Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Cell Rep ; 43(6): 114294, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38814780

ABSTRACT

Ubiquitination of mitochondrial proteins provides a basis for the downstream recruitment of mitophagy machinery, yet whether ubiquitination of the machinery itself contributes to mitophagy is unknown. Here, we show that K63-linked polyubiquitination of the key mitophagy regulator TBK1 is essential for its mitophagy functions. This modification is catalyzed by the ubiquitin ligase TRIM5α and is required for TBK1 to interact with and activate a set of ubiquitin-binding autophagy adaptors including NDP52, p62/SQSTM1, and NBR1. Autophagy adaptors, along with TRIM27, enable TRIM5α to engage with TBK1 following mitochondrial damage. TRIM5α's ubiquitin ligase activity is required for the accumulation of active TBK1 on damaged mitochondria in Parkin-dependent and Parkin-independent mitophagy pathways. Our data support a model in which TRIM5α provides a mitochondria-localized, ubiquitin-based, self-amplifying assembly platform for TBK1 and mitophagy adaptors that is ultimately necessary for the recruitment of the core autophagy machinery.

2.
bioRxiv ; 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37905089

ABSTRACT

Ubiquitination of mitochondrial proteins provides a basis for the downstream recruitment of mitophagy machinery, yet whether ubiquitination of the machinery itself contributes to mitophagy is unknown. Here, we show that K63-linked polyubiquitination of the key mitophagy regulator TBK1 is essential for its mitophagy functions. This modification is catalyzed by the ubiquitin ligase TRIM5α. Mitochondrial damage triggers TRIM5α's auto-ubiquitination and its interaction with ubiquitin-binding autophagy adaptors including NDP52, optineurin, and NBR1. Autophagy adaptors, along with TRIM27, enable TRIM5α to engage with TBK1. TRIM5α with intact ubiquitination function is required for the proper accumulation of active TBK1 on damaged mitochondria in Parkin-dependent and Parkin-independent mitophagy pathways. Additionally, we show that TRIM5α can directly recruit autophagy initiation machinery to damaged mitochondria. Our data support a model in which TRIM5α provides a self-amplifying, mitochondria-localized, ubiquitin-based, assembly platform for TBK1 and mitophagy adaptors that is ultimately required to recruit the core autophagy machinery.

3.
FEBS J ; 290(4): 1096-1116, 2023 02.
Article in English | MEDLINE | ID: mdl-36111389

ABSTRACT

Tripartite motif-containing protein 27 (TRIM27/also called RFP) is a multifunctional ubiquitin E3 ligase involved in numerous cellular functions, such as proliferation, apoptosis, regulation of the NF-kB pathway, endosomal recycling and the innate immune response. TRIM27 interacts directly with TANK-binding kinase 1 (TBK1) and regulates its stability. TBK1 in complex with autophagy receptors is recruited to ubiquitin chains assembled on the mitochondrial outer membrane promoting mitophagy. Here, we identify TRIM27 as an autophagy substrate, depending on ATG7, ATG9 and autophagy receptors for its lysosomal degradation. We show that TRIM27 forms ubiquitylated cytoplasmic bodies that co-localize with autophagy receptors. Surprisingly, we observed that induced expression of EGFP-TRIM27 in HEK293 FlpIn TRIM27 knockout cells mediates mitochondrial clustering. TRIM27 interacts with autophagy receptor SQSTM1/p62, and the TRIM27-mediated mitochondrial clustering is facilitated by SQSTM/p62. We show that phosphorylated TBK1 is recruited to the clustered mitochondria. Moreover, induced mitophagy activity is reduced in HEK293 FlpIn TRIM27 knockout cells, while re-introduction of EGFP-TRIM27 completely restores the mitophagy activity. Inhibition of TBK1 reduces mitophagy in HEK293 FlpIn cells and in the reconstituted EGFP-TRIM27-expressing cells, but not in HEK293 FlpIn TRIM27 knockout cells. Altogether, these data reveal novel roles for TRIM27 in mitophagy, facilitating mitochondrial clustering via SQSTM1/p62 and mitophagy via stabilization of phosphorylated TBK1 on mitochondria.


