Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Sci Transl Med ; 15(719): eadh0043, 2023 10 25.
Article in English | MEDLINE | ID: mdl-37878673

ABSTRACT

There is enormous variation in the extent to which fetal Zika virus (fZIKV) infection affects the developing brain. Despite the neural consequences of fZIKV infection observed in people and animal models, many open questions about the relationship between infection dynamics and fetal and infant development remain. To further understand how ZIKV affects the developing nervous system and the behavioral consequences of prenatal infection, we adopted a nonhuman primate model of fZIKV infection in which we inoculated pregnant rhesus macaques and their fetuses with ZIKV in the early second trimester of fetal development. We then tracked their health across gestation and characterized infant development across the first month of life. ZIKV-infected pregnant mothers had long periods of viremia and mild changes to their hematological profiles. ZIKV RNA concentrations, an indicator of infection magnitude, were higher in mothers whose fetuses were male, and the magnitude of ZIKV RNA in the mothers' plasma or amniotic fluid predicted infant outcomes. The magnitude of ZIKV RNA was negatively associated with infant growth across the first month of life, affecting males' growth more than females' growth, although for most metrics, both males and females evidenced slower growth rates as compared with control animals whose mothers were not ZIKV inoculated. Compared with control infants, fZIKV infants also spent more time with their mothers during the first month of life, a social behavior difference that may have long-lasting consequences on psychosocial development during childhood.


Subject(s)
Pregnancy Complications, Infectious , Zika Virus Infection , Zika Virus , Pregnancy , Animals , Female , Child , Humans , Infant , Male , Mothers , Child Development , Macaca mulatta , Social Interaction , Amniotic Fluid , RNA
2.
Transfusion ; 63(3): 574-585, 2023 03.
Article in English | MEDLINE | ID: mdl-36621777

ABSTRACT

BACKGROUND: Zika virus (ZIKV) epidemics with infections in pregnant women are associated with severe neurological disease in newborns. Although an arbovirus, ZIKV is also blood transfusion-transmitted (TT). Greater knowledge of the efficiency of ZIKV TT would aid decisions on testing and pathogen reduction technologies (PRT). STUDY DESIGN AND METHODS: Plasma units from ZIKV RNA-reactive blood donors were used to study infectivity in vitro, in mice, and in macaques. Furthermore, plasma units were subjected to PRT using amotosalen/ultraviolet light A (A/UVA) before transfusion. RESULTS: In vitro infectivity of ZIKV RNA-reactive plasma varied between 100 and 1000 international units (IU) of ZIKV RNA. Immunodeficient mice were more sensitive with as low as 32 IU sufficient to infect 50% of mice. 50-5500 IU of RNA led to TT in macaques using dose escalation of three different RNA-positive, seronegative plasma units. In contrast, RNA-reactive units collected postseroconversion were not infectious in macaques, even at a dose of 9 million IU RNA. After A/UVA PRT, transfusion of plasma containing up to 18 million IU was no longer infectious in vitro and did not result in ZIKV TT in macaques. CONCLUSION: Significant risks of ZIKV TT are likely confined to a relatively short viremic window before seroconversion, and that sensitive nucleic acid amplification testing likely identifies the majority of infectious plasma. PRT was demonstrated to be effective at preventing ZIKV TT. Considering that there is no approved ZIKV vaccine, these data are relevant to mitigate the risk of TT during the future ZIKV outbreaks.


Subject(s)
Zika Virus Infection , Zika Virus , Animals , Female , Humans , Mice , Pregnancy , Blood Component Transfusion , Blood Transfusion , Plasma , RNA, Viral , Zika Virus/genetics , Zika Virus Infection/epidemiology
4.
PLoS Negl Trop Dis ; 16(7): e0010566, 2022 07.
Article in English | MEDLINE | ID: mdl-35788751

