Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Res ; 215(Pt 1): 114045, 2022 12.
Article in English | MEDLINE | ID: mdl-35995227

ABSTRACT

Photosynthetic microbial fuel cells (pMFC) represent a promising approach for treating methanol (CH3OH) wastewater. However, their use is constrained by a lack of knowledge on the extracellular electron transfer capabilities of photosynthetic methylotrophs, especially when coupled with metal electrodes. This study assessed the CH3OH oxidation capabilities of Rhodobacter sphaeroides 2.4.1 in two-compartment pMFCs. A 3D nickel (Ni) foam modified with plasma-grown graphene (Gr) was used as an anode, nitrate mineral salts media (NMS) supplemented with 0.1% CH3OH as anolyte, carbon brush as cathode, and 50 mM ferricyanide as catholyte. Two simultaneous pMFCs that used bare Ni foam and carbon felt served as controls. The Ni/Gr electrode registered a two-fold lower charge transfer resistance (0.005 kΩ cm2) and correspondingly 16-fold higher power density (141 mW/m2) compared to controls. The underlying reasons for the enhanced performance of R. sphaeroides at the graphene interface were discerned. The real-time polymerase chain reaction (PCR) analysis revealed the upregulation of cytochrome c oxidase, aa3 type, subunit I gene, and Flp pilus assembly protein genes in the sessile cells compared to their planktonic counterparts. The key EET pathways used for sustaining CH3OH oxidation were discussed.


Subject(s)
Bioelectric Energy Sources , Graphite , Carbon , Carbon Fiber , Electrodes , Electron Transport Complex IV , Ferricyanides , Methanol , Nickel , Nitrates , Salts , Wastewater
2.
Adv Mater ; 33(51): e2104467, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34651334

ABSTRACT

Despite decades of research, metallic corrosion remains a long-standing challenge in many engineering applications. Specifically, designing a material that can resist corrosion both in abiotic as well as biotic environments remains elusive. Here a lightweight sulfur-selenium (S-Se) alloy is designed with high stiffness and ductility that can serve as an excellent corrosion-resistant coating with protection efficiency of ≈99.9% for steel in a wide range of diverse environments. S-Se coated mild steel shows a corrosion rate that is 6-7 orders of magnitude lower than bare metal in abiotic (simulated seawater and sodium sulfate solution) and biotic (sulfate-reducing bacterial medium) environments. The coating is strongly adhesive, mechanically robust, and demonstrates excellent damage/deformation recovery properties, which provide the added advantage of significantly reducing the probability of a defect being generated and sustained in the coating, thus improving its longevity. The high corrosion resistance of the alloy is attributed in diverse environments to its semicrystalline, nonporous, antimicrobial, and viscoelastic nature with superior mechanical performance, enabling it to successfully block a variety of diffusing species.

SELECTION OF CITATIONS
SEARCH DETAIL
...