Subject(s)
Autophagy , Mitochondria , Mitophagy , Tripartite Motif Proteins , Ubiquitin-Protein Ligases , Humans , Autophagy/physiology , DNA-Binding Proteins/metabolism , HEK293 Cells , Mitochondria/genetics , Mitochondria/metabolism , Mitophagy/physiology , Nuclear Proteins/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Sequestosome-1 Protein/metabolism , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/metabolism , Tripartite Motif Proteins/metabolism
5.
PLoS One ; 16(5): e0251279, 2021.
Article in English | MEDLINE | ID: mdl-33999923

ABSTRACT

TRIM32 is an E3 ligase implicated in diverse biological pathways and pathologies such as muscular dystrophy and cancer. TRIM32 are expressed both as full-length proteins, and as a truncated protein. The mechanisms for regulating these isoforms are poorly understood. Here we identify a PEST sequence in TRIM32 located in the unstructured region between the RING-BBox-CoiledCoil domains and the NHL repeats. The PEST sequence directs cleavage of TRIM32, generating a truncated protein similarly to the short isoform. We map three lysine residues that regulate PEST mediated cleavage and auto-ubiquitylation activity of TRIM32. Mimicking acetylation of lysine K247 completely inhibits TRIM32 cleavage, while the lysines K50 and K401 are implicated in auto-ubiquitylation activity. We show that the short isoform of TRIM32 is catalytic inactive, suggesting a dominant negative role. These findings uncover that TRIM32 is regulated by post-translational modifications of three lysine residues, and a conserved PEST sequence.


Subject(s)
Lysine/genetics , Protein Isoforms/genetics , Transcription Factors/genetics , Tripartite Motif Proteins/genetics , Ubiquitin-Protein Ligases/genetics , Acetylation , Cell Line , HEK293 Cells , Humans , Muscular Dystrophies, Limb-Girdle/genetics , Protein Binding/genetics , Protein Processing, Post-Translational/genetics , Ubiquitination/genetics
6.
J Mol Biol ; 433(13): 166987, 2021 06 25.
Article in English | MEDLINE | ID: mdl-33845085

ABSTRACT

Autophagy is a highly conserved degradative pathway, essential for cellular homeostasis and implicated in diseases including cancer and neurodegeneration. Autophagy-related 8 (ATG8) proteins play a central role in autophagosome formation and selective delivery of cytoplasmic cargo to lysosomes by recruiting autophagy adaptors and receptors. The LC3-interacting region (LIR) docking site (LDS) of ATG8 proteins binds to LIR motifs present in autophagy adaptors and receptors. LIR-ATG8 interactions can be highly selective for specific mammalian ATG8 family members (LC3A-C, GABARAP, and GABARAPL1-2) and how this specificity is generated and regulated is incompletely understood. We have identified a LIR motif in the Golgi protein SCOC (short coiled-coil protein) exhibiting strong binding to GABARAP, GABARAPL1, LC3A and LC3C. The residues within and surrounding the core LIR motif of the SCOC LIR domain were phosphorylated by autophagy-related kinases (ULK1-3, TBK1) increasing specifically LC3 family binding. More distant flanking residues also contributed to ATG8 binding. Loss of these residues was compensated by phosphorylation of serine residues immediately adjacent to the core LIR motif, indicating that the interactions of the flanking LIR regions with the LDS are important and highly dynamic. Our comprehensive structural, biophysical and biochemical analyses support and provide novel mechanistic insights into how phosphorylation of LIR domain residues regulates the affinity and binding specificity of ATG8 proteins towards autophagy adaptors and receptors.


Subject(s)
Autophagy-Related Protein 8 Family/metabolism , Carrier Proteins/chemistry , Carrier Proteins/metabolism , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Amino Acid Motifs , Amino Acid Sequence , Animals , Apoptosis Regulatory Proteins/metabolism , HEK293 Cells , HeLa Cells , Humans , Mammals/metabolism , Microtubule-Associated Proteins/metabolism , Phosphorylation , Protein Binding , Protein Domains , Protein Serine-Threonine Kinases/metabolism
7.
EMBO J ; 39(15): e103649, 2020 08 03.
Article in English | MEDLINE | ID: mdl-32525583

ABSTRACT

The endoplasmic reticulum (ER) plays important roles in protein synthesis and folding, and calcium storage. The volume of the ER and expression of its resident proteins are increased in response to nutrient stress. ER-phagy, a selective form of autophagy, is involved in the degradation of the excess components of the ER to restore homeostasis. Six ER-resident proteins have been identified as ER-phagy receptors so far. In this study, we have identified CALCOCO1 as a novel ER-phagy receptor for the degradation of the tubular ER in response to proteotoxic and nutrient stress. CALCOCO1 is a homomeric protein that binds directly to ATG8 proteins via LIR- and UDS-interacting region (UIR) motifs acting co-dependently. CALCOCO1-mediated ER-phagy requires interaction with VAMP-associated proteins VAPA and VAPB on the ER membranes via a conserved FFAT-like motif. Depletion of CALCOCO1 causes expansion of the ER and inefficient basal autophagy flux. Unlike the other ER-phagy receptors, CALCOCO1 is peripherally associated with the ER. Therefore, we define CALCOCO1 as a soluble ER-phagy receptor.


