Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Mol Cancer Res ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38842581

ABSTRACT

Osteosarcoma (OS) is the most common primary malignant bone tumor affecting the pediatric population with high potential to metastasize. However, insights into the molecular features enabling its metastatic potential are limited. We mapped the active chromatin landscapes of OS tumors by integrating histone H3 lysine acetylated chromatin state (n=13), chromatin accessibility profiles (n=11) and gene expression (n=13) to understand the differences in their active chromatin profiles and its impact on molecular mechanisms driving the malignant phenotypes. Primary OS tumors from patients with metastasis (primary met) have a distinct active chromatin landscape compared to those without metastasis (localized). This difference shapes the transcriptional profile of OS. We identified novel candidate genes, including PPP1R1B, PREX1 and IGF2BP1, which exhibit increased chromatin activity in primary met. Loss of PREX1 in primary met OS cells significantly diminishes OS proliferation, invasion, migration, and colony formation capacity. Differential chromatin activity in primary met is associated with genes regulating cytoskeleton organization, cellular adhesion, and extracellular matrix suggestive of their role in facilitating OS metastasis. Chromatin profiling of tumors from metastatic lung lesions shows increased chromatin activity in genes involved in cell migration and Wnt pathway. This data demonstrates that metastatic potential is intrinsically present in primary metastatic tumors, with cellular chromatin profiles further adapting for successful dissemination, migration, and colonization at the distal site. Implications: Our study demonstrates that metastatic potential is intrinsic to primary metastatic osteosarcoma tumors, with chromatin profiles further adapting for successful dissemination, migration and colonization at distal metastatic site.

2.
Adv Sci (Weinh) ; : e2402468, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38738803

ABSTRACT

Minerals play a vital role, working synergistically with enzymes and other cofactors to regulate physiological functions including tissue healing and regeneration. The bioactive characteristics of mineral-based nanomaterials can be harnessed to facilitate in situ tissue regeneration by attracting endogenous progenitor and stem cells and subsequently directing tissue-specific differentiation. Here, cellular responses of human mesenchymal stem/stromal cells to traditional bioactive mineral-based nanomaterials, such as hydroxyapatite, whitlockite, silicon-dioxide, and the emerging synthetic 2D nanosilicates are investigated. Transcriptome sequencing is utilized to probe the cellular response and determine the significantly affected signaling pathways due to exposure to these inorganic nanomaterials. Transcriptome profiles of stem cells treated with nanosilicates reveals a stabilized skeletal progenitor state suggestive of endochondral differentiation. This observation is bolstered by enhanced deposition of matrix mineralization in nanosilicate treated stem cells compared to control or other treatments. Specifically, use of 2D nanosilicates directs osteogenic differentiation of stem cells via activation of bone morphogenetic proteins and hypoxia-inducible factor 1-alpha signaling pathway. This study provides  insight into impact of nanomaterials on cellular gene expression profile and predicts downstream effects of nanomaterial induction of endochondral differentiation.

3.
Acta Biomater ; 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38552761

ABSTRACT

Inorganic biomaterials have been shown to direct cellular responses, including cell-cell and cell-matrix interactions. Notably, ions released from these inorganic biomaterials play a vital role in defining cell identity, and promoting tissue-specific functions. However, the effect of inorganic ions on cellular functions have yet to be investigated at the transcriptomic level, representing a critical knowledge gap in the development of next-generation of bioactive materials. To address this gap, we investigated the impact of various inorganic ions including silver, copper, titanium, and platinum on human mesenchymal stem cells (hMSCs). Our finding showed that silver and copper induce osteogenic and chondrogenic differentiation respectively, through enrichment of lineage-specific gene expression program. In particular, silver effectively induced Wingless/Integrated (Wnt) and mitogen-activated protein kinase (MAPK) signaling, which are vital for osteogenesis. On the other hand, copper specifically stimulated Transforming growth factor beta (TGFß) signaling, while suppressing Janus kinase/signal transducers and activators of transcription (JAK-STAT) signaling, thereby promoting chondrogenesis. In contrast, platinum, tantalum, and titanium ions didn't stimulate regenerative responses. Together, our findings highlight the potential of inorganic biomaterials in tissue regeneration strategies, which currently rely largely on growth factors and small molecule therapeutics. STATEMENT OF SIGNIFICANCE: This research emphasizes the critical role of bioactive inorganic ions in controlling lineage-specific gene expression patterns in mesenchymal stem cells, effectively modulating the transcriptome landscape and directing cell fate. The study lays the foundation for a systematic database of biomaterial candidates and their effects on cellular functions, which will ultimately streamline the translation of new biomaterials into clinical applications.

