosan , Rats , Animals , Rodentia , Hydrogels , Sciatic Nerve , Schwann Cells , Collagen , Nerve Regeneration , Silicones
19.
Biomaterials ; 299: 122174, 2023 08.
Article in English | MEDLINE | ID: mdl-37285642

ABSTRACT

Although the extracellular matrix (ECM) plays essential roles in heart tissue engineering, the optimal ECM components for heart tissue organization have not previously been elucidated. Here, we focused on the main ECM component, fibrillar collagen, and analyzed the effects of collagens on heart tissue engineering, by comparing the use of porcine heart-derived collagen and other organ-derived collagens in generating engineered heart tissue (EHT). We demonstrate that heart-derived collagen induces better contraction and relaxation of human induced pluripotent stem cell-derived EHT (hiPSC-EHT) and that hiPSC-EHT with heart-derived collagen exhibit more mature profiles than those with collagens from other organs. Further, we found that collagen fibril formation and gel stiffness influence the contraction, relaxation, and maturation of hiPSC-EHT, suggesting the importance of collagen types III and type V, which are relatively abundant in the heart. Thus, we demonstrate the effectiveness of organ-specific collagens in tissue engineering and drug discovery.


Subject(s)
Induced Pluripotent Stem Cells , Tissue Engineering , Animals , Swine , Humans , Myocytes, Cardiac , Collagen/pharmacology , Extracellular Matrix
20.
Mol Cell ; 83(12): 2045-2058.e9, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37192628

ABSTRACT

Mitophagy plays an important role in mitochondrial homeostasis by selective degradation of mitochondria. During mitophagy, mitochondria should be fragmented to allow engulfment within autophagosomes, whose capacity is exceeded by the typical mitochondria mass. However, the known mitochondrial fission factors, dynamin-related proteins Dnm1 in yeasts and DNM1L/Drp1 in mammals, are dispensable for mitophagy. Here, we identify Atg44 as a mitochondrial fission factor that is essential for mitophagy in yeasts, and we therefore term Atg44 and its orthologous proteins mitofissin. In mitofissin-deficient cells, a part of the mitochondria is recognized by the mitophagy machinery as cargo but cannot be enwrapped by the autophagosome precursor, the phagophore, due to a lack of mitochondrial fission. Furthermore, we show that mitofissin directly binds to lipid membranes and brings about lipid membrane fragility to facilitate membrane fission. Taken together, we propose that mitofissin acts directly on lipid membranes to drive mitochondrial fission required for mitophagy.


Subject(s)
Autophagy , Mitophagy , Animals , Mitochondrial Dynamics , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Dynamins/genetics , Dynamins/metabolism , Lipids , Mammals/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...