Subject(s)
Autophagy , Calcium-Binding Proteins/metabolism , Intracellular Membranes/metabolism , Transcription Factors/metabolism , Vesicular Transport Proteins/metabolism , Animals , Calcium-Binding Proteins/genetics , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/metabolism , HeLa Cells , Humans , Mice , Transcription Factors/genetics , Vesicular Transport Proteins/genetics
8.
J Biol Chem ; 295(5): 1240-1260, 2020 01 31.
Article in English | MEDLINE | ID: mdl-31857374

ABSTRACT

Human ATG8 family proteins (ATG8s) are active in all steps of the macroautophagy pathway, and their lipidation is essential for autophagosome formation. Lipidated ATG8s anchored to the outer surface of the phagophore serve as scaffolds for binding of other core autophagy proteins and various effector proteins involved in trafficking or fusion events, whereas those at the inner surface are needed for assembly of selective autophagy substrates. Their scaffolding role depends on specific interactions between the LC3-interacting region (LIR) docking site (LDS) in ATG8s and LIR motifs in various interaction partners. LC3B is phosphorylated at Thr-50 within the LDS by serine/threonine kinase (STK) 3 and STK4. Here, we identified LIR motifs in STK3 and atypical protein kinase Cζ (PKCζ) and never in mitosis A (NIMA)-related kinase 9 (NEK9). All three kinases phosphorylated LC3B Thr-50 in vitro A phospho-mimicking substitution of Thr-50 impaired binding of several LIR-containing proteins, such as ATG4B, FYVE, and coiled-coil domain-containing 1 (FYCO1), and autophagy cargo receptors p62/sequestosome 1 (SQSTM1) and neighbor of BRCA1 gene (NBR1). NEK9 knockdown or knockout enhanced degradation of the autophagy receptor and substrate p62. Of note, the suppression of p62 degradation was mediated by NEK9-mediated phosphorylation of LC3B Thr-50. Consistently, reconstitution of LC3B-KO cells with the phospho-mimicking T50E variant inhibited autophagic p62 degradation. PKCζ knockdown did not affect autophagic p62 degradation, whereas STK3/4 knockouts inhibited autophagic p62 degradation independently of LC3B Thr-50 phosphorylation. Our findings suggest that NEK9 suppresses LC3B-mediated autophagy of p62 by phosphorylating Thr-50 within the LDS of LC3B.


Subject(s)
Autophagy/genetics , Microtubule-Associated Proteins/metabolism , NIMA-Related Kinases/metabolism , Protein Interaction Domains and Motifs/genetics , Sequestosome-1 Protein/metabolism , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Autophagy-Related Protein 8 Family/genetics , Autophagy-Related Protein 8 Family/metabolism , Chromatography, High Pressure Liquid , Gene Knockout Techniques , HEK293 Cells , HeLa Cells , Humans , Intracellular Signaling Peptides and Proteins , Microtubule-Associated Proteins/chemistry , Microtubule-Associated Proteins/genetics , Mutation , NIMA-Related Kinases/genetics , Phosphorylation , Protein Kinase C/genetics , Protein Kinase C/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , RNA, Small Interfering , Sequestosome-1 Protein/chemistry , Sequestosome-1 Protein/genetics , Serine-Threonine Kinase 3 , Tandem Mass Spectrometry , Threonine/metabolism
9.
J Cell Sci ; 132(23)2019 12 02.
Article in English | MEDLINE | ID: mdl-31685529

ABSTRACT

The tripartite motif (TRIM) proteins constitute a family of ubiquitin E3 ligases involved in a multitude of cellular processes, including protein homeostasis and autophagy. TRIM32 is characterized by six protein-protein interaction domains termed NHL, various point mutations in which are associated with limb-girdle-muscular dystrophy 2H (LGMD2H). Here, we show that TRIM32 is an autophagy substrate. Lysosomal degradation of TRIM32 was dependent on ATG7 and blocked by knockout of the five autophagy receptors p62 (also known as SQSTM1), NBR1, NDP52 (also known as CALCOCO2), TAX1BP1 and OPTN, pointing towards degradation by selective autophagy. p62 directed TRIM32 to lysosomal degradation, while TRIM32 mono-ubiquitylated p62 on lysine residues involved in regulation of p62 activity. Loss of TRIM32 impaired p62 sequestration, while reintroduction of TRIM32 facilitated p62 dot formation and its autophagic degradation. A TRIM32LGMD2H disease mutant was unable to undergo autophagic degradation and to mono-ubiquitylate p62, and its reintroduction into the TRIM32-knockout cells did not affect p62 dot formation. In light of the important roles of autophagy and p62 in muscle cell proteostasis, our results point towards impaired TRIM32-mediated regulation of p62 activity as a pathological mechanisms in LGMD2H.