4.
Biomaterials ; 306: 122473, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38335719

ABSTRACT

Engineered matrices provide a valuable platform to understand the impact of biophysical factors on cellular behavior such as migration, proliferation, differentiation, and tissue remodeling, through mechanotransduction. While recent studies have identified some mechanisms of 3D mechanotransduction, there is still a critical knowledge gap in comprehending the interplay between 3D confinement, ECM properties, and cellular behavior. Specifically, the role of matrix stiffness in directing cellular fate in 3D microenvironment, independent of viscoelasticity, microstructure, and ligand density remains poorly understood. To address this gap, we designed a nanoparticle crosslinker to reinforce collagen-based hydrogels without altering their chemical composition, microstructure, viscoelasticity, and density of cell-adhesion ligand and utilized it to understand cellular dynamics. This crosslinking mechanism utilizes nanoparticles as crosslink epicenter, resulting in 10-fold increase in mechanical stiffness, without other changes. Human mesenchymal stem cells (hMSCs) encapsulated in 3D responded to mechanical stiffness by displaying circular morphology on soft hydrogels (5 kPa) and elongated morphology on stiff hydrogels (30 kPa). Stiff hydrogels facilitated the production and remodeling of nascent extracellular matrix (ECM) and activated mechanotransduction cascade. These changes were driven through intracellular PI3AKT signaling, regulation of epigenetic modifiers and activation of YAP/TAZ signaling. Overall, our study introduces a unique biomaterials platform to understand cell-ECM mechanotransduction in 3D for regenerative medicine as well as disease modelling.


Subject(s)
Mechanotransduction, Cellular , Mesenchymal Stem Cells , Humans , Ligands , Collagen/chemistry , Extracellular Matrix , Hydrogels/chemistry
5.
bioRxiv ; 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-38014160

ABSTRACT

Osteosarcoma (OS) is the most common primary malignant bone tumor affecting the pediatric population with high potential to metastasize to distal sites, most commonly the lung. Insights into defining molecular features contributing to metastatic potential are lacking. We have mapped the active chromatin landscapes of OS tumors by integrating histone H3 lysine acetylated chromatin (H3K27ac) profiles (n=13), chromatin accessibility profiles (n=11) and gene expression (n=13) to understand the differences in their active chromatin profiles and its impact on molecular mechanisms driving the malignant phenotypes. Primary OS tumors from patients with metastasis (primary met) have a distinct active chromatin landscape compared to primary tumors from patients without metastatic disease (localized). The difference in chromatin activity shapes the transcriptional profile of OS. We identified novel candidate genes involved in OS pathogenesis and metastasis, including PPP1R1B, PREX1 and IGF2BP1, which exhibit increased chromatin activity in primary met along with higher transcript levels. Overall, differential chromatin activity in primary met occurs in proximity of genes regulating actin cytoskeleton organization, cellular adhesion, and extracellular matrix suggestive of their role in facilitating OS metastasis. Furthermore, chromatin profiling of tumors from metastatic lung lesions noted increases in chromatin activity in genes involved in cell migration and key intracellular signaling cascades, including the Wnt pathway. Thus, this data demonstrates that metastatic potential is intrinsically present in primary metastatic tumors and the cellular chromatin profiles further adapt to allow for successful dissemination, migration, and colonization at the distal metastatic site.

6.
7.
Biochem Biophys Res Commun ; 648: 72-80, 2023 03 12.
Article in English | MEDLINE | ID: mdl-36736094