ABSTRACT

Zika virus (ZIKV) is unique among mosquito-borne flaviviruses in that it is also vertically and sexually transmitted by humans. The male reproductive tract is thought to be a ZIKV reservoir; however, the reported magnitude and duration of viral persistence in male genital tissues vary widely in humans and non-human primate models. ZIKV tissue and cellular tropism and potential effects on male fertility also remain unclear. The objective of this study was to resolve these questions by analyzing archived genital tissues from 51 ZIKV-inoculated male macaques and correlating data on plasma viral kinetics, tissue tropism, and ZIKV-induced pathological changes in the reproductive tract. We hypothesized that ZIKV would persist in the male macaque genital tract for longer than there was detectable viremia, where it would localize to germ and epithelial cells and associate with lesions. We detected ZIKV RNA and infectious virus in testis, epididymis, seminal vesicle, and prostate gland. In contrast to prepubertal males, sexually mature macaques were significantly more likely to harbor persistent ZIKV RNA or infectious virus somewhere in the genital tract, with detection as late as 60 days post-inoculation. ZIKV RNA localized primarily to testicular stem cells/sperm precursors and epithelial cells, including Sertoli cells, epididymal duct epithelium, and glandular epithelia of the seminal vesicle and prostate gland. ZIKV infection was associated with microscopic evidence of inflammation in the epididymis and prostate gland of sexually mature males, pathologies that were absent in uninfected controls, which could have significant effects on male fertility. The findings from this study increase our understanding of persistent ZIKV infection which can inform risk of sexual transmission during assisted reproductive therapies as well as potential impacts on male fertility.


Subject(s)
Zika Virus Infection , Zika Virus , Animals , Genitalia, Male , Humans , Macaca , Male , RNA , Semen , Zika Virus/genetics
5.
NPJ Vaccines ; 7(1): 9, 2022 Jan 27.
Article in English | MEDLINE | ID: mdl-35087081

ABSTRACT

Zika virus (ZIKV) is a mosquito-borne arbovirus that can cause severe congenital birth defects. The utmost goal of ZIKV vaccines is to prevent both maternal-fetal infection and congenital Zika syndrome. A Zika purified inactivated virus (ZPIV) was previously shown to be protective in non-pregnant mice and rhesus macaques. In this study, we further examined the efficacy of ZPIV against ZIKV infection during pregnancy in immunocompetent C57BL6 mice and common marmoset monkeys (Callithrix jacchus). We showed that, in C57BL/6 mice, ZPIV significantly reduced ZIKV-induced fetal malformations. Protection of fetuses was positively correlated with virus-neutralizing antibody levels. In marmosets, the vaccine prevented vertical transmission of ZIKV and elicited neutralizing antibodies that remained above a previously determined threshold of protection for up to 18 months. These proof-of-concept studies demonstrate ZPIV's protective efficacy is both potent and durable and has the potential to prevent the harmful consequence of ZIKV infection during pregnancy.

6.
JCI Insight ; 5(24)2020 12 17.
Article in English | MEDLINE | ID: mdl-33180748

ABSTRACT

Congenital Zika syndrome (CZS) is associated with microcephaly and various neurological, musculoskeletal, and ocular abnormalities, but the long-term pathogenesis and postnatal progression of ocular defects in infants are not well characterized. Rhesus macaques are superior to rodents as models of CZS because they are natural hosts of the virus and share similar immune and ocular characteristics, including blood-retinal barrier characteristics and the unique presence of a macula. Using a previously described model of CZS, we infected pregnant rhesus macaques with Zika virus (ZIKV) during the late first trimester and characterized postnatal ocular development and evolution of ocular defects in 2 infant macaques over 2 years. We found that one of them exhibited colobomatous chorioretinal atrophic lesions with macular and vascular dragging as well as retinal thinning caused by loss of retinal ganglion neuron and photoreceptor layers. Despite these congenital ocular malformations, axial elongation and retinal development in these infants progressed at normal rates compared with healthy animals. The ZIKV-exposed infants displayed a rapid loss of ZIKV-specific antibodies, suggesting the absence of viral replication after birth, and did not show any behavioral or neurological defects postnatally. Our findings suggest that ZIKV infection during early pregnancy can impact fetal retinal development and cause congenital ocular anomalies but does not appear to affect postnatal ocular growth.


Subject(s)
Prenatal Exposure Delayed Effects/virology , Retina/embryology , Zika Virus Infection/metabolism , Animals , Blood-Retinal Barrier/virology , Female , Macaca/virology , Macaca mulatta , Pregnancy , Pregnancy Complications, Infectious/virology , Retina/virology , Retinal Degeneration/virology , Retinal Ganglion Cells/physiology , Retinal Ganglion Cells/virology , Virus Replication , Zika Virus/immunology , Zika Virus/pathogenicity , Zika Virus Infection/complications , Zika Virus Infection/physiopathology
7.
J Virol ; 94(24)2020 11 23.
Article in English | MEDLINE | ID: mdl-32999034

