Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
1.
Open Forum Infect Dis ; 10(8): ofad355, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37559753

ABSTRACT

Background: An urgent need remains for antiviral therapies to treat patients hospitalized with COVID-19. PF-07304814-the prodrug (lufotrelvir) and its active moiety (PF-00835231)-is a potent inhibitor of the SARS-CoV-2 3CL protease. Method: Eligible participants were 18 to 79 years old and hospitalized with confirmed COVID-19. This first-in-human phase 1b study was designed with 2 groups: single ascending dose (SAD) and multiple ascending dose (MAD). Participants could receive local standard-of-care therapy. In SAD, participants were randomized to receive a 24-hour infusion of lufotrelvir/placebo. In MAD, participants were randomized to receive a 120-hour infusion of lufotrelvir/placebo. The primary endpoint was to assess the safety and tolerability of lufotrelvir. The secondary endpoint was to evaluate the pharmacokinetics of lufotrelvir and PF-00835231. Results: In SAD, participants were randomized to receive 250 mg lufotrelvir (n = 2), 500 mg lufotrelvir (n = 2), or placebo (n = 4) by continuous 24-hour infusion. In MAD, participants were randomized to receive 250 mg lufotrelvir (n = 7), 500 mg lufotrelvir (n = 6), or placebo (n = 4) by continuous 120-hour infusion. No adverse events or serious adverse events were considered related to lufotrelvir. At doses of 250 and 500 mg, concentrations for the prodrug lufotrelvir and active moiety PF-00835231 increased in a dose-related manner. Unbound concentrations of the lufotrelvir active metabolite reached steady state approximately 2- and 4-fold that of in vitro EC90 following 250- and 500-mg doses, respectively. Conclusions: These safety and pharmacokinetic findings support the continued evaluation of lufotrelvir in clinical studies. Clinical Trials Registration. ClinicalTrials.gov NCT04535167.

2.
Alzheimers Dement ; 16(1): 131-143, 2020 01.
Article in English | MEDLINE | ID: mdl-31668596

ABSTRACT

INTRODUCTION: Frontotemporal lobar degeneration (FTLD) is the most common form of dementia for those under 60 years of age. Increasing numbers of therapeutics targeting FTLD syndromes are being developed. METHODS: In March 2018, the Association for Frontotemporal Degeneration convened the Frontotemporal Degeneration Study Group meeting in Washington, DC, to discuss advances in the clinical science of FTLD. RESULTS: Challenges exist for conducting clinical trials in FTLD. Two of the greatest challenges are (1) the heterogeneity of FTLD syndromes leading to difficulties in efficiently measuring treatment effects and (2) the rarity of FTLD disorders leading to recruitment challenges. DISCUSSION: New personalized endpoints that are clinically meaningful to individuals and their families should be developed. Personalized approaches to analyzing MRI data, development of new fluid biomarkers and wearable technologies will help to improve the power to detect treatment effects in FTLD clinical trials and enable new, clinical trial designs, possibly leveraged from the experience of oncology trials. A computational visualization and analysis platform that can support novel analyses of combined clinical, genetic, imaging, biomarker data with other novel modalities will be critical to the success of these endeavors.


Subject(s)
Biomarkers , Clinical Trials as Topic , Frontotemporal Lobar Degeneration/genetics , Magnetic Resonance Imaging , Atrophy , Congresses as Topic , Humans
3.
Acta Neuropathol ; 136(6): 821-853, 2018 12.
Article in English | MEDLINE | ID: mdl-30488277

ABSTRACT

Alzheimer's disease (AD) is a progressive neurodegenerative disease with a complex and heterogeneous pathophysiology. The number of people living with AD is predicted to increase; however, there are no disease-modifying therapies currently available and none have been successful in late-stage clinical trials. Fluid biomarkers measured in cerebrospinal fluid (CSF) or blood hold promise for enabling more effective drug development and establishing a more personalized medicine approach for AD diagnosis and treatment. Biomarkers used in drug development programmes should be qualified for a specific context of use (COU). These COUs include, but are not limited to, subject/patient selection, assessment of disease state and/or prognosis, assessment of mechanism of action, dose optimization, drug response monitoring, efficacy maximization, and toxicity/adverse reactions identification and minimization. The core AD CSF biomarkers Aß42, t-tau, and p-tau are recognized by research guidelines for their diagnostic utility and are being considered for qualification for subject selection in clinical trials. However, there is a need to better understand their potential for other COUs, as well as identify additional fluid biomarkers reflecting other aspects of AD pathophysiology. Several novel fluid biomarkers have been proposed, but their role in AD pathology and their use as AD biomarkers have yet to be validated. In this review, we summarize some of the pathological mechanisms implicated in the sporadic AD and highlight the data for several established and novel fluid biomarkers (including BACE1, TREM2, YKL-40, IP-10, neurogranin, SNAP-25, synaptotagmin, α-synuclein, TDP-43, ferritin, VILIP-1, and NF-L) associated with each mechanism. We discuss the potential COUs for each biomarker.