Subject(s)
Muscular Dystrophies/metabolism , Sequestosome-1 Protein/metabolism , Transcription Factors/metabolism , Tripartite Motif Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Autophagy/genetics , Autophagy/physiology , HEK293 Cells , HeLa Cells , Humans , Immunoprecipitation , Muscular Dystrophies/genetics , Muscular Dystrophies, Limb-Girdle/genetics , Muscular Dystrophies, Limb-Girdle/metabolism , Protein Binding , Sequestosome-1 Protein/genetics , Transcription Factors/genetics , Tripartite Motif Proteins/genetics , Ubiquitin-Protein Ligases/genetics
10.
Front Genet ; 10: 249, 2019.
Article in English | MEDLINE | ID: mdl-30984240

ABSTRACT

Fragile X-associated tremor/ataxia syndrome (FXTAS) is a neurodegenerative disorder caused by a CGG-repeat expansion in the 5' UTR of the FMR1 gene on the X-chromosome. Both elevated levels of the expanded FMR1 mRNA and aberrant expression of a polyglycine protein (FMRpolyG) from the CGG-repeat region are hypothesized to trigger the pathogenesis of FXTAS. While increased expression of FMRpolyG leads to higher toxicity in FXTAS models, the pathogenic effect of this protein has only been studied in the presence of CGG-containing mRNA. Here we present a model that allows measurement of the effect of FMRpolyG-expression without co-expression of the corresponding CGG mRNA hairpin. This allows direct comparison of the effect of the FMRpolyG protein per se, vs. that of the FMRpolyG protein together with the CGG mRNA hairpin. Our results show that expression of the FMRpolyG, in the absence of any CGG mRNA, is sufficient to cause reduced cell viability, lamin ring disruption and aggregate formation. Furthermore, we found FMRpolyG to be a long-lived protein degraded primarily by the ubiquitin-proteasome-system. Together, our data indicate that accumulation of FMRpolyG protein per se may play a major role in the development of FXTAS.

11.
Autophagy ; 15(8): 1333-1355, 2019 08.
Article in English | MEDLINE | ID: mdl-30767700

ABSTRACT

Autophagosome formation depends on a carefully orchestrated interplay between membrane-associated protein complexes. Initiation of macroautophagy/autophagy is mediated by the ULK1 (unc-51 like autophagy activating kinase 1) protein kinase complex and the autophagy-specific class III phosphatidylinositol 3-kinase complex I (PtdIns3K-C1). The latter contains PIK3C3/VPS34, PIK3R4/VPS15, BECN1/Beclin 1 and ATG14 and phosphorylates phosphatidylinositol to generate phosphatidylinositol 3-phosphate (PtdIns3P). Here, we show that PIK3C3, BECN1 and ATG14 contain functional LIR motifs and interact with the Atg8-family proteins with a preference for GABARAP and GABARAPL1. High resolution crystal structures of the functional LIR motifs of these core components of PtdIns3K-C1were obtained. Variation in hydrophobic pocket 2 (HP2) may explain the specificity for the GABARAP family. Mutation of the LIR motif in ATG14 did not prevent formation of the PtdIns3K-C1 complex, but blocked colocalization with MAP1LC3B/LC3B and impaired mitophagy. The ULK-mediated phosphorylation of S29 in ATG14 was strongly dependent on a functional LIR motif in ATG14. GABARAP-preferring LIR motifs in PIK3C3, BECN1 and ATG14 may, via coincidence detection, contribute to scaffolding of PtdIns3K-C1 on membranes for efficient autophagosome formation. Abbreviations: ATG: autophagy-related; BafA1: bafilomycin A1; GABARAP: GABA type A receptor-associated protein; GABARAPL1: GABA type A receptor associated protein like 1; GFP: enhanced green fluorescent protein; KO: knockout; LDS: LIR docking site; LIR: LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; PIK3C3: phosphatidylinositol 3-kinase catalytic subunit type 3; PIK3R4: phosphoinositide-3-kinase regulatory subunit 4; PtdIns3K: phosphatidylinositol 3-kinase; PtdIns3P: phosphatidylinositol-3-phosphate; SQSTM1/p62: sequestosome 1; VPS: Vacuolar protein sorting; ULK: unc-51 like autophagy activating kinase.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Apoptosis Regulatory Proteins/metabolism , Autophagy , Class III Phosphatidylinositol 3-Kinases/chemistry , Class III Phosphatidylinositol 3-Kinases/metabolism , Microtubule-Associated Proteins/metabolism , Adaptor Proteins, Vesicular Transport/metabolism , Amino Acid Motifs , Amino Acid Sequence , Autophagy-Related Protein 8 Family/metabolism , Autophagy-Related Proteins/metabolism , Beclin-1/chemistry , Beclin-1/metabolism , HCT116 Cells , Humans , Hydrophobic and Hydrophilic Interactions , Mitophagy , Models, Molecular , Peptides/chemistry , Protein Binding
12.
BMC Cancer ; 18(1): 496, 2018 05 02.
Article in English | MEDLINE | ID: mdl-29716531