ABSTRACT

Although fetal death is now understood to be a severe outcome of congenital Zika syndrome, the role of viral genetics is still unclear. We sequenced Zika virus (ZIKV) from a rhesus macaque fetus that died after inoculation and identified a single intrahost substitution, M1404I, in the ZIKV polyprotein, located in nonstructural protein 2B (NS2B). Targeted sequencing flanking position 1404 in 9 additional macaque mothers and their fetuses identified M1404I at a subconsensus frequency in the majority (5 of 9, 56%) of animals and some of their fetuses. Despite its repeated presence in pregnant macaques, M1404I has occurred rarely in humans since 2015. Since the primary ZIKV transmission cycle is human-mosquito-human, mutations in one host must be retained in the alternate host to be perpetuated. We hypothesized that ZIKV I1404 increases viral fitness in nonpregnant macaques and pregnant mice but is less efficiently transmitted by vectors, explaining its low frequency in humans during outbreaks. By examining competitive fitness relative to that of ZIKV M1404, we observed that ZIKV I1404 produced lower viremias in nonpregnant macaques and was a weaker competitor in tissues. In pregnant wild-type mice, ZIKV I1404 increased the magnitude and rate of placental infection and conferred fetal infection, in contrast to ZIKV M1404, which was not detected in fetuses. Although infection and dissemination rates were not different, Aedes aegypti mosquitoes transmitted ZIKV I1404 more poorly than ZIKV M1404. Our data highlight the complexity of arbovirus mutation-fitness dynamics and suggest that intrahost ZIKV mutations capable of augmenting fitness in pregnant vertebrates may not necessarily spread efficiently via mosquitoes during epidemics.IMPORTANCE Although Zika virus infection of pregnant women can result in congenital Zika syndrome, the factors that cause the syndrome in some but not all infected mothers are still unclear. We identified a mutation that was present in some ZIKV genomes in experimentally inoculated pregnant rhesus macaques and their fetuses. Although we did not find an association between the presence of the mutation and fetal death, we performed additional studies with ZIKV with the mutation in nonpregnant macaques, pregnant mice, and mosquitoes. We observed that the mutation increased the ability of the virus to infect mouse fetuses but decreased its capacity to produce high levels of virus in the blood of nonpregnant macaques and to be transmitted by mosquitoes. This study shows that mutations in mosquito-borne viruses like ZIKV that increase fitness in pregnant vertebrates may not spread in outbreaks when they compromise transmission via mosquitoes and fitness in nonpregnant hosts.


Subject(s)
Mutation , Pregnancy Complications, Infectious/virology , Zika Virus Infection/virology , Zika Virus/genetics , Aedes/virology , Animals , Chlorocebus aethiops , Disease Outbreaks , Female , Humans , Macaca mulatta , Male , Mice , Mice, Inbred C57BL , Mosquito Vectors/virology , Pregnancy , Vero Cells , Viral Nonstructural Proteins , Viremia , Zika Virus/growth & development
8.
Proc Natl Acad Sci U S A ; 117(14): 7981-7989, 2020 04 07.
Article in English | MEDLINE | ID: mdl-32209664

ABSTRACT

Human infection by Zika virus (ZIKV) during pregnancy can lead to vertical transmission and fetal aberrations, including microcephaly. Prophylactic administration of antibodies can diminish or prevent ZIKV infection in animal models, but whether passive immunization can protect nonhuman primates and their fetuses during pregnancy has not been determined. Z004 and Z021 are neutralizing monoclonal antibodies to domain III of the envelope (EDIII) of ZIKV. Together the two antibodies protect nonpregnant macaques against infection even after Fc modifications to prevent antibody-dependent enhancement (ADE) in vitro and extend their half-lives. Here we report on prophylactic coadministration of the Fc-modified antibodies to pregnant rhesus macaques challenged three times with ZIKV during first and second trimester. The two antibodies did not entirely eliminate maternal viremia but limited vertical transmission, protecting the fetus from neurologic damage. Thus, maternal passive immunization with two antibodies to EDIII can shield primate fetuses from the harmful effects of ZIKV.


Subject(s)
Antibodies, Monoclonal/administration & dosage , Infectious Disease Transmission, Vertical/prevention & control , Pregnancy Complications, Infectious/prevention & control , Zika Virus Infection/prevention & control , Zika Virus/immunology , Animals , Animals, Newborn , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/administration & dosage , Antibodies, Neutralizing/genetics , Antibodies, Neutralizing/immunology , Disease Models, Animal , Drug Therapy, Combination , Female , Fetus/immunology , Fetus/virology , HEK293 Cells , Humans , Immunoglobulin Fc Fragments/administration & dosage , Immunoglobulin Fc Fragments/genetics , Immunoglobulin Fc Fragments/immunology , Immunoglobulin G/administration & dosage , Immunoglobulin G/genetics , Immunoglobulin G/immunology , Pregnancy , Pregnancy Complications, Infectious/immunology , Pregnancy Complications, Infectious/virology , Protein Engineering , RNA, Viral/isolation & purification , Recombinant Proteins/administration & dosage , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Zika Virus/genetics , Zika Virus/pathogenicity , Zika Virus Infection/immunology , Zika Virus Infection/transmission , Zika Virus Infection/virology
9.
Sci Transl Med ; 11(523)2019 12 18.
Article in English | MEDLINE | ID: mdl-31852797

