Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
1.
Sci Rep ; 14(1): 11735, 2024 05 22.
Article in English | MEDLINE | ID: mdl-38778071

ABSTRACT

Automated quantification of brain tissues on MR images has greatly contributed to the diagnosis and follow-up of neurological pathologies across various life stages. However, existing solutions are specifically designed for certain age ranges, limiting their applicability in monitoring brain development from infancy to late adulthood. This retrospective study aims to develop and validate a brain segmentation model across pediatric and adult populations. First, we trained a deep learning model to segment tissues and brain structures using T1-weighted MR images from 390 patients (age range: 2-81 years) across four different datasets. Subsequently, the model was validated on a cohort of 280 patients from six distinct test datasets (age range: 4-90 years). In the initial experiment, the proposed deep learning-based pipeline, icobrain-dl, demonstrated segmentation accuracy comparable to both pediatric and adult-specific models across diverse age groups. Subsequently, we evaluated intra- and inter-scanner variability in measurements of various tissues and structures in both pediatric and adult populations computed by icobrain-dl. Results demonstrated significantly higher reproducibility compared to similar brain quantification tools, including childmetrix, FastSurfer, and the medical device icobrain v5.9 (p-value< 0.01). Finally, we explored the potential clinical applications of icobrain-dl measurements in diagnosing pediatric patients with Cerebral Visual Impairment and adult patients with Alzheimer's Disease.


Subject(s)
Brain , Deep Learning , Magnetic Resonance Imaging , Humans , Adult , Brain/diagnostic imaging , Aged , Child , Adolescent , Child, Preschool , Aged, 80 and over , Middle Aged , Young Adult , Female , Male , Magnetic Resonance Imaging/methods , Retrospective Studies , Image Processing, Computer-Assisted/methods , Reproducibility of Results
2.
JAMA Netw Open ; 7(2): e2355800, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38345816

ABSTRACT

Importance: Amyloid-related imaging abnormalities (ARIA) are brain magnetic resonance imaging (MRI) findings associated with the use of amyloid-ß-directed monoclonal antibody therapies in Alzheimer disease (AD). ARIA monitoring is important to inform treatment dosing decisions and might be improved through assistive software. Objective: To assess the clinical performance of an artificial intelligence (AI)-based software tool for assisting radiological interpretation of brain MRI scans in patients monitored for ARIA. Design, Setting, and Participants: This diagnostic study used a multiple-reader multiple-case design to evaluate the diagnostic performance of radiologists assisted by the software vs unassisted. The study enrolled 16 US Board of Radiology-certified radiologists to perform radiological reading with (assisted) and without the software (unassisted). The study encompassed 199 retrospective cases, where each case consisted of a predosing baseline and a postdosing follow-up MRI of patients from aducanumab clinical trials PRIME, EMERGE, and ENGAGE. Statistical analysis was performed from April to July 2023. Exposures: Use of icobrain aria, an AI-based assistive software for ARIA detection and quantification. Main Outcomes and Measures: Coprimary end points were the difference in diagnostic accuracy between assisted and unassisted detection of ARIA-E (edema and/or sulcal effusion) and ARIA-H (microhemorrhage and/or superficial siderosis) independently, assessed with the area under the receiver operating characteristic curve (AUC). Results: Among the 199 participants included in this study of radiological reading performance, mean (SD) age was 70.4 (7.2) years; 105 (52.8%) were female; 23 (11.6%) were Asian, 1 (0.5%) was Black, 157 (78.9%) were White, and 18 (9.0%) were other or unreported race and ethnicity. Among the 16 radiological readers included, 2 were specialized neuroradiologists (12.5%), 11 were male individuals (68.8%), 7 were individuals working in academic hospitals (43.8%), and they had a mean (SD) of 9.5 (5.1) years of experience. Radiologists assisted by the software were significantly superior in detecting ARIA than unassisted radiologists, with a mean assisted AUC of 0.87 (95% CI, 0.84-0.91) for ARIA-E detection (AUC improvement of 0.05 [95% CI, 0.02-0.08]; P = .001]) and 0.83 (95% CI, 0.78-0.87) for ARIA-H detection (AUC improvement of 0.04 [95% CI, 0.02-0.07]; P = .001). Sensitivity was significantly higher in assisted reading compared with unassisted reading (87% vs 71% for ARIA-E detection; 79% vs 69% for ARIA-H detection), while specificity remained above 80% for the detection of both ARIA types. Conclusions and Relevance: This diagnostic study found that radiological reading performance for ARIA detection and diagnosis was significantly better when using the AI-based assistive software. Hence, the software has the potential to be a clinically important tool to improve safety monitoring and management of patients with AD treated with amyloid-ß-directed monoclonal antibody therapies.