ABSTRACT

BACKGROUND: The transcription factor PAX6 is expressed in various cancers. In anaplastic astrocytic glioma, PAX6 expression is inversely related to tumor grade, resulting in low PAX6 expression in Glioblastoma, the highest-grade astrocytic glioma. The aim of the present study was to develop a PAX6 knock out cell line as a tool for molecular studies of the roles PAX6 have in attenuating glioblastoma tumor progression. METHODS: The CRISPR-Cas9 technique was used to knock out PAX6 in U251 N cells. Viral transduction of a doxycycline inducible EGFP-PAX6 expression vector was used to re-introduce (rescue) PAX6 expression in the PAX6 knock out cells. The knock out and rescued cells were rigorously characterized by analyzing morphology, proliferation, colony forming abilities and responses to oxidative stress and chemotherapeutic agents. RESULTS: The knock out cells had increased proliferation and colony forming abilities compared to wild type cells, consistent with clinical observations indicating that PAX6 functions as a tumor-suppressor. Cell cycle distribution and sensitivity to H2O2 induced oxidative stress were further studied, as well as the effect of different chemotherapeutic agents. For the PAX6 knock out cells, the percentage of cells in G2/M phase increased compared to PAX6 control cells, indicating that PAX6 keeps U251 N cells in the G1 phase of the cell cycle. Interestingly, PAX6 knock out cells were more resilient to H2O2 induced oxidative stress than wild type cells. Chemotherapy treatment is known to generate oxidative stress, hence the effect of several chemotherapeutic agents were tested. We discovered interesting differences in the sensitivity to chemotherapeutic drugs (Temozolomide, Withaferin A and Sulforaphane) between the PAX6 expressing and non-expressing cells. CONCLUSIONS: The U251 N PAX6 knock out cell lines generated can be used as a tool to study the molecular functions and mechanisms of PAX6 as a tumor suppressor with regard to tumor progression and treatment of glioblastoma.


Subject(s)
Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Cell Cycle/genetics , Gene Knockout Techniques , Glioblastoma/genetics , Glioblastoma/metabolism , Oxidative Stress , PAX6 Transcription Factor/genetics , Antineoplastic Agents/pharmacology , Biomarkers , CRISPR-Cas Systems , Cell Line, Tumor , Cell Movement , Cell Proliferation , Drug Resistance, Neoplasm/genetics , Gene Expression , Gene Targeting , Genes, Reporter , Genes, Tumor Suppressor , Humans
13.
Biochim Biophys Acta Mol Cell Res ; 1865(6): 908-919, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29604308

ABSTRACT

Autophagy is a catabolic process needed for maintaining cell viability and homeostasis in response to numerous stress conditions. Emerging evidence indicates that the ubiquitin system has a major role in this process. TRIMs, an E3 ligase protein family, contribute to selective autophagy acting as receptors and regulators of the autophagy proteins recognizing endogenous or exogenous targets through intermediary autophagic tags, such as ubiquitin. Here we report that TRIM50 fosters the initiation phase of starvation-induced autophagy and associates with Beclin1, a central component of autophagy initiation complex. We show that TRIM50, via the RING domain, ubiquitinates Beclin 1 in a K63-dependent manner enhancing its binding with ULK1 and autophagy activity. Finally, we found that the Lys-372 residue of TRIM50, critical for its own acetylation, is necessary for its E3 ligase activity that governs Beclin1 ubiquitination. Our study expands the roles of TRIMs in regulating selective autophagy, revealing an acetylation-ubiquitination dependent control for autophagy modulation.