ABSTRACT

Zika virus (ZIKV) infection of pregnant women is associated with congenital Zika syndrome (CZS) and no vaccine is available, although several are being tested in clinical trials. We tested the efficacy of ZIKV DNA vaccine VRC5283 in a rhesus macaque model of congenital ZIKV infection. Most animal vaccine experiments have a set pathogen exposure several weeks or months after vaccination. In the real world, people encounter pathogens years or decades after vaccination, or may be repeatedly exposed if the virus is endemic. To more accurately mimic how this vaccine would be used, we immunized macaques before conception and then exposed them repeatedly to ZIKV during early and mid-gestation. In comparison to unimmunized animals, vaccinated animals had a significant reduction in peak magnitude and duration of maternal viremia, early fetal loss, fetal infection, and placental and fetal brain pathology. Vaccine-induced neutralizing antibody titers on the day of first ZIKV exposure were negatively associated with the magnitude of maternal viremia, and the absence of prolonged viremia was associated with better fetal outcomes. These data support further clinical development of ZIKV vaccine strategies to protect against negative fetal outcomes.


Subject(s)
Vaccination/methods , Vaccines, DNA/therapeutic use , Zika Virus Infection/prevention & control , Animals , Antibodies, Neutralizing/metabolism , Female , Macaca mulatta , Pregnancy , Pregnancy Complications, Infectious/immunology , Pregnancy Complications, Infectious/prevention & control , Viremia/immunology , Viremia/prevention & control , Zika Virus/immunology , Zika Virus/pathogenicity
10.
Sci Rep ; 9(1): 12802, 2019 09 05.
Article in English | MEDLINE | ID: mdl-31488856

ABSTRACT

Recent data in a nonhuman primate model showed that infants postnatally infected with Zika virus (ZIKV) were acutely susceptible to high viremia and neurological damage, suggesting the window of vulnerability extends beyond gestation. In this pilot study, we addressed the susceptibility of two infant rhesus macaques born healthy to dams infected with Zika virus during pregnancy. Passively acquired neutralizing antibody titers dropped below detection limits between 2 and 3 months of age, while binding antibodies remained detectable until viral infection at 5 months. Acute serum viremia was comparatively lower than adults infected with the same Brazilian isolate of ZIKV (n = 11 pregnant females, 4 males, and 4 non-pregnant females). Virus was never detected in cerebrospinal fluid nor in neural tissues at necropsy two weeks after infection. However, viral RNA was detected in lymph nodes, confirming some tissue dissemination. Though protection was not absolute and our study lacks an important comparison with postnatally infected infants born to naïve dams, our data suggest infants born healthy to infected mothers may harbor a modest but important level of protection from postnatally acquired ZIKV for several months after birth, an encouraging result given the potentially severe infection outcomes of this population.


Subject(s)
Infectious Disease Transmission, Vertical , Macaca mulatta , Pregnancy Complications, Infectious/veterinary , Zika Virus Infection/transmission , Animals , Animals, Newborn/immunology , Animals, Newborn/virology , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Female , Male , Pilot Projects , Pregnancy , Pregnancy Complications, Infectious/virology , Zika Virus , Zika Virus Infection/immunology , Zika Virus Infection/virology
11.
J Virol ; 93(3)2019 02 01.
Article in English | MEDLINE | ID: mdl-30429348