Subject(s)
Alzheimer Disease , Artificial Intelligence , Humans , Male , Female , Aged , Retrospective Studies , Alzheimer Disease/drug therapy , Amyloid beta-Peptides , Amyloid , Software , Antibodies, Monoclonal/therapeutic use
3.
Neuroradiology ; 66(4): 487-506, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38240767

ABSTRACT

PURPOSE: To assess the performance of the inferior lateral ventricle (ILV) to hippocampal (Hip) volume ratio on brain MRI, for Alzheimer's disease (AD) diagnostics, comparing it to individual automated ILV and hippocampal volumes, and visual medial temporal lobe atrophy (MTA) consensus ratings. METHODS: One-hundred-twelve subjects (mean age ± SD, 66.85 ± 13.64 years) with varying degrees of cognitive decline underwent MRI using a Philips Ingenia 3T. The MTA scale by Scheltens, rated on coronal 3D T1-weighted images, was determined by three experienced radiologists, blinded to diagnosis and sex. Automated volumetry was computed by icobrain dm (v. 5.10) for total, left, right hippocampal, and ILV volumes. The ILV/Hip ratio, defined as the percentage ratio between ILV and hippocampal volumes, was calculated and compared against a normative reference population (n = 1903). Inter-rater agreement, association, classification accuracy, and clinical interpretability on patient level were reported. RESULTS: Visual MTA scores showed excellent inter-rater agreement. Ordinal logistic regression and correlation analyses demonstrated robust associations between automated brain segmentations and visual MTA ratings, with the ILV/Hip ratio consistently outperforming individual hippocampal and ILV volumes. Pairwise classification accuracy showed good performance without statistically significant differences between the ILV/Hip ratio and visual MTA across disease stages, indicating potential interchangeability. Comparison to the normative population and clinical interpretability assessments showed commensurability in classifying MTA "severity" between visual MTA and ILV/Hip ratio measurements. CONCLUSION: The ILV/Hip ratio shows the highest correlation to visual MTA, in comparison to automated individual ILV and hippocampal volumes, offering standardized measures for diagnostic support in different stages of cognitive decline.


Subject(s)
Alzheimer Disease , Temporal Lobe , Humans , Temporal Lobe/pathology , Alzheimer Disease/pathology , Lateral Ventricles , Atrophy/pathology , Hippocampus/pathology , Magnetic Resonance Imaging/methods
4.
Mult Scler ; 30(1): 121-130, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38140857

ABSTRACT

BACKGROUND: The Nine-Hole Peg Test (9HPT) is the golden standard to measure manual dexterity in people with multiple sclerosis (MS). However, administration requires trained personnel and dedicated time during a clinical visit. OBJECTIVES: The objective of this study is to validate a smartphone-based test for remote manual dexterity assessment, the icompanion Finger Dexterity Test (FDT), to be included into the icompanion application. METHODS: A total of 65 MS and 81 healthy subjects were tested, and 20 healthy subjects were retested 2 weeks later. RESULTS: The FDT significantly correlated with the 9HPT (dominant: ρ = 0.62, p < 0.001; non-dominant: ρ = 0.52, p < 0.001). MS subjects had significantly higher FDT scores than healthy subjects (dominant: p = 0.015; non-dominant: p = 0.013), which was not the case for the 9HPT. A significant correlation with age (dominant: ρ = 0.46, p < 0.001; non-dominant: ρ = 0.40, p = 0.002), Expanded Disability Status Scale (EDSS, dominant: ρ = 0.36, p = 0.005; non-dominant: ρ = 0.31, p = 0.024), and disease duration for the non-dominant hand (ρ = 0.31, p = 0.016) was observed. There was a good test-retest reliability in healthy subjects (dominant: r = 0.69, p = 0.001; non-dominant: r = 0.87, p < 0.001). CONCLUSIONS: The icompanion FDT shows a moderate-to-good concurrent validity and test-retest reliability, differentiates between the MS subjects and healthy controls, and correlates with clinical parameters. This test can be implemented into routine MS care for remote follow-up of manual dexterity.