Subject(s)
Beclin-1/metabolism , Membrane Proteins/metabolism , Tripartite Motif Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Acetylation , Animals , Autophagy , Autophagy-Related Protein-1 Homolog/genetics , Autophagy-Related Protein-1 Homolog/metabolism , Beclin-1/genetics , HEK293 Cells , HeLa Cells , Humans , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/genetics , Mice , Tripartite Motif Proteins/genetics , Ubiquitin-Protein Ligases/genetics , Ubiquitination
14.
EMBO Rep ; 18(6): 947-961, 2017 06.
Article in English | MEDLINE | ID: mdl-28381481

ABSTRACT

Mitophagy, the selective removal of damaged or excess mitochondria by autophagy, is an important process in cellular homeostasis. The outer mitochondrial membrane (OMM) proteins NIX, BNIP3, FUNDC1, and Bcl2-L13 recruit ATG8 proteins (LC3/GABARAP) to mitochondria during mitophagy. FKBP8 (also known as FKBP38), a unique member of the FK506-binding protein (FKBP) family, is similarly anchored in the OMM and acts as a multifunctional adaptor with anti-apoptotic activity. In a yeast two-hybrid screen, we identified FKBP8 as an ATG8-interacting protein. Here, we map an N-terminal LC3-interacting region (LIR) motif in FKBP8 that binds strongly to LC3A both in vitro and in vivo FKBP8 efficiently recruits lipidated LC3A to damaged mitochondria in a LIR-dependent manner. The mitophagy receptors BNIP3 and NIX in contrast are unable to mediate an efficient recruitment of LC3A even after mitochondrial damage. Co-expression of FKBP8 with LC3A profoundly induces Parkin-independent mitophagy. Strikingly, even when acting as a mitophagy receptor, FKBP8 avoids degradation by escaping from mitochondria. In summary, this study identifies novel roles for FKBP8 and LC3A, which act together to induce mitophagy.


Subject(s)
Microtubule-Associated Proteins/genetics , Mitophagy , Tacrolimus Binding Proteins/genetics , Ubiquitin-Protein Ligases/metabolism , HeLa Cells , Humans , Membrane Proteins/genetics , Membrane Proteins/metabolism , Microtubule-Associated Proteins/metabolism , Mitochondrial Membranes/metabolism , Mitochondrial Proteins/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Saccharomyces cerevisiae/metabolism , Tacrolimus Binding Proteins/metabolism , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Two-Hybrid System Techniques
15.
Autophagy ; 13(5): 834-853, 2017 May 04.
Article in English | MEDLINE | ID: mdl-28287329

ABSTRACT

The cysteine protease ATG4B cleaves off one or more C-terminal residues of the inactive proform of proteins of the ortholog and paralog LC3 and GABARAP subfamilies of yeast Atg8 to expose a C-terminal glycine that is conjugated to phosphatidylethanolamine during autophagosome formation. We show that ATG4B contains a C-terminal LC3-interacting region (LIR) motif important for efficient binding to and cleavage of LC3 and GABARAP proteins. We solved the crystal structures of the GABARAPL1-ATG4B C-terminal LIR complex. Analyses of the structures and in vitro binding assays, using specific point mutants, clearly showed that the ATG4B LIR binds via electrostatic-, aromatic HP1 and hydrophobic HP2 pocket interactions. Both these interactions and the catalytic site-substrate interaction contribute to binding between LC3s or GABARAPs and ATG4B. We also reveal an unexpected role for ATG4B in stabilizing the unlipidated forms of GABARAP and GABARAPL1. In mouse embryonic fibroblast (MEF) atg4b knockout cells, GABARAP and GABARAPL1 were unstable and degraded by the proteasome. Strikingly, the LIR motif of ATG4B was required for stabilization of the unlipidated forms of GABARAP and GABARAPL1 in cells.


Subject(s)
Autophagy-Related Protein 8 Family/metabolism , Autophagy-Related Proteins/metabolism , Autophagy/physiology , Cysteine Endopeptidases/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Animals , Cells, Cultured , Humans , Mice , Microfilament Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Yeasts
16.
J Biol Chem ; 290(24): 14945-62, 2015 Jun 12.
Article in English | MEDLINE | ID: mdl-25931115

ABSTRACT

The selective autophagy receptor p62/sequestosome 1 (SQSTM1) interacts directly with LC3 and is involved in oxidative stress signaling in two ways in mammals. First, p62 is transcriptionally induced upon oxidative stress by the NF-E2-related factor 2 (NRF2) by direct binding to an antioxidant response element in the p62 promoter. Second, p62 accumulation, occurring when autophagy is impaired, leads to increased p62 binding to the NRF2 inhibitor KEAP1, resulting in reduced proteasomal turnover of NRF2. This gives chronic oxidative stress signaling through a feed forward loop. Here, we show that the Drosophila p62/SQSTM1 orthologue, Ref(2)P, interacts directly with DmAtg8a via an LC3-interacting region motif, supporting a role for Ref(2)P in selective autophagy. The ref(2)P promoter also contains a functional antioxidant response element that is directly bound by the NRF2 orthologue, CncC, which can induce ref(2)P expression along with the oxidative stress-associated gene gstD1. However, distinct from the situation in mammals, Ref(2)P does not interact directly with DmKeap1 via a KEAP1-interacting region motif; nor does ectopically expressed Ref(2)P or autophagy deficiency activate the oxidative stress response. Instead, DmAtg8a interacts directly with DmKeap1, and DmKeap1 is removed upon programmed autophagy in Drosophila gut cells. Strikingly, CncC induced increased Atg8a levels and autophagy independent of TFEB/MitF in fat body and larval gut tissues. Thus, these results extend the intimate relationship between oxidative stress-sensing NRF2/CncC transcription factors and autophagy and suggest that NRF2/CncC may regulate autophagic activity in other organisms too.