ABSTRACT

Hyperglycemia-mediated cardiac dysfunction is an acute initiator in the development of vascular complications, leading to cardiac fibrosis. To investigate the effects of hyperglycemia-mediated changes in cardiomyocytes, cells were cultured in-vitro under normoglycemic (5 mM or 25 mM D-glucose) and hyperglycemic (5 â†’ 50 mM or 25 â†’ 50 mM D-glucose) conditions, respectively. After 24-h of hyperglycemic exposure, cells were collected for RNA-sequencing (RNA-seq) studies to further investigate the differentially expressed genes (DEG) related to inflammation and fibrosis in samples cultured under hyperglycemic-in comparison with normoglycemic-conditions. Western Blotting was done to evaluate the protein expression of YAP1/TAZ under hyperglycemia induced stress conditions, as it is known to be involved in fibrotic and vascular inflammatory-mediated conditions. RNA-seq revealed the DEG of multiple targets including matrix metalloproteinases and inflammatory mediators, whose expression was significantly altered in the 5 â†’ 50 mM in comparison with the 25 â†’ 50 mM condition. Western Blotting showed a significant upregulation of the protein expression of the YAP1/TAZ pathway under these conditions as well (5 â†’ 50 mM). To further probe the relationship between the inflammatory extracellular-signal-regulated kinase (ERK 1/2) and its downstream effects on YAP1/TAZ expression we studied the effect of inhibition of the ERK 1/2 signaling cascade in the 5 â†’ 50 mM condition. The application of an ERK 1/2 inhibitor inhibited the expression of the YAP1/TAZ protein in the 5 â†’ 50 mM condition, and this strategy may be useful in preventing and improving hyperglycemia associated cardiovascular damage and inflammation.


Subject(s)
Hyperglycemia , Myocytes, Cardiac , Humans , Myocytes, Cardiac/metabolism , Signal Transduction , Hyperglycemia/complications , Hyperglycemia/metabolism , Glucose/metabolism , Inflammation/metabolism
8.
Sci Adv ; 8(17): eabl9404, 2022 04 29.
Article in English | MEDLINE | ID: mdl-35476448

ABSTRACT

Bioactive materials harness the body's innate regenerative potential by directing endogenous progenitor cells to facilitate tissue repair. Dissolution products of inorganic biomaterials provide unique biomolecular signaling for tissue-specific differentiation. Inorganic ions (minerals) are vital to biological processes and play crucial roles in regulating gene expression patterns and directing cellular fate. However, mechanisms by which ionic dissolution products affect cellular differentiation are not well characterized. We demonstrate the role of the inorganic biomaterial synthetic two-dimensional nanosilicates and its ionic dissolution products on human mesenchymal stem cell differentiation. We use whole-transcriptome sequencing (RNA-sequencing) to characterize the contribution of nanosilicates and its ionic dissolution products on endochondral differentiation. Our study highlights the modulatory role of ions in stem cell transcriptome dynamics by regulating lineage-specific gene expression patterns. This work paves the way for leveraging biochemical characteristics of inorganic biomaterials to direct cellular processes and promote in situ tissue regeneration.


Subject(s)
Biocompatible Materials , Stem Cells , Biocompatible Materials/chemistry , Cell Differentiation/genetics , Humans , Ions , Stem Cells/metabolism , Transcriptome
9.
Cancer Discov ; 11(9): 2200-2215, 2021 09.
Article in English | MEDLINE | ID: mdl-33741710

ABSTRACT

More than 60% of supratentorial ependymomas harbor a ZFTA-RELA (ZRfus) gene fusion (formerly C11orf95-RELA). To study the biology of ZRfus, we developed an autochthonous mouse tumor model using in utero electroporation (IUE) of the embryonic mouse brain. Integrative epigenomic and transcriptomic mapping was performed on IUE-driven ZRfus tumors by CUT&RUN, chromatin immunoprecipitation sequencing, assay for transposase-accessible chromatin sequencing, and RNA sequencing and compared with human ZRfus-driven ependymoma. In addition to direct canonical NFκB pathway activation, ZRfus dictates a neoplastic transcriptional program and binds to thousands of unique sites across the genome that are enriched with PLAGL family transcription factor (TF) motifs. ZRfus activates gene expression programs through recruitment of transcriptional coactivators (Brd4, Ep300, Cbp, Pol2) that are amenable to pharmacologic inhibition. Downstream ZRfus target genes converge on developmental programs marked by PLAGL TF proteins, and activate neoplastic programs enriched in Mapk, focal adhesion, and gene imprinting networks. SIGNIFICANCE: Ependymomas are aggressive brain tumors. Although drivers of supratentorial ependymoma (ZFTA- and YAP1-associated gene fusions) have been discovered, their functions remain unclear. Our study investigates the biology of ZFTA-RELA-driven ependymoma, specifically mechanisms of transcriptional deregulation and direct downstream gene networks that may be leveraged for potential therapeutic testing.This article is highlighted in the In This Issue feature, p. 2113.