Subject(s)
Fingers , Multiple Sclerosis , Humans , Reproducibility of Results , Smartphone , Motor Skills , Upper Extremity , Multiple Sclerosis/diagnosis
5.
NMR Biomed ; : e5012, 2023 Jul 30.
Article in English | MEDLINE | ID: mdl-37518942

ABSTRACT

With the rise of novel 3D magnetic resonance spectroscopy imaging (MRSI) acquisition protocols in clinical practice, which are capable of capturing a large number of spectra from a subject's brain, there is a need for an automated preprocessing pipeline that filters out bad-quality spectra and identifies contaminated but salvageable spectra prior to the metabolite quantification step. This work introduces such a pipeline based on an ensemble of deep-learning classifiers. The dataset consists of 36,338 spectra from one healthy subject and five brain tumor patients, acquired with an EPSI variant, which implemented a novel type of spectral editing named SLOtboom-Weng (SLOW) editing on a 7T MR scanner. The spectra were labeled manually by an expert into four classes of spectral quality as follows: (i) noise, (ii) spectra greatly influenced by lipid-related artifacts (deemed not to contain clinical information), (iii) spectra containing metabolic information slightly contaminated by lipid signals, and (iv) good-quality spectra. The AI model consists of three pairs of networks, each comprising a convolutional autoencoder and a multilayer perceptron network. In the classification step, the encoding half of the autoencoder is kept as a dimensionality reduction tool, while the fully connected layers are added to its output. Each of the three pairs of networks is trained on different representations of spectra (real, imaginary, or both), aiming at robust decision-making. The final class is assigned via a majority voting scheme. The F1 scores obtained on the test dataset for the four previously defined classes are 0.96, 0.93, 0.82, and 0.90, respectively. The arguably lower value of 0.82 was reached for the least represented class of spectra mildly influenced by lipids. Not only does the proposed model minimise the required user interaction, but it also greatly reduces the computation time at the metabolite quantification step (by selecting a subset of spectra worth quantifying) and enforces the display of only clinically relevant information.

6.
PLoS One ; 18(3): e0283610, 2023.
Article in English | MEDLINE | ID: mdl-36996007

ABSTRACT

BACKGROUND: Current guidelines for CT perfusion (CTP) in acute stroke suggest acquiring scans with a minimal duration of 60-70 s. But even then, CTP analysis can be affected by truncation artifacts. Conversely, shorter acquisitions are still widely used in clinical practice and may, sometimes, be sufficient to reliably estimate lesion volumes. We aim to devise an automatic method that detects scans affected by truncation artifacts. METHODS: Shorter scan durations are simulated from the ISLES'18 dataset by consecutively removing the last CTP time-point until reaching a 10 s duration. For each truncated series, perfusion lesion volumes are quantified and used to label the series as unreliable if the lesion volumes considerably deviate from the original untruncated ones. Afterwards, nine features from the arterial input function (AIF) and the vascular output function (VOF) are derived and used to fit machine-learning models with the goal of detecting unreliably truncated scans. Methods are compared against a baseline classifier solely based on the scan duration, which is the current clinical standard. The ROC-AUC, precision-recall AUC and the F1-score are measured in a 5-fold cross-validation setting. RESULTS: The best performing classifier obtained an ROC-AUC of 0.982, precision-recall AUC of 0.985 and F1-score of 0.938. The most important feature was the AIFcoverage, measured as the time difference between the scan duration and the AIF peak. When using the AIFcoverage to build a single feature classifier, an ROC-AUC of 0.981, precision-recall AUC of 0.984 and F1-score of 0.932 were obtained. In comparison, the baseline classifier obtained an ROC-AUC of 0.954, precision-recall AUC of 0.958 and F1-Score of 0.875. CONCLUSIONS: Machine learning models fed with AIF and VOF features accurately detected unreliable stroke lesion measurements due to insufficient acquisition duration. The AIFcoverage was the most predictive feature of truncation and identified unreliable short scans almost as good as machine learning. We conclude that AIF/VOF based classifiers are more accurate than the scans' duration for detecting truncation. These methods could be transferred to perfusion analysis software in order to increase the interpretability of CTP outputs.


Subject(s)
Brain Ischemia , Stroke , Humans , Tomography, X-Ray Computed/methods , Artifacts , Arteries , Algorithms
7.
Med Image Anal ; 84: 102706, 2023 02.
Article in English | MEDLINE | ID: mdl-36516557

