Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Nat Chem ; 16(4): 483-484, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38528105
2.
Chem Commun (Camb) ; 59(67): 10087-10100, 2023 Aug 17.
Article in English | MEDLINE | ID: mdl-37529849

ABSTRACT

Organic compounds of biological importance often contain multiple stereogenic C-heteroatom functional groups (e.g. amines, alcohols, and ethers). As a result, synthetic methods to access such compounds in a reliable and stereoselective fashion are important. In this feature article, we present a strategy to enable the introduction of multiple C-heteroatom functional groups in a regiodivergent cross-coupling approach through the use of reductive coupling chemistry employing allenamides. Such processes allow for opportunities to access different heteroatom substitution patterns from the same starting materials.

3.
Org Process Res Dev ; 27(7): 1390-1399, 2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37496954

ABSTRACT

A low-cost, protecting group-free route to 6-(2-fluoro-4-nitrophenyl)-2-oxa-6-azaspiro[3.3]heptane (1), the starting material for the in-development tuberculosis treatment TBI-223, is described. The key bond forming step in this route is the creation of the azetidine ring through a hydroxide-facilitated alkylation of 2-fluoro-4-nitroaniline (2) with 3,3-bis(bromomethyl)oxetane (BBMO, 3). After optimization, this ring formation reaction was demonstrated at 100 g scale with isolated yield of 87% and final product purity of >99%. The alkylating agent 3 was synthesized using an optimized procedure that starts from tribromoneopentyl alcohol (TBNPA, 4), a commercially available flame retardant. Treatment of 4 with sodium hydroxide under Schotten-Baumann conditions closed the oxetane ring, and after distillation, 3 was recovered in 72% yield and >95% purity. This new approach to compound 1 avoids the previous drawbacks associated with the synthesis of 2-oxa-6-azaspiro[3,3]heptane (5), the major cost driver used in previous routes to TBI-223. The optimization and multigram scale-up results for this new route are reported herein.

4.
Org Lett ; 25(25): 4730-4734, 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37345963

ABSTRACT

Herein, we report the development of a Cu-catalyzed aminoallylation of aldehyde electrophiles through reductive coupling by circumventing the problematic competitive reduction of the aldehyde electrophile by a CuH catalyst. This leads to a highly diastereo- and enantioselective process for the synthesis of chiral 1,2-aminoalcohols containing secondary alcohol substitution. Cleavage of the N substituents on the reaction products was performed, allowing access to the other diastereomer of the aminoalcohol, which was investigated in the context of a synthesis of eligulstat.


Subject(s)
Aldehydes , Metals , Stereoisomerism , Molecular Structure , Amino Alcohols , Catalysis
5.
Org Lett ; 25(25): 4644-4649, 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37338397

ABSTRACT

Herein, we report the development of a Cu-catalyzed enantioselective borylative aminoallylation of aldehydes using a N-substituted allene to access boryl-substituted 1,2-aminoalcohol synthons for diversification to chiral heteroatom-rich organic compounds. The reported reaction provides access to several different substitution patterns of chiral 1,2-aminoalcohol products from the same readily available starting materials with high diastereo- and enantioselectivity.


Subject(s)
Aldehydes , Amino Alcohols , Stereoisomerism , Catalysis
6.
Org Lett ; 25(9): 1425-1430, 2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36847445

ABSTRACT

Herein, we report the development of an improved system for the Cu-catalyzed enantioselective reductive coupling of ketones and allenamides through the optimization of the allenamide to avoid an on-cycle rearrangement. High enantioselectivities could be obtained for a variety of ketones. Use of the acyclic allenamides described herein selectively generated anti-diastereomers in contrast to cyclic allenamides that were previously shown to favor the syn-form. A rationale for this change in diastereoselectivity is also presented.

7.
J Org Chem ; 87(9): 6387-6392, 2022 05 06.
Article in English | MEDLINE | ID: mdl-35435681

ABSTRACT

The development of an asymmetric protocol for the reductive alkynylation of amides to access important α-stereogenic tertiary propargylic amines is reported using a tandem Ir-catalyzed hydrosilylation/enantioselective Cu-catalyzed alkynylation. The reaction utilizes a Cu/PyBox catalyst system in the alkynylation step to achieve asymmetry and affords excellent yields with moderate to good levels of enantiocontrol while employing low Ir-catalyst loadings (0.5 mol %).


Subject(s)
Amides , Amines , Catalysis , Stereoisomerism
8.
ACS Omega ; 7(8): 7223-7228, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35252712

ABSTRACT

A concise and practical synthesis has been developed to provide the 8-fluoro-5-hydroxy-3,4-diydrocarbostyril (8-FDC) fragment of OPC-167832 in 41% yield and in >99% purity over four steps from 3-amino-4-fluorophenol. The key feature of this process is the development of a telescoped one-pot synthesis of the quinolone via a chemoselective amidation/acid-induced cyclization that allows for simple product isolation without the need for column chromatography.