Subject(s)
Autophagy/physiology , Drosophila Proteins/physiology , Transcription Factors/physiology , Amino Acid Sequence , Animals , Base Sequence , Cell Line , DNA Primers , Drosophila melanogaster , Humans , Molecular Sequence Data , Oxidative Stress , Polymerase Chain Reaction , Sequence Homology, Amino Acid , Transcription Factors/chemistry
17.
PLoS One ; 9(1): e85262, 2014.
Article in English | MEDLINE | ID: mdl-24416372

ABSTRACT

Organisms exposed to oxidative stress respond by orchestrating a stress response to prevent further damage. Intracellular levels of antioxidant agents increase, and damaged components are removed by autophagy induction. The KEAP1-NRF2 signaling pathway is the main pathway responsible for cell defense against oxidative stress and for maintaining the cellular redox balance at physiological levels. Sulforaphane, an isothiocyanate derived from cruciferous vegetables, is a potent inducer of KEAP1-NRF2 signaling and antioxidant response element driven gene expression. In this study, we show that sulforaphane enhances the expression of the transcriptional coregulator SPBP. The expression curve peaks 6-8 hours post stimulation, and parallels the sulforaphane-induced expression of NRF2 and the autophagy receptor protein p62/SQSTM1. Reporter gene assays show that SPBP stimulates the expression of p62/SQSTM1 via ARE elements in the promoter region, and siRNA mediated knock down of SPBP significantly decreases the expression of p62/SQSTM1 and the formation of p62/SQSTM1 bodies in HeLa cells. Furthermore, SPBP siRNA reduces the sulforaphane induced expression of NRF2, and the expression of the autophagy marker protein LC3B. Both these proteins contain ARE-like elements in their promoter regions. Over-expressed SPBP and NRF2 acts synergistically on the p62/SQSTM1 promoter and colocalize in nuclear speckles in HeLa cells. Collectively, these results suggest that SPBP is a coactivator of NRF2, and hence may be important for securing enhanced and sustained expression of NRF2 induced genes such as proteins involved in selective autophagy.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Anticarcinogenic Agents/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Isothiocyanates/pharmacology , NF-E2-Related Factor 2/genetics , Transcription Factors/genetics , Adaptor Proteins, Signal Transducing/metabolism , Autophagy/drug effects , HeLa Cells , Humans , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Kelch-Like ECH-Associated Protein 1 , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , NF-E2-Related Factor 2/metabolism , Promoter Regions, Genetic , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Sequestosome-1 Protein , Signal Transduction , Sulfoxides , Transcription Factors/antagonists & inhibitors , Transcription Factors/metabolism , Transcription, Genetic
18.
PLoS One ; 8(10): e78907, 2013.
Article in English | MEDLINE | ID: mdl-24205348

ABSTRACT

Our genome is assembled into and array of highly dynamic nucleosome structures allowing spatial and temporal access to DNA. The nucleosomes are subject to a wide array of post-translational modifications, altering the DNA-histone interaction and serving as docking sites for proteins exhibiting effector or "reader" modules. The nuclear proteins SPBP and RAI1 are composed of several putative "reader" modules which may have ability to recognise a set of histone modification marks. Here we have performed a phylogenetic study of their putative reader modules, the C-terminal ePHD/ADD like domain, a novel nucleosome binding region and an AT-hook motif. Interactions studies in vitro and in yeast cells suggested that despite the extraordinary long loop region in their ePHD/ADD-like chromatin binding domains, the C-terminal region of both proteins seem to adopt a cross-braced topology of zinc finger interactions similar to other structurally determined ePHD/ADD structures. Both their ePHD/ADD-like domain and their novel nucleosome binding domain are highly conserved in vertebrate evolution, and construction of a phylogenetic tree displayed two well supported clusters representing SPBP and RAI1, respectively. Their genome and domain organisation suggest that SPBP and RAI1 have occurred from a gene duplication event. The phylogenetic tree suggests that this duplication has happened early in vertebrate evolution, since only one gene was identified in insects and lancelet. Finally, experimental data confirm that the conserved novel nucleosome binding region of RAI1 has the ability to bind the nucleosome core and histones. However, an adjacent conserved AT-hook motif as identified in SPBP is not present in RAI1, and deletion of the novel nucleosome binding region of RAI1 did not significantly affect its nuclear localisation.