ABSTRACT

Convolutional Neural Networks (CNNs) with U-shaped architectures have dominated medical image segmentation, which is crucial for various clinical purposes. However, the inherent locality of convolution makes CNNs fail to fully exploit global context, essential for better recognition of some structures, e.g., brain lesions. Transformers have recently proven promising performance on vision tasks, including semantic segmentation, mainly due to their capability of modeling long-range dependencies. Nevertheless, the quadratic complexity of attention makes existing Transformer-based models use self-attention layers only after somehow reducing the image resolution, which limits the ability to capture global contexts present at higher resolutions. Therefore, this work introduces a family of models, dubbed Factorizer, which leverages the power of low-rank matrix factorization for constructing an end-to-end segmentation model. Specifically, we propose a linearly scalable approach to context modeling, formulating Nonnegative Matrix Factorization (NMF) as a differentiable layer integrated into a U-shaped architecture. The shifted window technique is also utilized in combination with NMF to effectively aggregate local information. Factorizers compete favorably with CNNs and Transformers in terms of accuracy, scalability, and interpretability, achieving state-of-the-art results on the BraTS dataset for brain tumor segmentation and ISLES'22 dataset for stroke lesion segmentation. Highly meaningful NMF components give an additional interpretability advantage to Factorizers over CNNs and Transformers. Moreover, our ablation studies reveal a distinctive feature of Factorizers that enables a significant speed-up in inference for a trained Factorizer without any extra steps and without sacrificing much accuracy. The code and models are publicly available at https://github.com/pashtari/factorizer.


Subject(s)
Brain Neoplasms , Stroke , Humans , Algorithms , Brain Neoplasms/diagnostic imaging , Neural Networks, Computer , Semantics , Image Processing, Computer-Assisted
8.
Magn Reson Med ; 89(5): 1741-1753, 2023 05.
Article in English | MEDLINE | ID: mdl-36572967

ABSTRACT

PURPOSE: To develop a robust processing procedure of raw signals from water-unsuppressed MRSI of the prostate for the mapping of absolute tissue concentrations of metabolites. METHODS: Water-unsuppressed 3D MRSI data were acquired from a phantom, from healthy volunteers, and a patient with prostate cancer. Signal processing included sequential computation of the modulus of the FID to remove water sidebands, a Hilbert transformation, and k-space Hamming filtering. For the removal of the water signal, we compared Löwner tensor-based blind source separation (BSS) and Hankel Lanczos singular value decomposition techniques. Absolute metabolite levels were quantified with LCModel and the results were statistically analyzed to compare the water removal methods and conventional water-suppressed MRSI. RESULTS: The post-processing algorithms successfully removed the water signal and its sidebands without affecting metabolite signals. The best water removal performance was achieved by Löwner tensor-based BSS. Absolute tissue concentrations of citrate in the peripheral zone derived from water-suppressed and unsuppressed 1 H MRSI were the same and as expected from the known physiology of the healthy prostate. Maps for citrate and choline from water-unsuppressed 3D 1 H-MRSI of the prostate showed expected spatial variations in metabolite levels. CONCLUSION: We developed a robust relatively simple post-processing method of water-unsuppressed MRSI of the prostate to remove the water signal. Absolute quantification using the water signal, originating from the same location as the metabolite signals, avoids the acquisition of additional reference data.


Subject(s)
Prostate , Water , Male , Humans , Prostate/diagnostic imaging , Water/chemistry , Magnetic Resonance Spectroscopy/methods , Magnetic Resonance Imaging/methods , Citrates/metabolism , Citric Acid/metabolism , Algorithms , Brain/metabolism
9.
Mult Scler Relat Disord ; 68: 104116, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36041331

ABSTRACT

Visual evoked potentials (VEP) index visual pathway functioning, and are often used for clinical assessment and as outcome measures in people with multiple sclerosis (PwMS). VEPs may also reflect broader neural disturbances that extend beyond the visual system, but this possibility requires further investigation. In the present study, we examined the hypothesis that delayed latency of the P100 component of the VEP would be associated with broader structural changes in the brain in PwMS. We obtained VEP latency for a standard pattern-reversal checkerboard stimulus paradigm, in addition to Magnetic Resonance Imaging (MRI) measures of whole brain volume (WBV), gray matter volume (GMV), white matter volume (WMV), and T2-weighted fluid attenuated inversion recovery (FLAIR) white matter lesion volume (FLV). Correlation analyses indicated that prolonged VEP latency was significantly associated with lower WBV, GMV, and WMV, and greater FLV. VEP latency remained significantly associated with WBV, GMV, and WMV even after controlling for the variance associated with inter-ocular latency, age, time between VEP and MRI assessments, and other MRI variables. VEP latency delays were most pronounced in PwMS that exhibited low volume in both white and gray matter simultaneously. Furthermore, PwMS that had delayed VEP latency based on a clinically relevant cutoff (VEP latency ≥ 113 ms) in both eyes had lower WBV, GMV, and WMV and greater FLV in comparison to PwMS that had normal VEP latency in one or both eyes. The findings suggest that PwMS that have delayed latency in both eyes may be particularly at risk for exhibiting greater brain atrophy and lesion volume. These analyses also indicate that VEP latency may index combined gray matter and white matter disturbances, and therefore broader network connectivity and efficiency. VEP latency may therefore provide a surrogate marker of broader structural disturbances in the brain in MS.