Subject(s)
Alzheimer Disease/cerebrospinal fluid , Biomarkers/cerebrospinal fluid , Humans
4.
Alzheimers Dement (N Y) ; 4: 234-242, 2018.
Article in English | MEDLINE | ID: mdl-29955666

ABSTRACT

Digital technology is transforming the development of drugs for Alzheimer's disease and was the topic of the Alzheimer's Association's Research Roundtable on its May 23-24, 2017 meeting. Research indicates that wearable devices and unobtrusive passive sensors that enable the collection of frequent or continuous, objective, and multidimensional data during daily activities may capture subtle changes in cognition and functional capacity long before the onset of dementia. The potential to exploit these technologies to improve clinical trials as both recruitment and retention tools as well as for potential end points was discussed. The implications for the collection and use of large amounts of data, lessons learned from other related disease areas, ethical concerns raised by these new technologies, and regulatory issues were also covered in the meeting. Finally, the challenges and opportunities of these new technologies for future use were discussed.

5.
CPT Pharmacometrics Syst Pharmacol ; 6(10): 695-704, 2017 10.
Article in English | MEDLINE | ID: mdl-28699195

ABSTRACT

Recently, the US Food and Drug Administration (FDA) approved the first two drugs (pirfenidone and nintedanib) indicated for the treatment of idiopathic pulmonary fibrosis (IPF). The purpose of this analysis was to leverage publicly available data to quantify comparative efficacy of compounds that are approved or in development. An analysis-ready database was developed, and the analysis dataset is composed of summary-level data from 43 arms in 20 trials, with treatment durations ranging from 8-104 weeks. A hierarchical multivariable regression model with nonparametric placebo estimation was used to fit the longitudinal profile of change from baseline of percent predicted forced vital capacity (%predicted FVC) data. Pirfenidone and nintedanib were the only drugs identified to have significant estimated positive treatment effects. Model simulations were performed to further evaluate the covariate and time course of treatment effects on longitudinal change from baseline %predicted FVC to inform future trial designs and support decision making.


Subject(s)
Idiopathic Pulmonary Fibrosis/drug therapy , Indoles/therapeutic use , Pyridones/therapeutic use , Humans , Models, Statistical , Regression Analysis , Treatment Outcome , Vital Capacity
6.
Hum Mol Genet ; 25(18): 3975-3987, 2016 09 15.
Article in English | MEDLINE | ID: mdl-27466197

ABSTRACT

Pridopidine has demonstrated improvement in Huntington Disease (HD) motor symptoms as measured by secondary endpoints in clinical trials. Originally described as a dopamine stabilizer, this mechanism is insufficient to explain the clinical and preclinical effects of pridopidine. This study therefore explored pridopidine's potential mechanisms of action. The effect of pridopidine versus sham treatment on genome-wide expression profiling in the rat striatum was analysed and compared to the pathological expression profile in Q175 knock-in (Q175 KI) vs Q25 WT mouse models. A broad, unbiased pathway analysis was conducted, followed by testing the enrichment of relevant pathways. Pridopidine upregulated the BDNF pathway (P = 1.73E-10), and its effect on BDNF secretion was sigma 1 receptor (S1R) dependent. Many of the same genes were independently found to be downregulated in Q175 KI mice compared to WT (5.2e-7 < P < 0.04). In addition, pridopidine treatment upregulated the glucocorticoid receptor (GR) response, D1R-associated genes and the AKT/PI3K pathway (P = 1E-10, P = 0.001, P = 0.004, respectively). Pridopidine upregulates expression of BDNF, D1R, GR and AKT/PI3K pathways, known to promote neuronal plasticity and survival, as well as reported to demonstrate therapeutic benefit in HD animal models. Activation of S1R, necessary for its effect on the BDNF pathway, represents a core component of the mode of action of pridopidine. Since the newly identified pathways are downregulated in neurodegenerative diseases, including HD, these findings suggest that pridopidine may exert neuroprotective effects beyond its role in alleviating some symptoms of HD.