9.
J Org Chem ; 87(4): 2142-2153, 2022 02 18.
Article in English | MEDLINE | ID: mdl-34807603

ABSTRACT

Chiral γ-lactones are prevalent organic architectures found in a large array of natural products. In this work, we disclose the development of a modified catalytic system utilizing a commercially available Cu-phosphite catalyst for the diastereoselective reductive coupling of chiral allenamides and ketones to afford chiral γ-lactone precursors in 80:20 to 99:1 dr.


Subject(s)
Ketones , Catalysis , Stereoisomerism
10.
Org Lett ; 23(16): 6444-6449, 2021 08 20.
Article in English | MEDLINE | ID: mdl-34347500

ABSTRACT

Herein, we report the development of a catalytic enantioselective addition of N-substituted allyl equivalents to ketone electrophiles through use of Cu-catalyzed reductive coupling to access important chiral 1,2-aminoalcohol synthons in high levels of regio-, diastereo-, and enantioselectivity. Factors affecting enantioinduction are discussed including the identification of a reversible ketone allylation step that has not been previously reported in Cu-catalyzed reductive coupling.

11.
J Org Chem ; 86(7): 5026-5046, 2021 04 02.
Article in English | MEDLINE | ID: mdl-33724828

ABSTRACT

Chiral 1,2-diamino compounds are important building blocks in organic chemistry for biological applications and as asymmetric inducers in stereoselective synthesis that are challenging to prepare in a straightforward and stereoselective manner. Herein, we disclose a cost-effective and readily available Cu-catalyzed system for the reductive coupling of a chiral allenamide with N-alkyl substituted aldimines to access chiral 1,2-diamino synthons as single stereoisomers in high yields. The method shows broad reaction scope and high diastereoselectivity and can be easily scaled using standard Schlenk techniques. Mechanistic investigations by density functional theory calculations identified the mechanism and origin of stereoselectivity. In particular, the addition to the imine was shown to be reversible, which has implications toward development of catalyst-controlled stereoselective variants of the identified reductive coupling of imines and allenamides.


Subject(s)
Diamines , Imines , Catalysis , Stereoisomerism
12.
Org Lett ; 22(19): 7656-7661, 2020 Oct 02.
Article in English | MEDLINE | ID: mdl-32931286

ABSTRACT

Pyrrolotriazine 1 is an important precursor to remdesivir. Initial results toward an efficient synthesis are disclosed consisting of sequential cyanation, amination, and triazine formation beginning from pyrrole. This route makes use of highly abundant, commoditized raw material inputs. The yield of triazine was doubled from 31% to 59%, and the synthetic step count was reduced from 4 to 2. These efforts help to secure the remdesivir supply chain.

13.
Org Lett ; 21(23): 9753-9758, 2019 Dec 06.
Article in English | MEDLINE | ID: mdl-31769994

ABSTRACT

We report the development of a stereoselective method for the allylation of ketones utilizing N-substituted allyl equivalents generated from a chiral allenamide. By employing N-heterocyclic carbenes as ligands for the Cu catalyst, good branched selectivity can be obtained with high diastereocontrol. This methodology allows access to a catalytically generated, polarity-reversed (umpolung) allyl nucleophile to enable the preparation of chiral 1,2-aminoalcohol synthons containing a dissonant functional group relationship.

14.
Org Lett ; 21(19): 7992-7998, 2019 Oct 04.
Article in English | MEDLINE | ID: mdl-31532684

ABSTRACT

We report the development of a stereoselective method for the allylation of ketones utilizing N-substituted allyl equivalents generated from a chiral allenamide. By choice of the appropriate ligand for the Cu-catalyst, high linear selectivity can be obtained with good diastereocontrol. This methodology allows access to chiral γ-hydroxyaldehyde equivalents that were applied in the synthesis of chiral γ-lactones and 2,5-disubstitued tetrahydrofurans.

15.
J Org Chem ; 84(8): 4926-4931, 2019 04 19.
Article in English | MEDLINE | ID: mdl-30715884

ABSTRACT

The application of a Buchwald's third generation palladacycle containing a dihydrobenzooxaphosphole-based ligand (e.g., BIDIME) was reported in the Suzuki cross-coupling reaction. Using flow technology, high yield and reproducible Suzuki cross-coupling reaction for one of our key intermediates was achieved with Pd loadings as low as 0.5 mol %. This continuous flow approach overcomes catalyst deactivation and scale dependence issues that can be a problem in some traditional batch-mode operations and responds to the challenge of improving process greenness.