Subject(s)
Multiple Sclerosis , White Matter , Humans , Evoked Potentials, Visual , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/pathology , Brain/diagnostic imaging , Brain/pathology , White Matter/diagnostic imaging , White Matter/pathology , Atrophy/pathology
10.
Prim Care Diabetes ; 16(5): 684-691, 2022 10.
Article in English | MEDLINE | ID: mdl-35915012

ABSTRACT

AIMS: To evaluate whether the Norfolk Quality of Life in Diabetic Neuropathy (QOL-DN) questionnaire and the novel Norfolk Mortality Risk Score (NMRS), comprising Norfolk QOL-DN items, can identify 4-year mortality risk in individuals with diabetes. METHODS: Of 21,756 adults completing Norfolk QOL-DN in 2012, two groups of surviving and deceased patients were identified in 2016: Group 1, from a county capital and Group 2, from six small cities. NMRS was calculated in Group 1 using the 2012 scores of Norfolk QOL-DN items that discriminate between deceased and surviving participants (p < 0.05) and was subsequently applied to Group 2. RESULTS: 763 participants were included (Group 1: 481 [450 surviving, 31 deceased]; Group 2: 282 [218 surviving, 64 deceased]). Total Norfolk QOL-DN score was significantly higher (worse) in deceased participants than in survivors in both groups (p ≤ 0.008). Optimal cut-off for the 25-item NMRS was 11.5 in Group 1. Individuals in Groups 1 and 2 with NMRS≥ 11.5 in 2012 had a 4-year mortality risk ratio of 4.24 (95 % confidence interval [CI]: 1.65-10.84) and 2.33 (95 % CI: 1.33-4.07), respectively, corresponding to 8 and 16 additional deaths/100 persons/4 years (p = 0.001). CONCLUSION: Norfolk QOL-DN and NMRS can identify individuals with diabetes at risk of 4-year mortality.


Subject(s)
Diabetes Mellitus , Surveys and Questionnaires , Adult , Humans , Diabetes Mellitus/mortality , Diabetic Neuropathies , Quality of Life , Risk Factors , Romania/epidemiology , Predictive Value of Tests
11.
Eur J Neurol ; 29(10): 3039-3049, 2022 10.
Article in English | MEDLINE | ID: mdl-35737867

ABSTRACT

BACKGROUND AND PURPOSE: Data from neuro-imaging techniques allow us to estimate a brain's age. Brain age is easily interpretable as 'how old the brain looks' and could therefore be an attractive communication tool for brain health in clinical practice. This study aimed to investigate its clinical utility by investigating the relationship between brain age and cognitive performance in multiple sclerosis (MS). METHODS: A linear regression model was trained to predict age from brain magnetic resonance imaging volumetric features and sex in a healthy control dataset (HC_train, n = 1673). This model was used to predict brain age in two test sets: HC_test (n = 50) and MS_test (n = 201). Brain-predicted age difference (BPAD) was calculated as BPAD = brain age minus chronological age. Cognitive performance was assessed by the Symbol Digit Modalities Test (SDMT). RESULTS: Brain age was significantly related to SDMT scores in the MS_test dataset (r = -0.46, p < 0.001) and contributed uniquely to variance in SDMT beyond chronological age, reflected by a significant correlation between BPAD and SDMT (r = -0.24, p < 0.001) and a significant weight (-0.25, p = 0.002) in a multivariate regression equation with age. CONCLUSIONS: Brain age is a candidate biomarker for cognitive dysfunction in MS and an easy to grasp metric for brain health.


Subject(s)
Cognitive Dysfunction , Multiple Sclerosis , Biomarkers , Brain/diagnostic imaging , Brain/pathology , Cognition , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/etiology , Humans , Multiple Sclerosis/complications , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/pathology , Neuropsychological Tests
13.
Neuroradiol J ; 35(4): 468-476, 2022 Aug.
Article in English | MEDLINE | ID: mdl-34643120