Subject(s)
Brain-Derived Neurotrophic Factor/biosynthesis , Corpus Striatum/metabolism , Huntington Disease/drug therapy , Neuroprotective Agents/administration & dosage , Piperidines/administration & dosage , Animals , Brain-Derived Neurotrophic Factor/genetics , Corpus Striatum/drug effects , Corpus Striatum/pathology , Disease Models, Animal , Gene Expression Regulation/genetics , Genome , Humans , Huntington Disease/genetics , Huntington Disease/pathology , Mice , Neuroprotective Agents/metabolism , Rats , Receptors, Dopamine D5/biosynthesis , Receptors, Dopamine D5/genetics , Receptors, Glucocorticoid/biosynthesis , Receptors, Glucocorticoid/genetics , Signal Transduction/drug effects
7.
J Pharmacol Exp Ther ; 358(1): 138-50, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27189973

ABSTRACT

The pharmacokinetics, pharmacodynamics, safety, and tolerability of BMS-932481, a γ-secretase modulator (GSM), were tested in healthy young and elderly volunteers after single and multiple doses. BMS-932481 was orally absorbed, showed dose proportionality after a single dose administration, and had approximately 3-fold accumulation after multiple dosing. High-fat/caloric meals doubled the Cmax and area under the curve and prolonged Tmax by 1.5 hours. Consistent with the preclinical pharmacology of GSMs, BMS-932481 decreased cerebrospinal fluid (CSF) Aß39, Aß40, and Aß42 while increasing Aß37 and Aß38, thereby providing evidence of γ-secretase enzyme modulation rather than inhibition. In plasma, reductions in Aß40 and Aß42 were observed with no change in total Aß; in CSF, modest decreases in total Aß were observed at higher dose levels. Increases in liver enzymes were observed at exposures associated with greater than 70% CSF Aß42 lowering after multiple dosing. Although further development was halted due to an insufficient safety margin to test the hypothesis for efficacy of Aß lowering in Alzheimer's disease, this study demonstrates that γ-secretase modulation is achievable in healthy human volunteers and supports further efforts to discover well tolerated GSMs for testing in Alzheimer's disease and other indications.


Subject(s)
Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Peptides , Aniline Compounds/pharmacology , Aniline Compounds/pharmacokinetics , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics , Pyrimidines/pharmacology , Pyrimidines/pharmacokinetics , Adolescent , Adult , Alzheimer Disease/drug therapy , Alzheimer Disease/enzymology , Amyloid beta-Peptides/blood , Amyloid beta-Peptides/cerebrospinal fluid , Aniline Compounds/adverse effects , Aniline Compounds/chemistry , Anti-Inflammatory Agents, Non-Steroidal/adverse effects , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Area Under Curve , Chromatography, Liquid , Dose-Response Relationship, Drug , Double-Blind Method , Female , Healthy Volunteers , Humans , Limit of Detection , Male , Mass Spectrometry , Middle Aged , Pyrimidines/adverse effects , Pyrimidines/chemistry , Young Adult
8.
J Pharmacol Exp Ther ; 358(1): 125-37, 2016 07.
Article in English | MEDLINE | ID: mdl-27189974