Subject(s)
DNA-Binding Proteins/genetics , Ependymoma/genetics , Supratentorial Neoplasms/genetics , Transcription Factor RelA/genetics , Transcription Factors/genetics , Animals , Disease Models, Animal , Ependymoma/pathology , Mice , Supratentorial Neoplasms/pathology
10.
Proc Natl Acad Sci U S A ; 117(24): 13329-13338, 2020 06 16.
Article in English | MEDLINE | ID: mdl-32461372

ABSTRACT

Two-dimensional (2D) molybdenum disulfide (MoS2) nanomaterials are an emerging class of biomaterials that are photoresponsive at near-infrared wavelengths (NIR). Here, we demonstrate the ability of 2D MoS2 to modulate cellular functions of human stem cells through photothermal mechanisms. The interaction of MoS2 and NIR stimulation of MoS2 with human stem cells is investigated using whole-transcriptome sequencing (RNA-seq). Global gene expression profile of stem cells reveals significant influence of MoS2 and NIR stimulation of MoS2 on integrins, cellular migration, and wound healing. The combination of MoS2 and NIR light may provide new approaches to regulate and direct these cellular functions for the purposes of regenerative medicine as well as cancer therapy.


Subject(s)
Disulfides/radiation effects , Mesenchymal Stem Cells/radiation effects , Molybdenum/radiation effects , Nanostructures/radiation effects , Cell Adhesion/radiation effects , Cell Movement/radiation effects , Cell Survival , Disulfides/chemistry , Disulfides/metabolism , Gene Expression Profiling , Humans , Infrared Rays , Integrins/genetics , Integrins/metabolism , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Molybdenum/chemistry , Molybdenum/metabolism , Nanostructures/chemistry , Photosensitizing Agents , Signal Transduction/radiation effects
11.
ACS Appl Mater Interfaces ; 12(14): 15976-15988, 2020 Apr 08.
Article in English | MEDLINE | ID: mdl-32091189

ABSTRACT

Bioprinting is an emerging additive manufacturing approach to the fabrication of patient-specific, implantable three-dimensional (3D) constructs for regenerative medicine. However, developing cell-compatible bioinks with high printability, structural stability, biodegradability, and bioactive characteristics is still a primary challenge for translating 3D bioprinting technology to preclinical and clinal models. To overcome this challenge, we developed a nanoengineered ionic covalent entanglement (NICE) bioink formulation for 3D bone bioprinting. The NICE bioinks allow precise control over printability, mechanical properties, and degradation characteristics, enabling custom 3D fabrication of mechanically resilient, cellularized structures. We demonstrate cell-induced remodeling of 3D bioprinted scaffolds over 60 days, demonstrating deposition of nascent extracellular matrix proteins. Interestingly, the bioprinted constructs induce endochondral differentiation of encapsulated human mesenchymal stem cells (hMSCs) in the absence of osteoinducing agent. Using next-generation transcriptome sequencing (RNA-seq) technology, we establish the role of nanosilicates, a bioactive component of NICE bioink, to stimulate endochondral differentiation at the transcriptome level. Overall, the osteoinductive bioink has the ability to induce formation of osteo-related mineralized extracellular matrix by encapsulated hMSCs in growth factor-free conditions. Furthermore, we demonstrate the ability of NICE bioink to fabricate patient-specific, implantable 3D scaffolds for repair of craniomaxillofacial bone defects. We envision development of this NICE bioink technology toward a realistic clinical process for 3D bioprinting patient-specific bone tissue for regenerative medicine.


Subject(s)
Bioprinting/trends , Bone and Bones/chemistry , Tissue Engineering , Tissue Scaffolds/chemistry , Biological Specimen Banks , Extracellular Matrix/chemistry , Extracellular Matrix/transplantation , Humans , Printing, Three-Dimensional , Regenerative Medicine/trends
12.
Cancer Cell ; 36(1): 51-67.e7, 2019 07 08.
Article in English | MEDLINE | ID: mdl-31287992

ABSTRACT

Embryonal tumors with multilayered rosettes (ETMRs) are highly lethal infant brain cancers with characteristic amplification of Chr19q13.41 miRNA cluster (C19MC) and enrichment of pluripotency factor LIN28A. Here we investigated C19MC oncogenic mechanisms and discovered a C19MC-LIN28A-MYCN circuit fueled by multiple complex regulatory loops including an MYCN core transcriptional network and super-enhancers resulting from long-range MYCN DNA interactions and C19MC gene fusions. Our data show that this powerful oncogenic circuit, which entraps an early neural lineage network, is potently abrogated by bromodomain inhibitor JQ1, leading to ETMR cell death.