ABSTRACT

Chikungunya virus (CHIKV) is a reemerging global health threat that produces debilitating arthritis in people. Like other RNA viruses with high mutation rates, CHIKV produces populations of genetically diverse genomes within a host. While several known CHIKV mutations influence disease severity in vertebrates and transmission by mosquitoes, the role of intrahost diversity in chikungunya arthritic disease has not been studied. In this study, high- and low-fidelity CHIKV variants, previously characterized by altered in vitro population mutation frequencies, were used to evaluate how intrahost diversity influences clinical disease, CHIKV replication, and antibody neutralization in immunocompetent adult mice inoculated in the rear footpads. Both high- and low-fidelity mutations were hypothesized to attenuate CHIKV arthritic disease, replication, and neutralizing antibody levels compared to wild-type (WT) CHIKV. Unexpectedly, high-fidelity mutants elicited more severe arthritic disease than the WT despite comparable CHIKV replication, whereas a low-fidelity mutant produced attenuated disease and replication. Serum antibody developed against both high- and low-fidelity CHIKV exhibited reduced neutralization of WT CHIKV. Using next-generation sequencing (NGS), the high-fidelity mutations were demonstrated to be genetically stable but produced more genetically diverse populations than WT CHIKV in mice. This enhanced diversification was subsequently reproduced after serial in vitro passage. The NGS results contrast with previously reported population diversities for fidelity variants, which focused mainly on part of the E1 gene, and highlight the need for direct measurements of mutation rates to clarify CHIKV fidelity phenotypes.IMPORTANCE CHIKV is a reemerging global health threat that elicits debilitating arthritis in humans. There are currently no commercially available CHIKV vaccines. Like other RNA viruses, CHIKV has a high mutation rate and is capable of rapid intrahost diversification during an infection. In other RNA viruses, virus population diversity associates with disease progression; however, potential impacts of intrahost viral diversity on CHIKV arthritic disease have not been studied. Using previously characterized CHIKV fidelity variants, we addressed whether CHIKV population diversity influences the severity of arthritis and host antibody response in an arthritic mouse model. Our findings show that CHIKV populations with greater genetic diversity can cause more severe disease and stimulate antibody responses with reduced neutralization of low-diversity virus populations in vitro The discordant high-fidelity phenotypes in this study highlight the complexity of inferring replication fidelity indirectly from population diversity.


Subject(s)
Chikungunya Fever/immunology , Chikungunya virus/genetics , Chikungunya virus/immunology , Mutation , Population Dynamics , Virulence/immunology , Virus Replication , Animals , Antibodies, Neutralizing , Cells, Cultured , Chikungunya Fever/genetics , Chikungunya Fever/virology , Cricetinae , Disease Models, Animal , Humans , Mice , Mice, Inbred C57BL
12.
Article in English | MEDLINE | ID: mdl-30455235

ABSTRACT

Fluconazole-induced alopecia is a significant problem for patients receiving long-term therapy. We evaluated the hair cycle changes of fluconazole in a rat model and investigated potential molecular mechanisms. Plasma and tissue levels of retinoic acid were not found to be causal. Human patients with alopecia attributed to fluconazole also underwent detailed assessment and in both our murine model and human cohort fluconazole induced telogen effluvium. Future work further examining the mechanism of fluconazole-induced alopecia should be undertaken.


Subject(s)
Alopecia Areata/chemically induced , Antifungal Agents/adverse effects , Fluconazole/adverse effects , Alopecia Areata/blood , Alopecia Areata/metabolism , Animals , Disease Models, Animal , Humans , Male , Mice , Rats , Rats, Wistar , Tretinoin/blood , Tretinoin/metabolism
13.
Cell Rep ; 25(6): 1385-1394.e7, 2018 11 06.
Article in English | MEDLINE | ID: mdl-30403995

ABSTRACT

Zika virus (ZIKV) causes severe neurologic complications and fetal aberrations. Vaccine development is hindered by potential safety concerns due to antibody cross-reactivity with dengue virus and the possibility of disease enhancement. In contrast, passive administration of anti-ZIKV antibodies engineered to prevent enhancement may be safe and effective. Here, we report on human monoclonal antibody Z021, a potent neutralizer that recognizes an epitope on the lateral ridge of the envelope domain III (EDIII) of ZIKV and is protective against ZIKV in mice. When administered to macaques undergoing a high-dose ZIKV challenge, a single anti-EDIII antibody selected for resistant variants. Co-administration of two antibodies, Z004 and Z021, which target distinct sites on EDIII, was associated with a delay and a 3- to 4-log decrease in peak viremia. Moreover, the combination of these antibodies engineered to avoid enhancement prevented viral escape due to mutation in macaques, a natural host for ZIKV.