ABSTRACT

The amyloid-ß peptide (Aß)-in particular, the 42-amino acid form, Aß1-42-is thought to play a key role in the pathogenesis of Alzheimer's disease (AD). Thus, several therapeutic modalities aiming to inhibit Aß synthesis or increase the clearance of Aß have entered clinical trials, including γ-secretase inhibitors, anti-Aß antibodies, and amyloid-ß precursor protein cleaving enzyme inhibitors. A unique class of small molecules, γ-secretase modulators (GSMs), selectively reduce Aß1-42 production, and may also decrease Aß1-40 while simultaneously increasing one or more shorter Aß peptides, such as Aß1-38 and Aß1-37. GSMs are particularly attractive because they do not alter the total amount of Aß peptides produced by γ-secretase activity; they spare the processing of other γ-secretase substrates, such as Notch; and they do not cause accumulation of the potentially toxic processing intermediate, ß-C-terminal fragment. This report describes the translation of pharmacological activity across species for two novel GSMs, (S)-7-(4-fluorophenyl)-N2-(3-methoxy-4-(3-methyl-1H-1,2,4-triazol-1-yl)phenyl)-N4-methyl-6,7-dihydro-5H-cyclopenta[d]pyrimidine-2,4-diamine (BMS-932481) and (S,Z)-17-(4-chloro-2-fluorophenyl)-34-(3-methyl-1H-1,2,4-triazol-1-yl)-16,17-dihydro-15H-4-oxa-2,9-diaza-1(2,4)-cyclopenta[d]pyrimidina-3(1,3)-benzenacyclononaphan-6-ene (BMS-986133). These GSMs are highly potent in vitro, exhibit dose- and time-dependent activity in vivo, and have consistent levels of pharmacological effect across rats, dogs, monkeys, and human subjects. In rats, the two GSMs exhibit similar pharmacokinetics/pharmacodynamics between the brain and cerebrospinal fluid. In all species, GSM treatment decreased Aß1-42 and Aß1-40 levels while increasing Aß1-38 and Aß1-37 by a corresponding amount. Thus, the GSM mechanism and central activity translate across preclinical species and humans, thereby validating this therapeutic modality for potential utility in AD.


Subject(s)
Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Peptides/antagonists & inhibitors , Aniline Compounds/pharmacology , Aniline Compounds/pharmacokinetics , Brain/drug effects , Bridged-Ring Compounds/pharmacology , Bridged-Ring Compounds/pharmacokinetics , Pyrimidines/pharmacology , Pyrimidines/pharmacokinetics , Amyloid beta-Peptides/cerebrospinal fluid , Amyloid beta-Peptides/genetics , Aniline Compounds/chemistry , Animals , Brain/enzymology , Brain/metabolism , Bridged-Ring Compounds/chemistry , Cell Line , Dogs , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Female , Humans , Macaca fascicularis , Pyrimidines/chemistry , Rats, Sprague-Dawley , Receptors, Notch/metabolism , Species Specificity , Tissue Distribution
9.
Alzheimers Dement (Amst) ; 1(3): 339-348, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26693175

ABSTRACT

INTRODUCTION: The dynamic range of cerebrospinal fluid (CSF) amyloid ß (Aß1-42) measurement does not parallel to cognitive changes in Alzheimer's disease (AD) and cognitively normal (CN) subjects across different studies. Therefore, identifying novel proteins to characterize symptomatic AD samples is important. METHODS: Proteins were profiled using a multianalyte platform by Rules Based Medicine (MAP-RBM). Due to underlying heterogeneity and unbalanced sample size, we combined subjects (344 AD and 325 CN) from three cohorts: Alzheimer's Disease Neuroimaging Initiative, Penn Center for Neurodegenerative Disease Research of the University of Pennsylvania, and Knight Alzheimer's Disease Research Center at Washington University in St. Louis. We focused on samples whose cognitive and amyloid status was consistent. We performed linear regression (accounted for age, gender, number of APOE e4 alleles, and cohort variable) to identify amyloid-related proteins for symptomatic AD subjects in this largest ever CSF-based MAP-RBM study. ANOVA and Tukey's test were used to evaluate if these proteins were related to cognitive impairment changes as measured by mini-mental state examination (MMSE). RESULTS: Seven proteins were significantly associated with Aß1-42 levels in the combined cohort (false discovery rate adjusted P < .05), of which lipoprotein a (Lp(a)), prolactin (PRL), resistin, and vascular endothelial growth factor (VEGF) have consistent direction of associations across every individual cohort. VEGF was strongly associated with MMSE scores, followed by pancreatic polypeptide and immunoglobulin A (IgA), suggesting they may be related to staging of AD. DISCUSSION: Lp(a), PRL, IgA, and tissue factor/thromboplastin have never been reported for AD diagnosis in previous individual CSF-based MAP-RBM studies. Although some of our reported analytes are related to AD pathophysiology, others' roles in symptomatic AD samples worth further explorations.