Subject(s)
Brain Neoplasms/etiology , Chromosomes, Human, Pair 19 , MicroRNAs/genetics , Multigene Family , N-Myc Proto-Oncogene Protein/genetics , Neoplasms, Germ Cell and Embryonal/etiology , RNA-Binding Proteins/genetics , Biomarkers, Tumor , Brain Neoplasms/diagnosis , Brain Neoplasms/therapy , Cell Cycle/genetics , Cell Transformation, Neoplastic/drug effects , Cell Transformation, Neoplastic/genetics , Chromosomes, Human, Pair 2 , DNA Copy Number Variations , Enhancer Elements, Genetic , Epigenesis, Genetic , Gene Expression Regulation , Gene Regulatory Networks , Genetic Association Studies , Genetic Predisposition to Disease , Humans , Models, Biological , Neoplasms, Germ Cell and Embryonal/diagnosis , Neoplasms, Germ Cell and Embryonal/therapy , Oncogenes
13.
J Exp Med ; 216(5): 1071-1090, 2019 05 06.
Article in English | MEDLINE | ID: mdl-30948495

ABSTRACT

Glioblastoma is an incurable brain cancer characterized by high genetic and pathological heterogeneity. Here, we mapped active chromatin landscapes with gene expression, whole exomes, copy number profiles, and DNA methylomes across 44 patient-derived glioblastoma stem cells (GSCs), 50 primary tumors, and 10 neural stem cells (NSCs) to identify essential super-enhancer (SE)-associated genes and the core transcription factors that establish SEs and maintain GSC identity. GSCs segregate into two groups dominated by distinct enhancer profiles and unique developmental core transcription factor regulatory programs. Group-specific transcription factors enforce GSC identity; they exhibit higher activity in glioblastomas versus NSCs, are associated with poor clinical outcomes, and are required for glioblastoma growth in vivo. Although transcription factors are commonly considered undruggable, group-specific enhancer regulation of the MAPK/ERK pathway predicts sensitivity to MEK inhibition. These data demonstrate that transcriptional identity can be leveraged to identify novel dependencies and therapeutic approaches.


Subject(s)
Brain Neoplasms/genetics , Chromatin/genetics , Glioblastoma/genetics , Transcription, Genetic/genetics , Animals , Brain Neoplasms/pathology , Brain Neoplasms/surgery , Carcinogenesis/genetics , Cell Line, Tumor , Cohort Studies , Gene Expression Regulation, Neoplastic , Glioblastoma/pathology , Glioblastoma/surgery , Heterografts , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Neoplastic Stem Cells/metabolism , Neural Stem Cells/metabolism , Transcription Factors/genetics , Transcriptome
14.
Cell Rep ; 25(13): 3693-3705.e6, 2018 12 26.
Article in English | MEDLINE | ID: mdl-30590042

ABSTRACT

The relationship between promoter proximal transcription factor-associated gene expression and super-enhancer-driven transcriptional programs are not well defined. However, their distinct genomic occupancy suggests a mechanism for specific and separable gene control. We explored the transcriptional and functional interrelationship between E2F transcription factors and BET transcriptional co-activators in multiple myeloma. We found that the transcription factor E2F1 and its heterodimerization partner DP1 represent a dependency in multiple myeloma cells. Global chromatin analysis reveals distinct regulatory axes for E2F and BETs, with E2F predominantly localized to active gene promoters of growth and/or proliferation genes and BETs disproportionately at enhancer-regulated tissue-specific genes. These two separate gene regulatory axes can be simultaneously targeted to impair the myeloma proliferative program, providing an important molecular mechanism for combination therapy. This study therefore suggests a sequestered cellular functional control that may be perturbed in cancer with potential for development of a promising therapeutic strategy.