ABSTRACT

INTRODUCTION: Imaging plays a crucial role in the diagnosis, prognosis and follow-up of traumatic brain injury. Whereas computed tomography plays a pivotal role in the acute setting, magnetic resonance imaging is best suited to detect the true extent of traumatic brain injury, and more specifically diffuse axonal injury. Post-traumatic brain atrophy is a well-known complication of traumatic brain injury. PURPOSE: This study investigated the correlation between diffuse axonal injury detected with fluid-attenuated inversion recovery and susceptibility-weighted imaging magnetic resonance imaging, post-traumatic brain atrophy and functional outcome (Glasgow outcome scale - extended). MATERIALS AND METHODS: Twenty patients with a closed head injury and diffuse axonal injury detected with fluid-attenuated inversion recovery and susceptibility-weighted imaging were included. The total volumes of the diffuse axonal injury fluid-attenuated inversion recovery lesions were determined for each subject's initial (<14 days) and follow-up magnetic resonance scan (average: day 303 ± 83 standard deviation). The different brain volumes were automatically quantified using a validated and both US Food and Drug Administration-cleared and CE-marked machine learning algorithm (icobrain). The number of susceptibility-weighted imaging lesions and functional outcome scores (Glasgow outcome scale - extended) were retrieved from the Collaborative European NeuroTrauma Effectiveness Research Traumatic Brain Injury dataset. RESULTS: The volumetric fluid-attenuated inversion recovery diffuse axonal injury lesion load showed a significant inverse correlation with functional outcome (Glasgow outcome scale - extended) (r = -0.57; P = 0.0094) and white matter volume change (r = -0.50; P = 0.027). In addition, white matter volume change correlated significantly with the Glasgow outcome scale - extended score (P = 0.0072; r = 0.58). Moreover, there was a strong inverse correlation between longitudinal fluid-attenuated inversion recovery lesion volume change and whole brain volume change (r = -0.63; P = 0.0028). No significant correlation existed between the number of diffuse axonal injury susceptibility-weighted imaging lesions, brain atrophy and functional outcome. CONCLUSIONS: Volumetric analysis of diffuse axonal injury on fluid-attenuated inversion recovery imaging and automated brain atrophy calculation are potentially useful tools in the clinical management and follow-up of traumatic brain injury patients with diffuse axonal injury.


Subject(s)
Brain Injuries, Traumatic , Diffuse Axonal Injury , Atrophy , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging
14.
Brain Sci ; 11(12)2021 Nov 27.
Article in English | MEDLINE | ID: mdl-34942872

ABSTRACT

AIM: To develop a microsimulation model to assess the potential health economic impact of software-assisted MRI in detecting disease activity or progression in relapsing-remitting multiple sclerosis (RRMS) patients. METHODS: We develop a simulated decision analytical model based on a hypothetical cohort of RRMS patients to compare a baseline decision-making strategy in which only clinical evolution (relapses and disability progression) factors are used for therapy decisions in MS follow-up, with decision-making strategies involving MRI. In this context, we include comparisons with a visual radiologic assessment of lesion evolution, software-assisted lesion detection, and software-assisted brain volume loss estimation. The model simulates clinical (EDSS transitions, number of relapses) and subclinical (new lesions and brain volume loss) disease progression and activity, modulated by the efficacy profiles of different disease-modifying therapies (DMTs). The simulated decision-making process includes the possibility to escalate from a low efficacy DMT to a high efficacy DMT or to switch between high efficacy DMTs when disease activity is detected. We also consider potential error factors that may occur during decision making, such as incomplete detection of new lesions, or inexact computation of brain volume loss. Finally, differences between strategies in terms of the time spent on treatment while having undetected disease progression/activity, the impact on the patient's quality of life, and costs associated with health status from a US perspective, are reported. RESULTS: The average time with undetected disease progression while on low efficacy treatment is shortened significantly when using MRI, from around 3 years based on clinical criteria alone, to 2 when adding visual examination of MRI, and down to only 1 year with assistive software. Hence, faster escalation to a high efficacy DMT can be performed when MRI software is added to the radiological reading, which has positive effects in terms of health outcomes. The incremental utility shows average gains of 0.23 to 0.37 QALYs over 10 and 15 years, respectively, when using software-assisted MRI compared to clinical parameters only. Due to long-term health benefits, the average annual costs associated with health status are lower by $1500-$2200 per patient when employing MRI and assistive software. CONCLUSIONS: The health economic burden of MS is high. Using assistive MRI software to detect and quantify lesions and/or brain atrophy has a significant impact on the detection of disease activity, treatment decisions, health outcomes, utilities, and costs in patients with MS.