10.
JAMA Neurol ; 72(11): 1324-33, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26414022

ABSTRACT

IMPORTANCE: Early identification of Alzheimer disease (AD) is important for clinical management and affords the opportunity to assess potential disease-modifying agents in clinical trials. To our knowledge, this is the first report of a randomized trial to prospectively enrich a study population with prodromal AD (PDAD) defined by cerebrospinal fluid (CSF) biomarker criteria and mild cognitive impairment (MCI) symptoms. OBJECTIVES: To assess the safety of the γ-secretase inhibitor avagacestat in PDAD and to determine whether CSF biomarkers can identify this patient population prior to clinical diagnosis of dementia. DESIGN, SETTING, AND PARTICIPANTS: A randomized, placebo-controlled phase 2 clinical trial with a parallel, untreated, nonrandomized observational cohort of CSF biomarker-negative participants was conducted May 26, 2009, to July 9, 2013, in a multicenter global population. Of 1358 outpatients screened, 263 met MCI and CSF biomarker criteria for randomization into the treatment phase. One hundred two observational cohort participants who met MCI criteria but were CSF biomarker-negative were observed during the same study period to evaluate biomarker assay sensitivity. INTERVENTIONS: Oral avagacestat or placebo daily. MAIN OUTCOMES AND MEASURE: Safety and tolerability of avagacestat. RESULTS: Of the 263 participants in the treatment phase, 132 were randomized to avagacestat and 131 to placebo; an additional 102 participants were observed in an untreated observational cohort. Avagacestat was relatively well tolerated with low discontinuation rates (19.6%) at a dose of 50 mg/d, whereas the dose of 125 mg/d had higher discontinuation rates (43%), primarily attributable to gastrointestinal tract adverse events. Increases in nonmelanoma skin cancer and nonprogressive, reversible renal tubule effects were observed with avagacestat. Serious adverse event rates were higher with avagacestat (49 participants [37.1%]) vs placebo (31 [23.7%]), attributable to the higher incidence of nonmelanoma skin cancer. At 2 years, progression to dementia was more frequent in the PDAD cohort (30.7%) vs the observational cohort (6.5%). Brain atrophy rate in PDAD participants was approximately double that of the observational cohort. Concordance between abnormal amyloid burden on positron emission tomography and pathologic CSF was approximately 87% (κ = 0.68; 95% CI, 0.48-0.87). No significant treatment differences were observed in the avagacestat vs placebo arm in key clinical outcome measures. CONCLUSIONS AND RELEVANCE: Avagacestat did not demonstrate efficacy and was associated with adverse dose-limiting effects. This PDAD population receiving avagacestat or placebo had higher rates of clinical progression to dementia and greater brain atrophy compared with CSF biomarker-negative participants. The CSF biomarkers and amyloid positron emission tomography imaging were correlated, suggesting that either modality could be used to confirm the presence of cerebral amyloidopathy and identify PDAD. TRIAL REGISTRATION: clinicaltrials.gov Identifier: NCT00890890.


Subject(s)
Alzheimer Disease/prevention & control , Cognitive Dysfunction/drug therapy , Disease Progression , Oxadiazoles/adverse effects , Oxadiazoles/pharmacology , Prodromal Symptoms , Skin Neoplasms/chemically induced , Sulfonamides/adverse effects , Sulfonamides/pharmacology , Aged , Aged, 80 and over , Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , Atrophy/pathology , Cognitive Dysfunction/cerebrospinal fluid , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/pathology , Female , Humans , Male , Oxadiazoles/administration & dosage , Radionuclide Imaging , Sulfonamides/administration & dosage , Treatment Failure
11.
Alzheimers Dement ; 11(7): 772-91, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26194312

ABSTRACT

INTRODUCTION: We describe Alzheimer's Disease Neuroimaging Initiative (ADNI) Biomarker Core progress including: the Biobank; cerebrospinal fluid (CSF) amyloid beta (Aß1-42), t-tau, and p-tau181 analytical performance, definition of Alzheimer's disease (AD) profile for plaque, and tangle burden detection and increased risk for progression to AD; AD disease heterogeneity; progress in standardization; and new studies using ADNI biofluids. METHODS: Review publications authored or coauthored by ADNI Biomarker core faculty and selected non-ADNI studies to deepen the understanding and interpretation of CSF Aß1-42, t-tau, and p-tau181 data. RESULTS: CSF AD biomarker measurements with the qualified AlzBio3 immunoassay detects neuropathologic AD hallmarks in preclinical and prodromal disease stages, based on CSF studies in non-ADNI living subjects followed by the autopsy confirmation of AD. Collaboration across ADNI cores generated the temporal ordering model of AD biomarkers varying across individuals because of genetic/environmental factors that increase/decrease resilience to AD pathologies. DISCUSSION: Further studies will refine this model and enable the use of biomarkers studied in ADNI clinically and in disease-modifying therapeutic trials.