Subject(s)
Enhancer Elements, Genetic , Gene Expression Regulation, Neoplastic , Multiple Myeloma/genetics , Promoter Regions, Genetic , Transcriptome/genetics , Animals , Azepines/pharmacology , Carcinogenesis/genetics , Carcinogenesis/pathology , Cell Line, Tumor , Cell Proliferation/genetics , E2F1 Transcription Factor/metabolism , Humans , Mice, SCID , Multiple Myeloma/pathology , Protein Binding , Protein Domains , Protein Multimerization , Transcription Factor DP1/metabolism , Triazoles/pharmacology
15.
Nature ; 561(7721): 127-131, 2018 09.
Article in English | MEDLINE | ID: mdl-30150773

ABSTRACT

DNA mutations are known cancer drivers. Here we investigated whether mRNA events that are upregulated in cancer can functionally mimic the outcome of genetic alterations. RNA sequencing or 3'-end sequencing techniques were applied to normal and malignant B cells from 59 patients with chronic lymphocytic leukaemia (CLL)1-3. We discovered widespread upregulation of truncated mRNAs and proteins in primary CLL cells that were not generated by genetic alterations but instead occurred by intronic polyadenylation. Truncated mRNAs caused by intronic polyadenylation were recurrent (n = 330) and predominantly affected genes with tumour-suppressive functions. The truncated proteins generated by intronic polyadenylation often lack the tumour-suppressive functions of the corresponding full-length proteins (such as DICER and FOXN3), and several even acted in an oncogenic manner (such as CARD11, MGA and CHST11). In CLL, the inactivation of tumour-suppressor genes by aberrant mRNA processing is substantially more prevalent than the functional loss of such genes through genetic events. We further identified new candidate tumour-suppressor genes that are inactivated by intronic polyadenylation in leukaemia and by truncating DNA mutations in solid tumours4,5. These genes are understudied in cancer, as their overall mutation rates are lower than those of well-known tumour-suppressor genes. Our findings show the need to go beyond genomic analyses in cancer diagnostics, as mRNA events that are silent at the DNA level are widespread contributors to cancer pathogenesis through the inactivation of tumour-suppressor genes.


Subject(s)
Genes, Tumor Suppressor , Introns/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Polyadenylation/genetics , RNA, Messenger/analysis , RNA, Messenger/genetics , B-Lymphocytes/metabolism , Cell Transformation, Neoplastic/genetics , Humans , Sequence Analysis, RNA , Sequence Deletion/genetics
16.
Nat Commun ; 9(1): 1716, 2018 04 30.
Article in English | MEDLINE | ID: mdl-29712909

ABSTRACT

Alternative cleavage and polyadenylation (ApA) is known to alter untranslated region (3'UTR) length but can also recognize intronic polyadenylation (IpA) signals to generate transcripts that lose part or all of the coding region. We analyzed 46 3'-seq and RNA-seq profiles from normal human tissues, primary immune cells, and multiple myeloma (MM) samples and created an atlas of 4927 high-confidence IpA events represented in these cell types. IpA isoforms are widely expressed in immune cells, differentially used during B-cell development or in different cellular environments, and can generate truncated proteins lacking C-terminal functional domains. This can mimic ectodomain shedding through loss of transmembrane domains or alter the binding specificity of proteins with DNA-binding or protein-protein interaction domains. MM cells display a striking loss of IpA isoforms expressed in plasma cells, associated with shorter progression-free survival and impacting key genes in MM biology and response to lenalidomide.


Subject(s)
Heavy Chain Disease/genetics , Immunoglobulin mu-Chains/genetics , Introns , Multiple Myeloma/genetics , Plasma Cells/immunology , Polyadenylation , Transcriptome , 3' Untranslated Regions , Angiogenesis Inhibitors/therapeutic use , Case-Control Studies , Gene Expression , Gene Library , Gene Ontology , Heavy Chain Disease/immunology , Humans , Immunoglobulin mu-Chains/immunology , Lenalidomide/therapeutic use , Multiple Myeloma/immunology , Multiple Myeloma/mortality , Multiple Myeloma/pathology , Plasma Cells/pathology , Primary Cell Culture , Progression-Free Survival
17.
Proc Natl Acad Sci U S A ; 115(17): E3905-E3913, 2018 04 24.
Article in English | MEDLINE | ID: mdl-29643075