Subject(s)
Antibodies, Monoclonal/immunology , Mutation/genetics , Zika Virus/immunology , Amino Acid Sequence , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/chemistry , Antibodies, Neutralizing/immunology , Dengue Virus/immunology , Epitopes/immunology , HEK293 Cells , Humans , Macaca , Mice, Knockout , Protein Domains
14.
Nat Commun ; 9(1): 2414, 2018 06 20.
Article in English | MEDLINE | ID: mdl-29925843

ABSTRACT

Zika virus (ZIKV) infection of pregnant women can cause fetal microcephaly and other neurologic defects. We describe the development of a non-human primate model to better understand fetal pathogenesis. To reliably induce fetal infection at defined times, four pregnant rhesus macaques are inoculated intravenously and intraamniotically with ZIKV at gestational day (GD) 41, 50, 64, or 90, corresponding to first and second trimester of gestation. The GD41-inoculated animal, experiencing fetal death 7 days later, has high virus levels in fetal and placental tissues, implicating ZIKV as cause of death. The other three fetuses are carried to near term and euthanized; while none display gross microcephaly, all show ZIKV RNA in many tissues, especially in the brain, which exhibits calcifications and reduced neural precursor cells. Given that this model consistently recapitulates neurologic defects of human congenital Zika syndrome, it is highly relevant to unravel determinants of fetal neuropathogenesis and to explore interventions.


Subject(s)
Disease Models, Animal , Fetal Diseases/pathology , Macaca mulatta , Nervous System Diseases/pathology , Pregnancy Complications, Infectious/pathology , Zika Virus Infection/pathology , Zika Virus/pathogenicity , Animals , Brain/pathology , Brain/virology , Female , Fetal Diseases/virology , Fetus/pathology , Fetus/virology , Humans , Male , Nervous System Diseases/virology , Pregnancy , Pregnancy Complications, Infectious/virology , RNA, Viral/isolation & purification , Zika Virus/genetics , Zika Virus/isolation & purification , Zika Virus Infection/virology
15.
J Med Entomol ; 55(5): 1307-1318, 2018 08 29.
Article in English | MEDLINE | ID: mdl-29718284

ABSTRACT

Scented sugar baits deployed in California deserts detected early West Nile virus (WNV) transmission by mosquitoes, representing a potential improvement to conventional arbovirus surveillance that relies heavily on infection rates in mosquito pools. In this study, we expanded deployment of scented sugar baits into suburban Sacramento and Yolo (2015, 2016) and Riverside Counties (2016), California. The goal of the study was to determine whether scented sugar baits detect WNV and St. Louis encephalitis virus (SLEV) concurrent with mosquito infections in trapped pools in areas of high human density. Between 8 and 10% of sugar baits were WNV RNA positive in both study years across the three counties. In Riverside County, where SLEV re-emerged in 2015, 1% of sugar baits were SLEV positive in 2016. Rates of sugar bait positives were at least 100 times higher than infection rates in trapped mosquitoes in the same districts. The prevalence of sugar bait positives varied temporally and did not coincide with infections in mosquitoes collected at the same sites each week. WNV RNA positive sugar baits were detected up to 2 wk before and after concurrent surveillance detected infection in mosquito pools at the same sites. Sugar baits also detected WNV in Riverside County at locations where no WNV activity was detected in mosquito pools. Sugar baits generated between 0.8 and 1.2 WNV positives per $1,000 and can be more economical than carbon dioxide baited traps that produce 0.8 positives per $1,000. These results indicate that the sugar bait approach enhances conventional arbovirus surveillance in mosquitoes in suburban California.


Subject(s)
Culicidae/virology , Encephalitis Virus, St. Louis/isolation & purification , Mosquito Control/economics , Mosquito Vectors/virology , Sugars , West Nile virus/isolation & purification , Animals , California , Female , Odorants/analysis
16.
Catheter Cardiovasc Interv ; 91(7): 1308-1317, 2018 06.
Article in English | MEDLINE | ID: mdl-29411531

ABSTRACT

OBJECTIVES: Our aims were to examine the prevalence and genetic predictors of aspirin and clopidogrel high on-treatment platelet reactivity (HoTPR), and associated adverse cardiovascular outcomes in patients with peripheral arterial disease (PAD). BACKGROUND: The association of aspirin and clopidogrel HoTPR with outcomes in PAD remains unclear. METHODS: This is a prospective cohort study of patients with angiographically documented PAD involving carotid and lower extremity arteries. Aspirin and clopidogrel HoTPR (using the VerifyNow Assay) and associated genetic predictors were compared to clinical outcomes. The primary end-point was a composite of major adverse cardiovascular events: all-cause mortality, myocardial infarction, stroke, target vessel revascularization (TVR) and limb-loss in patients who underwent extremity intervention. RESULTS: The study was stopped prematurely due to slow patient enrolment. Of 195 patients enrolled, the primary analysis was performed in 154 patients taking both drugs. Aspirin HoTPR was present in 31 (20%) and clopidogrel HoTPR in 76 (49%) patients. There was a trend toward more primary composite outcome events with PRU ≥ 235 (52% freedom-from-event rate vs. 70% for PRU < 235; P = 0.09). TVR was higher in those with PRU ≥ 235 (20 vs. 6%, unadjusted P = 0.02). There was no association between aspirin HoTPR and combined outcomes. Single nucleotide polymorphisms in serum paraoxonase/arylesterase 1 (PON1) gene was associated with aspirin HoTPR (P = 0.005) while SNP in phospholipase A2, group III (PLA2G3) gene was associated with clopidogrel HoTPR (P = 0.002). CONCLUSION: Clopidogrel HoTPR was significantly associated with TVR, while aspirin HoTPR was not associated with adverse clinical outcomes in patients with PAD.