16.
ACS Catal ; 8(11): 10190-10209, 2018 Nov 02.
Article in English | MEDLINE | ID: mdl-30450265

ABSTRACT

Metal-catalyzed cross-coupling reactions are extensively employed in both academia and industry for the synthesis of biaryl derivatives for applications to both medicine and material science. Application of these methods to prepare tetra-ortho-substituted biaryls leads to chiral atropisomeric products that introduces the opportunity to use catalyst-control to develop asymmetric cross-coupling procedures to access these important compounds. Asymmetric Pd-catalyzed Suzuki-Miyaura and Negishi cross-coupling reactions to form tetra-ortho-substituted biaryls were studied employing a collection of P-chiral dihydrobenzooxaphosphole (BOP) and dihydrobenzoazaphosphole (BAP) ligands. Enantioselectivities of up to 95:5 and 85:15 er were identified for the Suzuki-Miyaura and Negishi cross-coupling reactions, respectively. Unique ligands for the Suzuki-Miyaura reaction vs the Negishi reaction were identified. A computational study on these Suzuki-Miyaura and Negishi cross-coupling reactions enabled an understanding in the differences between the enantiodiscriminating events between these two cross-coupling reactions. These results support that enantioselectivity in the Negishi reaction results from the reductive elimination step, whereas all steps in the Suzuki-Miyaura catalytic cycle contribute to the overall enantioselection with transmetalation and reductive elimination providing the most contribution to the observed selectivities.

17.
Chem Sci ; 9(19): 4505-4510, 2018 May 21.
Article in English | MEDLINE | ID: mdl-29896393

ABSTRACT

A new class of tunable heterophosphole dimeric ligands have been designed and synthesized. These ligands have enabled the first examples of Cu-catalyzed hydrogenation of 2-substituted-1-tetralones and related heteroaryl ketones via dynamic kinetic resolution, simultaneously creating two contiguous stereogenic centers with up to >99 : 1 dr and 98 : 2 er. The ligand-Cu complexes were isolated and characterized by single crystal X-ray, and DFT calculations revealed a novel heteroligated dimeric copper hydride transition state.

18.
Org Lett ; 20(7): 1725-1729, 2018 04 06.
Article in English | MEDLINE | ID: mdl-29542928

ABSTRACT

Novel bidentate phosphine ligands BABIPhos featuring a biaryl bis-dihydrobenzooxaphosphole core are presented. Their synthesis was achieved via Pd-catalyzed reductive homocoupling of dihydrobenzooxaphosphole aryl triflates. An efficient route toward various analogues was also established, giving access to phosphines with different electronic and steric properties. The newly obtained ligands demonstrated high efficiency and selectivity in Rh-catalyzed asymmetric hydrogenation of di- and trisubstituted enamides. This new class of ligands is complementary to previously described bidentate benzooxaphosphole ligands BIBOP.

19.
Org Lett ; 20(5): 1333-1337, 2018 03 02.
Article in English | MEDLINE | ID: mdl-29461064

ABSTRACT

Enantioselective synthesis of α-aryl and α-heteroaryl piperidines is reported. The key step is an iridium-catalyzed asymmetric hydrogenation of substituted N-benzylpyridinium salts. High levels of enantioselectivity up to 99.3:0.7 er were obtained for a range of α-heteroaryl piperidines. DFT calculations support an outersphere dissociative mechanism for the pyridinium reduction. Notably, initial protonation of the final enamine intermediate determines the stereochemical outcome of the transformation rather than hydride reduction of the resultant iminium intermediate.


Subject(s)
Piperidines/chemical synthesis , Pyridinium Compounds/chemistry , Catalysis , Hydrogenation , Iridium , Models, Chemical , Molecular Structure , Oxidation-Reduction , Stereoisomerism
20.
J Org Chem ; 83(3): 1448-1461, 2018 02 02.
Article in English | MEDLINE | ID: mdl-29323903

ABSTRACT

A chromatography-free, asymmetric synthesis of the C2-symmetric P-chiral diphosphine t-Bu-SMS-Phos was developed using a chiral auxiliary-based approach in five steps from the chiral auxiliary in 36% overall yield. Separtion and recovery of the auxiliary were achieved with good yield (97%) to enable recycling of the chiral auxiliary. An air-stable crystalline form of the final ligand was identified to enable isolation of the final ligand by crystallization to avoid chromatography. This synthetic route was applied to prepare up to 4 kg of the final ligand. The utility of this material was demonstrated in the asymmetric hydrogenation of trifluoromethyl vinyl acetate at 0.1 mol % Rh loading to access a surrogate for the pharmaceutically relavent chiral trifluoroisopropanol fragment in excellent yield and enantiomeric excess (98.6%).

SELECTION OF CITATIONS
SEARCH DETAIL
...