ABSTRACT

Two-dimensional nanomaterials, an ultrathin class of materials such as graphene, nanoclays, transition metal dichalcogenides (TMDs), and transition metal oxides (TMOs), have emerged as a new generation of materials due to their unique properties relative to macroscale counterparts. However, little is known about the transcriptome dynamics following exposure to these nanomaterials. Here, we investigate the interactions of 2D nanosilicates, a layered clay, with human mesenchymal stem cells (hMSCs) at the whole-transcriptome level by high-throughput sequencing (RNA-seq). Analysis of cell-nanosilicate interactions by monitoring changes in transcriptome profile uncovered key biophysical and biochemical cellular pathways triggered by nanosilicates. A widespread alteration of genes was observed due to nanosilicate exposure as more than 4,000 genes were differentially expressed. The change in mRNA expression levels revealed clathrin-mediated endocytosis of nanosilicates. Nanosilicate attachment to the cell membrane and subsequent cellular internalization activated stress-responsive pathways such as mitogen-activated protein kinase (MAPK), which subsequently directed hMSC differentiation toward osteogenic and chondrogenic lineages. This study provides transcriptomic insight on the role of surface-mediated cellular signaling triggered by nanomaterials and enables development of nanomaterials-based therapeutics for regenerative medicine. This approach in understanding nanomaterial-cell interactions illustrates how change in transcriptomic profile can predict downstream effects following nanomaterial treatment.


Subject(s)
Gene Expression Profiling , Gene Expression Regulation/drug effects , MAP Kinase Signaling System/drug effects , Mesenchymal Stem Cells/metabolism , Nanoparticles , Silicates/pharmacology , Transcriptome/drug effects , Clathrin/metabolism , Endocytosis/drug effects , High-Throughput Nucleotide Sequencing , Humans , Mesenchymal Stem Cells/cytology
18.
Nat Biotechnol ; 33(12): 1242-1249, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26571099

ABSTRACT

Predicting the affinity profiles of nucleic acid-binding proteins directly from the protein sequence is a challenging problem. We present a statistical approach for learning the recognition code of a family of transcription factors or RNA-binding proteins (RBPs) from high-throughput binding data. Our method, called affinity regression, trains on protein binding microarray (PBM) or RNAcompete data to learn an interaction model between proteins and nucleic acids using only protein domain and probe sequences as inputs. When trained on mouse homeodomain PBM profiles, our model correctly identifies residues that confer DNA-binding specificity and accurately predicts binding motifs for an independent set of divergent homeodomains. Similarly, when trained on RNAcompete profiles for diverse RBPs, our model correctly predicts the binding affinities of held-out proteins and identifies key RNA-binding residues, despite the high level of sequence divergence across RBPs. We expect that the method will be broadly applicable to modeling and predicting paired macromolecular interactions in settings where high-throughput affinity data are available.

19.
Nat Genet ; 47(7): 766-75, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26029871

ABSTRACT

Polycistronic microRNA (miRNA) clusters are a common feature of vertebrate genomes. The coordinated expression of miRNAs belonging to different seed families from a single transcriptional unit suggests functional cooperation, but this hypothesis has not been experimentally tested. Here we report the characterization of an allelic series of genetically engineered mice harboring selective targeted deletions of individual components of the miR-17 ∼ 92 cluster. Our results demonstrate the coexistence of functional cooperation and specialization among members of this cluster, identify a previously undescribed function for the miR-17 seed family in controlling axial patterning in vertebrates and show that loss of miR-19 selectively impairs Myc-driven tumorigenesis in two models of human cancer. By integrating phenotypic analysis and gene expression profiling, we provide a genome-wide view of how the components of a polycistronic miRNA cluster affect gene expression in vivo. The reagents and data sets reported here will accelerate exploration of the complex biological functions of this important miRNA cluster.


Subject(s)
MicroRNAs/genetics , Animals , Apoptosis , B-Lymphocytes/physiology , Carcinogenesis/genetics , Cells, Cultured , Eyelids/abnormalities , Gene Frequency , Genes, Lethal , Genome-Wide Association Study , Intellectual Disability/genetics , Limb Deformities, Congenital/genetics , Male , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Transgenic , Microcephaly/genetics , Multigene Family , Mutation , Tracheoesophageal Fistula/genetics
20.
Nat Chem Biol ; 9(11): 671-3, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23995769

ABSTRACT

Polyadenylation of mRNA leads to increased protein expression in response to diverse stimuli, but it is difficult to identify mRNAs that become polyadenylated in living cells. Here we describe a click chemistry-compatible nucleoside analog that is selectively incorporated into poly(A) tails of transcripts in cells. Next-generation sequencing of labeled mRNAs enables a transcriptome-wide profile of polyadenylation and provides insights into the mRNA sequence elements that are correlated with polyadenylation.


Subject(s)
Poly A/analysis , Poly A/metabolism , Polyadenylation , Click Chemistry , Poly A/genetics , Poly A/isolation & purification , RNA, Messenger/genetics , RNA, Messenger/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...