Subject(s)
Aspirin/therapeutic use , Clopidogrel/therapeutic use , Drug Resistance/genetics , Peripheral Arterial Disease/drug therapy , Platelet Aggregation Inhibitors/therapeutic use , Adult , Aged , Aged, 80 and over , Amputation, Surgical , Angiography , Aryldialkylphosphatase/genetics , Aspirin/adverse effects , California/epidemiology , Clopidogrel/adverse effects , Drug Therapy, Combination , Female , Group III Phospholipases A2/genetics , Humans , Limb Salvage , Male , Middle Aged , Myocardial Infarction/epidemiology , Peripheral Arterial Disease/diagnosis , Peripheral Arterial Disease/epidemiology , Peripheral Arterial Disease/genetics , Platelet Aggregation Inhibitors/adverse effects , Platelet Function Tests , Polymorphism, Single Nucleotide , Prospective Studies , Risk Factors , Stroke/epidemiology , Time Factors , Treatment Outcome
17.
Med Mycol ; 55(4): 396-401, 2017 Jun 01.
Article in English | MEDLINE | ID: mdl-28339594

ABSTRACT

Elevated fluconazole minimum inhibitory concentrations (MICs) are more frequently observed in Cryptococcus gattii compared to C. neoformans isolates; however, the development of in vivo resistance and the molecular mechanisms responsible have not been reported for this species. We report a case of Cryptococcus gattii (molecular type VGIII) that developed reduced susceptibility to fluconazole during therapy and delineate the molecular mechanisms responsible. Multilocus sequence typing and quantitative DNA analysis of the pre- and post-treatment isolates was performed using well-characterized methods. Pre- and post-treatment clinical isolates were confirmed isogenic, and no differences in ERG11 or PDR11 sequences were found. qPCR found an overexpression of ERG11 and the efflux pump PDR11 in the resistant isolate compared to the isolate collected prior to initiation of antifungal therapy. Reversion to wild-type susceptibility was observed when maintained in antifungal-free media confirming the in vivo development of heteroresistance. The in vivo development of heteroresistance to fluconazole in our patient with C. gattii is secondary to overexpression of the efflux pump PDR11 and the drug target ERG11. Additional work in other clinical isolates with elevated fluconazole MICs is warranted to evaluate the frequency of heteroresistance versus point mutations as a cause of resistance.


Subject(s)
Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Cryptococcosis/veterinary , Cryptococcus gattii/drug effects , Drug Resistance, Fungal , Fluconazole/pharmacology , Fluconazole/therapeutic use , Animals , Cats , Cryptococcosis/drug therapy , Cryptococcosis/microbiology , Cryptococcus gattii/isolation & purification , Female , Fungal Proteins/genetics , Gene Expression Profiling , Genotype , Microbial Sensitivity Tests , Molecular Typing , Mycological Typing Techniques , Real-Time Polymerase Chain Reaction
18.
PLoS One ; 12(1): e0171148, 2017.
Article in English | MEDLINE | ID: mdl-28141843

ABSTRACT

Animal models of Zika virus (ZIKV) are needed to better understand tropism and pathogenesis and to test candidate vaccines and therapies to curtail the pandemic. Humans and rhesus macaques possess similar fetal development and placental biology that is not shared between humans and rodents. We inoculated 2 non-pregnant rhesus macaques with a 2015 Brazilian ZIKV strain. Consistent with most human infections, the animals experienced no clinical disease but developed short-lived plasma viremias that cleared as neutralizing antibody developed. In 1 animal, viral RNA (vRNA) could be detected longer in whole blood than in plasma. Despite no major histopathologic changes, many adult tissues contained vRNA 14 days post-infection with highest levels in hemolymphatic tissues. These observations warrant further studies to investigate ZIKV persistence and its potential clinical implications for transmission via blood products or tissue and organ transplants.