15.
J Pers Med ; 11(12)2021 Dec 11.
Article in English | MEDLINE | ID: mdl-34945821

ABSTRACT

Multiple sclerosis (MS) manifests heterogeneously among persons suffering from it, making its disease course highly challenging to predict. At present, prognosis mostly relies on biomarkers that are unable to predict disease course on an individual level. Machine learning is a promising technique, both in terms of its ability to combine multimodal data and through the capability of making personalized predictions. However, most investigations on machine learning for prognosis in MS were geared towards predicting physical deterioration, while cognitive deterioration, although prevalent and burdensome, remained largely overlooked. This review aims to boost the field of machine learning for cognitive prognosis in MS by means of an introduction to machine learning and its pitfalls, an overview of important elements for study design, and an overview of the current literature on cognitive prognosis in MS using machine learning. Furthermore, the review discusses new trends in the field of machine learning that might be adopted for future studies in the field.

16.
Front Aging Neurosci ; 13: 746982, 2021.
Article in English | MEDLINE | ID: mdl-34690745

ABSTRACT

Magnetic Resonance Imaging (MRI) has become part of the clinical routine for diagnosing neurodegenerative disorders. Since acquisitions are performed at multiple centers using multiple imaging systems, detailed analysis of brain volumetry differences between MRI systems and scan-rescan acquisitions can provide valuable information to correct for different MRI scanner effects in multi-center longitudinal studies. To this end, five healthy controls and five patients belonging to various stages of the AD continuum underwent brain MRI acquisitions on three different MRI systems (Philips Achieva dStream 1.5T, Philips Ingenia 3T, and GE Discovery MR750w 3T) with harmonized scan parameters. Each participant underwent two subsequent MRI scans per imaging system, repeated on three different MRI systems within 2 h. Brain volumes computed by icobrain dm (v5.0) were analyzed using absolute and percentual volume differences, Dice similarity (DSC) and intraclass correlation coefficients, and coefficients of variation (CV). Harmonized scans obtained with different scanners of the same manufacturer had a measurement error closer to the intra-scanner performance. The gap between intra- and inter-scanner comparisons grew when comparing scans from different manufacturers. This was observed at image level (image contrast, similarity, and geometry) and translated into a higher variability of automated brain volumetry. Mixed effects modeling revealed a significant effect of scanner type on some brain volumes, and of the scanner combination on DSC. The study concluded a good intra- and inter-scanner reproducibility, as illustrated by an average intra-scanner (inter-scanner) CV below 2% (5%) and an excellent overlap of brain structure segmentation (mean DSC > 0.88).

17.
Front Neurosci ; 15: 708196, 2021.
Article in English | MEDLINE | ID: mdl-34531715

ABSTRACT

Most data-driven methods are very susceptible to data variability. This problem is particularly apparent when applying Deep Learning (DL) to brain Magnetic Resonance Imaging (MRI), where intensities and contrasts vary due to acquisition protocol, scanner- and center-specific factors. Most publicly available brain MRI datasets originate from the same center and are homogeneous in terms of scanner and used protocol. As such, devising robust methods that generalize to multi-scanner and multi-center data is crucial for transferring these techniques into clinical practice. We propose a novel data augmentation approach based on Gaussian Mixture Models (GMM-DA) with the goal of increasing the variability of a given dataset in terms of intensities and contrasts. The approach allows to augment the training dataset such that the variability in the training set compares to what is seen in real world clinical data, while preserving anatomical information. We compare the performance of a state-of-the-art U-Net model trained for segmenting brain structures with and without the addition of GMM-DA. The models are trained and evaluated on single- and multi-scanner datasets. Additionally, we verify the consistency of test-retest results on same-patient images (same and different scanners). Finally, we investigate how the presence of bias field influences the performance of a model trained with GMM-DA. We found that the addition of the GMM-DA improves the generalization capability of the DL model to other scanners not present in the training data, even when the train set is already multi-scanner. Besides, the consistency between same-patient segmentation predictions is improved, both for same-scanner and different-scanner repetitions. We conclude that GMM-DA could increase the transferability of DL models into clinical scenarios.

18.
Brain Sci ; 11(9)2021 Sep 03.
Article in English | MEDLINE | ID: mdl-34573193

ABSTRACT

In multiple sclerosis (MS), the early detection of disease activity or progression is key to inform treatment changes and could be supported by digital tools. We present a novel CE-marked and FDA-cleared digital care management platform consisting of (1) a patient phone/web application and healthcare professional portal (icompanion) including validated symptom, disability, cognition, and fatigue patient-reported outcomes; and (2) clinical brain magnetic resonance imaging (MRI) quantifications (icobrain ms). We validate both tools using their ability to detect (sub)clinical disease activity (known-groups validity) and real-world data insights. Surveys showed that 95.6% of people with MS (PwMS) were interested in using an MS app, and 98.2% were interested in knowing about MRI changes. The icompanion measures of disability (p < 0.001) and symptoms (p = 0.005) and icobrain ms MRI parameters were sensitive to (sub)clinical differences between MS subtypes. icobrain ms also decreased intra- and inter-rater lesion count variability and increased sensitivity for detecting disease activity/progression from 24% to 76% compared to standard radiological reading. This evidence shows PwMS' interest, the digital care platform's potential to improve the detection of (sub)clinical disease activity and care management, and the feasibility of linking different digital tools into one overarching MS care pathway.