Subject(s)
Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/diagnosis , Amyloid beta-Peptides/cerebrospinal fluid , Peptide Fragments/cerebrospinal fluid , tau Proteins/cerebrospinal fluid , Databases, Bibliographic/statistics & numerical data , Humans
12.
Alzheimers Dement ; 11(7): 792-814, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26194313

ABSTRACT

INTRODUCTION: Genetic data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) have been crucial in advancing the understanding of Alzheimer's disease (AD) pathophysiology. Here, we provide an update on sample collection, scientific progress and opportunities, conceptual issues, and future plans. METHODS: Lymphoblastoid cell lines and DNA and RNA samples from blood have been collected and banked, and data and biosamples have been widely disseminated. To date, APOE genotyping, genome-wide association study (GWAS), and whole exome and whole genome sequencing data have been obtained and disseminated. RESULTS: ADNI genetic data have been downloaded thousands of times, and >300 publications have resulted, including reports of large-scale GWAS by consortia to which ADNI contributed. Many of the first applications of quantitative endophenotype association studies used ADNI data, including some of the earliest GWAS and pathway-based studies of biospecimen and imaging biomarkers, as well as memory and other clinical/cognitive variables. Other contributions include some of the first whole exome and whole genome sequencing data sets and reports in healthy controls, mild cognitive impairment, and AD. DISCUSSION: Numerous genetic susceptibility and protective markers for AD and disease biomarkers have been identified and replicated using ADNI data and have heavily implicated immune, mitochondrial, cell cycle/fate, and other biological processes. Early sequencing studies suggest that rare and structural variants are likely to account for significant additional phenotypic variation. Longitudinal analyses of transcriptomic, proteomic, metabolomic, and epigenomic changes will also further elucidate dynamic processes underlying preclinical and prodromal stages of disease. Integration of this unique collection of multiomics data within a systems biology framework will help to separate truly informative markers of early disease mechanisms and potential novel therapeutic targets from the vast background of less relevant biological processes. Fortunately, a broad swath of the scientific community has accepted this grand challenge.


Subject(s)
Alzheimer Disease/diagnosis , Alzheimer Disease/genetics , Biomarkers/metabolism , Cognitive Dysfunction/genetics , Apolipoproteins E/genetics , Databases, Bibliographic/statistics & numerical data , Disease Progression , Genetic Association Studies , Humans , Membrane Transport Proteins/genetics , Mitochondrial Precursor Protein Import Complex Proteins , Neuroimaging
13.
Alzheimers Dement ; 11(7): 840-9, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26194317

ABSTRACT

The Alzheimer's Disease Neuroimaging Initiative (ADNI) Private Partner Scientific Board (PPSB) is comprised of representatives of private, for-profit entities (including pharmaceutical, biotechnology, diagnostics, imaging companies, and imaging contract research organizations), and nonprofit organizations that provide financial and scientific support to ADNI through the Foundation for the National Institutes of Health. The PPSB serves as an independent, open, and precompetitive forum in which all private sector and not-for-profit partners in ADNI can collaborate, share information, and offer scientific and private-sector perspectives and expertise on issues relating to the ADNI project. In this article, we review and highlight the role, activities, and contributions of the PPSB within the ADNI project, and provide a perspective on remaining unmet needs and future directions.


Subject(s)
Alzheimer Disease/diagnosis , Consultants , Neuroimaging/methods , Public-Private Sector Partnerships , Alzheimer Disease/complications , Biotechnology , Cognition Disorders/etiology , Drug Industry , Humans , United States
14.
Alzheimers Res Ther ; 7(1): 53, 2015.
Article in English | MEDLINE | ID: mdl-26225140