Subject(s)
Zika Virus Infection/blood , Zika Virus Infection/virology , Zika Virus/physiology , Acute Disease , Aging/pathology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Female , Macaca mulatta , Organ Specificity , RNA, Viral/blood , RNA, Viral/urine , Saliva/virology , Tissue Distribution , Viremia/blood , Zika Virus/immunology
19.
Antimicrob Agents Chemother ; 60(3): 1202-7, 2015 Dec 07.
Article in English | MEDLINE | ID: mdl-26643330

ABSTRACT

Cryptococcus gattii isolates from the Pacific Northwest have exhibited higher fluconazole MICs than isolates from other sites. The mechanism of fluconazole resistance in C. gattii is unknown. We sought to determine the role of the efflux pumps Mdr1 and Pdr11 in fluconazole susceptibility. Using biolistic transformation of the parent isolate, we created a strain lacking Mdr1 (mdr1Δ) and another strain lacking Pdr11 (pdr11Δ). Phenotypic virulence factors were assessed by standard methods (capsule size, melanin production, growth at 30 and 37 °C). Survival was assessed in an intranasal murine model of cryptococcosis. Antifungal MICs were determined by the M27-A3 methodology. No differences in key virulence phenotypic components were identified. Fluconazole susceptibility was unchanged in the Mdr1 knockout or reconstituted isolates. However, fluconazole MICs decreased from 32 µg/ml for the wild-type isolate to <0.03 µg/ml for the pdr11Δ strain and reverted to 32 µg/ml for the reconstituted strain. In murine models, no difference in virulence was observed between wild-type, knockout, or reconstituted isolates. We conclude that Pdr11 plays an essential role in fluconazole susceptibility in C. gattii. Genomic and expression differences between resistant and susceptible C. gattii clinical isolates should be assessed further in order to identify other potential mechanisms of resistance.


Subject(s)
ATP-Binding Cassette Transporters/genetics , Cryptococcus gattii/drug effects , Drug Resistance, Fungal/genetics , Fluconazole/pharmacology , Fungal Proteins/genetics , ATP-Binding Cassette Transporters/metabolism , Aged , Animals , Antifungal Agents/pharmacology , Cryptococcosis/drug therapy , Cryptococcosis/microbiology , Cryptococcus gattii/genetics , Cryptococcus gattii/pathogenicity , Drug Resistance, Fungal/drug effects , Female , Fungal Proteins/metabolism , Humans , Male , Mice, Inbred Strains , Microbial Sensitivity Tests
20.
Circ Arrhythm Electrophysiol ; 8(4): 942-50, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25995211

ABSTRACT

BACKGROUND: Loss of transient outward K(+) current (Ito) is well documented in cardiac hypertrophy and failure both in animal models and in humans. Electrical remodeling contributes to prolonged action potential duration and increased incidence of arrhythmias. Furthermore, there is a growing body of evidence linking microRNA (miR) dysregulation to the progression of both conditions. In this study, we examined the mechanistic basis underlying miR dysregulation in electrical remodeling and revealed a novel interaction with the adrenergic signaling pathway. METHODS AND RESULTS: We first used a tissue-specific knockout model of Dicer1 in cardiomyocytes to reveal the overall regulatory effect of miRs on the ionic currents and action potentials. We then validated the inducible cAMP early repressor as a target of miR-1 and took advantage of a clinically relevant model of post myocardial infarction and miR delivery to probe the mechanistic basis of miR dysregulation in electrical remodeling. These experiments revealed the role of inducible cAMP early repressor as a repressor of miR-1 and Ito, leading to prolonged action potential duration post myocardial infarction. In addition, delivery of miR-1 and miR-133a suppressed inducible cAMP early repressor expression and prevented both electrical remodeling and hypertrophy. CONCLUSIONS: Taken together, our results illuminate the mechanistic links between miRs, adrenergic signaling, and electrical remodeling. They also serve as a proof-of-concept for the therapeutic potential of miR delivery post myocardial infarction.


Subject(s)
Atrial Remodeling/genetics , Cardiomegaly/genetics , Cyclic AMP/genetics , DEAD-box RNA Helicases/genetics , Gene Expression Regulation , MicroRNAs/genetics , Myocardium/metabolism , Ribonuclease III/genetics , Animals , Animals, Newborn , Blotting, Western , Cardiomegaly/metabolism , Cardiomegaly/pathology , Cells, Cultured , Cyclic AMP/metabolism , DEAD-box RNA Helicases/biosynthesis , Disease Models, Animal , Flow Cytometry , Mice , Mice, Inbred C57BL , MicroRNAs/metabolism , Myocardium/pathology , Myocytes, Cardiac/metabolism , Patch-Clamp Techniques , Real-Time Polymerase Chain Reaction , Ribonuclease III/biosynthesis , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...