Subject(s)
Chromatin/metabolism , Evolution, Molecular , Phylogeny , Transcription Factors/metabolism , Animals , Conserved Sequence , Gene Expression Regulation , HeLa Cells , Humans , Molecular Sequence Data , Nucleosomes/metabolism , Protein Binding , Protein Structure, Tertiary , Species Specificity , Trans-Activators , Transcription Factors/chemistry , Transcription, Genetic , Zinc Fingers
19.
Biochem J ; 442(1): 65-75, 2012 Feb 15.
Article in English | MEDLINE | ID: mdl-22081970

ABSTRACT

Transcriptional regulation requires co-ordinated action of transcription factors, co-activator complexes and general transcription factors to access specific loci in the dense chromatin structure. In the present study we demonstrate that the transcriptional co-regulator SPBP [stromelysin-1 PDGF (platelet-derived growth factor)-responsive element binding protein] contains two independent chromatin-binding domains, the SPBP-(1551-1666) region and the C-terminal extended PHD [ePHD/ADD (extended plant homeodomain/ATRX-DNMT3-DNMT3L)] domain. The region 1551-1666 is a novel core nucleosome-interaction domain located adjacent to the AT-hook motif in the DNA-binding domain. This novel nucleosome-binding region is critically important for proper localization of SPBP in the cell nucleus. The ePHD/ADD domain associates with nucleosomes in a histone tail-dependent manner, and has significant impact on the dynamic interaction between SPBP and chromatin. Furthermore, SPBP and its homologue RAI1 (retinoic-acid-inducible protein 1), are strongly enriched on chromatin in interphase HeLa cells, and both proteins display low nuclear mobility. RAI1 contains a region with homology to the novel nucleosome-binding region SPBP-(1551-1666) and an ePHD/ADD domain with ability to bind nucleosomes. These results indicate that the transcriptional co-regulator SPBP and its homologue RAI1 implicated in Smith-Magenis syndrome and Potocki-Lupski syndrome both belong to the expanding family of chromatin-binding proteins containing several domains involved in specific chromatin interactions.


Subject(s)
Nucleosomes/metabolism , Transcription Factors/metabolism , Chromatin/metabolism , Euchromatin/metabolism , HeLa Cells , Humans , Protein Structure, Tertiary/physiology , Smith-Magenis Syndrome , Trans-Activators , Transcription Factors/chemistry
20.
PLoS One ; 6(9): e24659, 2011.
Article in English | MEDLINE | ID: mdl-21935435

ABSTRACT

The androgen receptor (AR) has a central role in development and maintenance of the male reproductive system and in the etiology of prostate cancer. The transcription factor Pax6 has recently been reported to act as a repressor of AR and to be hypermethylated in prostate cancer cells. SPBP is a transcriptional regulator that previously has been shown to enhance the activity of Pax6. In this study we have identified SPBP to act as a transcriptional coactivator of AR. We also show that Pax6 inhibits SPBP-mediated enhancement of AR activity on the AR target gene probasin promoter, a repression that was partly reversed by increased expression of SPBP. Enhanced expression of Pax6 reduced the amount of SPBP associated with the probasin promoter when assayed by ChIP in HeLa cells. We mapped the interaction between both AR and SPBP, and AR and Pax6 to the DNA-binding domains of the involved proteins. Further binding studies revealed that Pax6 and SPBP compete for binding to AR. These results suggest that Pax6 represses AR activity by displacing and/or inhibiting recruitment of coactivators to AR target promoters. Understanding the mechanism for inhibition of AR coactivators can give rise to molecular targeted drugs for treatment of prostate cancer.


Subject(s)
Eye Proteins/metabolism , Homeodomain Proteins/metabolism , Paired Box Transcription Factors/metabolism , Receptors, Androgen/metabolism , Repressor Proteins/metabolism , Transcription Factors/metabolism , Cell Line , Cell Line, Tumor , Cell Nucleus/metabolism , Chromatin Immunoprecipitation , Eye Proteins/genetics , Fluorescence Resonance Energy Transfer , HeLa Cells , Homeodomain Proteins/genetics , Humans , Immunoblotting , Immunoprecipitation , Microscopy, Confocal , PAX6 Transcription Factor , Paired Box Transcription Factors/genetics , Promoter Regions, Genetic/genetics , Protein Binding , Real-Time Polymerase Chain Reaction , Receptors, Androgen/genetics , Repressor Proteins/genetics , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...