19.
Med Image Anal ; 74: 102211, 2021 12.
Article in English | MEDLINE | ID: mdl-34425318

ABSTRACT

Perfusion imaging is crucial in acute ischemic stroke for quantifying the salvageable penumbra and irreversibly damaged core lesions. As such, it helps clinicians to decide on the optimal reperfusion treatment. In perfusion CT imaging, deconvolution methods are used to obtain clinically interpretable perfusion parameters that allow identifying brain tissue abnormalities. Deconvolution methods require the selection of two reference vascular functions as inputs to the model: the arterial input function (AIF) and the venous output function, with the AIF as the most critical model input. When manually performed, the vascular function selection is time demanding, suffers from poor reproducibility and is subject to the professionals' experience. This leads to potentially unreliable quantification of the penumbra and core lesions and, hence, might harm the treatment decision process. In this work we automatize the perfusion analysis with AIFNet, a fully automatic and end-to-end trainable deep learning approach for estimating the vascular functions. Unlike previous methods using clustering or segmentation techniques to select vascular voxels, AIFNet is directly optimized at the vascular function estimation, which allows to better recognise the time-curve profiles. Validation on the public ISLES18 stroke database shows that AIFNet almost reaches inter-rater performance for the vascular function estimation and, subsequently, for the parameter maps and core lesion quantification obtained through deconvolution. We conclude that AIFNet has potential for clinical transfer and could be incorporated in perfusion deconvolution software.


Subject(s)
Brain Ischemia , Deep Learning , Stroke , Cerebrovascular Circulation , Humans , Magnetic Resonance Imaging , Perfusion , Perfusion Imaging , Reproducibility of Results , Stroke/diagnostic imaging
20.
J Alzheimers Dis ; 83(2): 623-639, 2021.
Article in English | MEDLINE | ID: mdl-34334402

ABSTRACT

BACKGROUND: Magnetic resonance imaging (MRI) has become important in the diagnostic work-up of neurodegenerative diseases. icobrain dm, a CE-labeled and FDA-cleared automated brain volumetry software, has shown potential in differentiating cognitively healthy controls (HC) from Alzheimer's disease (AD) dementia (ADD) patients in selected research cohorts. OBJECTIVE: This study examines the diagnostic value of icobrain dm for AD in routine clinical practice, including a comparison to the widely used FreeSurfer software, and investigates if combined brain volumes contribute to establish an AD diagnosis. METHODS: The study population included HC (n = 90), subjective cognitive decline (SCD, n = 93), mild cognitive impairment (MCI, n = 357), and ADD (n = 280) patients. Through automated volumetric analyses of global, cortical, and subcortical brain structures on clinical brain MRI T1w (n = 820) images from a retrospective, multi-center study (REMEMBER), icobrain dm's (v.4.4.0) ability to differentiate disease stages via ROC analysis was compared to FreeSurfer (v.6.0). Stepwise backward regression models were constructed to investigate if combined brain volumes can differentiate between AD stages. RESULTS: icobrain dm outperformed FreeSurfer in processing time (15-30 min versus 9-32 h), robustness (0 versus 67 failures), and diagnostic performance for whole brain, hippocampal volumes, and lateral ventricles between HC and ADD patients. Stepwise backward regression showed improved diagnostic accuracy for pairwise group differentiations, with highest performance obtained for distinguishing HC from ADD (AUC = 0.914; Specificity 83.0%; Sensitivity 86.3%). CONCLUSION: Automated volumetry has a diagnostic value for ADD diagnosis in routine clinical practice. Our findings indicate that combined brain volumes improve diagnostic accuracy, using real-world imaging data from a clinical setting.


Subject(s)
Alzheimer Disease/diagnostic imaging , Image Processing, Computer-Assisted/statistics & numerical data , Magnetic Resonance Imaging , Software , Aged , Alzheimer Disease/pathology , Brain/pathology , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/pathology , Female , Hippocampus/pathology , Humans , Male , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...