ABSTRACT

INTRODUCTION: Amyloid-ß (Aß) has been investigated as a diagnostic biomarker and therapeutic drug target. Recent studies found that cerebrospinal fluid (CSF) Aß fluctuates over time, including as a diurnal pattern, and increases in absolute concentration with serial collection. It is currently unknown what effect differences in CSF collection methodology have on Aß variability. In this study, we sought to determine the effect of different collection methodologies on the stability of CSF Aß concentrations over time. METHODS: Grouped analysis of CSF Aß levels from multiple industry and academic groups collected by either lumbar puncture (n=83) or indwelling lumbar catheter (n=178). Participants were either placebo or untreated subjects from clinical drug trials or observational studies. Participants had CSF collected by lumbar puncture or lumbar catheter for quantitation of Aß concentration by enzyme linked immunosorbent assay. Data from all sponsors was converted to percent of the mean for Aß40 and Aß42 for comparison. Repeated measures analysis of variance was performed to assess for factors affecting the linear rise of Aß concentrations over time. RESULTS: Analysis of studies collecting CSF via lumbar catheter revealed tremendous inter-subject variability of Aß40 and Aß42 as well as an Aß diurnal pattern in all of the sponsors' studies. In contrast, Aß concentrations from CSF samples collected at two time points by lumbar puncture showed no significant differences. Repeated measures analysis of variance found that only time and draw frequency were significantly associated with the slope of linear rise in Aß40 and Aß42 concentrations during the first 6 hours of collection. CONCLUSIONS: Based on our findings, we recommend minimizing the frequency of CSF draws in studies measuring Aß levels and keeping the frequency standardized between experimental groups. The Aß diurnal pattern was noted in all sponsors' studies and was not an artifact of study design. Averaging Aß concentrations at each time point is recommended to minimize the effect of individual variability. Indwelling lumbar catheters are an invaluable research tool for following changes in CSF Aß over 24-48 hours, but factors affecting Aß concentration such as linear rise and diurnal variation need to be accounted for in planning study designs.


Subject(s)
Amyloid beta-Peptides/cerebrospinal fluid , Catheters, Indwelling , Peptide Fragments/cerebrospinal fluid , Spinal Puncture/methods , Adult , Aged , Alzheimer Disease/cerebrospinal fluid , Analysis of Variance , Enzyme-Linked Immunosorbent Assay , Female , Humans , Linear Models , Male , Middle Aged , Photoperiod , Reproducibility of Results , Spinal Puncture/instrumentation , Time Factors , Young Adult
15.
Alzheimers Dement ; 11(5): 549-60, 2015 May.
Article in English | MEDLINE | ID: mdl-25282381

ABSTRACT

The lack of readily available biomarkers is a significant hindrance toward progressing to effective therapeutic and preventative strategies for Alzheimer's disease (AD). Blood-based biomarkers have potential to overcome access and cost barriers and greatly facilitate advanced neuroimaging and cerebrospinal fluid biomarker approaches. Despite the fact that preanalytical processing is the largest source of variability in laboratory testing, there are no currently available standardized preanalytical guidelines. The current international working group provides the initial starting point for such guidelines for standardized operating procedures (SOPs). It is anticipated that these guidelines will be updated as additional research findings become available. The statement provides (1) a synopsis of selected preanalytical methods utilized in many international AD cohort studies, (2) initial draft guidelines/SOPs for preanalytical methods, and (3) a list of required methodological information and protocols to be made available for publications in the field to foster cross-validation across cohorts and laboratories.


Subject(s)
Alzheimer Disease/blood , Biomarkers/blood , Guidelines as Topic/standards , Alzheimer Disease/cerebrospinal fluid , Biomarkers/cerebrospinal fluid , Humans
16.
Dement Geriatr Cogn Disord ; 39(3-4): 154-66, 2015.
Article in English | MEDLINE | ID: mdl-25547651

ABSTRACT

Apolipoprotein E (APOE) genotype is the strongest known genetic risk factor for sporadic Alzheimer's disease (AD), but the utility of plasma ApoE levels for assessing the severity of underlying neurodegenerative changes remains uncertain. Here, we examined cross-sectional associations between plasma ApoE levels and volumetric magnetic resonance imaging indices of the hippocampus from 541 participants [57 with normal cognition (NC), 375 with mild cognitive impairment (MCI), and 109 with mild AD] who were enrolled in the Alzheimer's Disease Neuroimaging Initiative. Across the NC and MCI groups, lower plasma ApoE levels were significantly correlated with smaller hippocampal size, as measured by either hippocampal volume or hippocampal radial distance. These associations were driven primarily by findings from carriers of an APOE ε4 allele and are consistent with prior reports that lower plasma ApoE levels correlate with greater global cortical Pittsburgh Compound B retention. In this high-risk group, plasma ApoE levels may represent a peripheral marker of underlying AD neuropathology in nondemented elderly individuals.


Subject(s)
Alzheimer Disease/blood , Apolipoprotein E4/blood , Cognitive Dysfunction/genetics , Hippocampus/pathology , Aged , Aged, 80 and over , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Amyloid beta-Peptides , Apolipoprotein E4/genetics , Biomarkers/blood , Cross-Sectional Studies , Female , Genotype , Humans , Longitudinal Studies , Magnetic Resonance Imaging/methods , Male , Middle Aged , Neuroimaging/methods , Neuropsychological Tests , Organ Size
17.
J Neurol Neurosurg Psychiatry ; 86(3): 244-50, 2015 Mar.
Article in English | MEDLINE | ID: mdl-24899730

ABSTRACT

BACKGROUND: Elevated CSF τ is considered a biomarker of neuronal injury in newly developed Alzheimer's disease (AD) and mild cognitive impairment (MCI) criteria. However, previous studies have failed to detect alterations of τ species in other primary tauopathies. We assessed CSF τ protein abnormalities in AD, a tauopathy with prominent Aß pathology, and progressive supranuclear palsy (PSP), a primary tauopathy characterised by deposition of four microtubule-binding repeat (4R) τ with minimal Aß pathology. METHODS: 26 normal control (NC), 37 AD, and 24 patients with PSP participated in the study. AD and PSP were matched for severity using the clinical dementia rating sum of boxes (CDR-sb) scores. The INNO BIA AlzBio3 multiplex immunoassay was used to measure CSF Aß, total τ, and ptau181. Additional, novel ELISAs targeting different N-terminal and central τ epitopes were developed to examine CSF τ components and to investigate interactions between diagnostic group, demographics and genetic variables. RESULTS: PSP had lower CSF N-terminal and C-terminal τ concentrations than NC and AD measured with the novel τ ELISAs and the standard AlzBio3 τ and ptau assays. AD had higher total τ and ptau levels than NC and PSP. There was a gender by diagnosis interaction in AD and PSP for most τ species, with lower concentrations for male compared to female patients. CONCLUSIONS: CSF τ fragment concentrations are different in PSP compared with AD despite the presence of severe τ pathology and neuronal injury in both disorders. CSF τ concentration likely reflects multiple factors in addition to the degree of neuronal injury.


Subject(s)
Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/diagnosis , Supranuclear Palsy, Progressive/cerebrospinal fluid , Supranuclear Palsy, Progressive/diagnosis , Tauopathies/cerebrospinal fluid , tau Proteins/cerebrospinal fluid , Aged , Alzheimer Disease/classification , Alzheimer Disease/genetics , Amyloid beta-Peptides/cerebrospinal fluid , Amyloid beta-Peptides/genetics , Apolipoprotein E4/genetics , Biomarkers/cerebrospinal fluid , Enzyme-Linked Immunosorbent Assay , Female , Humans , Male , Mental Status Schedule , Middle Aged , Neuropsychological Tests , Peptide Fragments/cerebrospinal fluid , Peptide Fragments/genetics , Phosphorylation , Prognosis , Reference Values , Supranuclear Palsy, Progressive/classification , Supranuclear Palsy, Progressive/genetics
18.
Alzheimers Dement ; 10(4): 421-429.e3, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24985687

ABSTRACT

BACKGROUND: Regulatory qualification of a biomarker for a defined context of use provides scientifically robust assurances to sponsors and regulators that accelerate appropriate adoption of biomarkers into drug development. METHODS: The Coalition Against Major Diseases submitted a dossier to the Scientific Advice Working Party of the European Medicines Agency requesting a qualification opinion on the use of hippocampal volume as a biomarker for enriching clinical trials in subjects with mild cognitive impairment, incorporating a scientific rationale, a literature review and a de novo analysis of Alzheimer's Disease Neuroimaging Initiative data. RESULTS: The literature review and de novo analysis were consistent with the proposed context of use, and the Committee for Medicinal Products for Human Use released an opinion in November 2011. CONCLUSIONS: We summarize the scientific rationale and the data that supported the first qualification of an imaging biomarker by the European Medicines Agency.


Subject(s)
Alzheimer Disease/diagnosis , Alzheimer Disease/therapy , Clinical Trials as Topic , Hippocampus/pathology , Cognitive Dysfunction , Databases, Factual/statistics & numerical data , Disease Progression , Europe , Humans , Neuroimaging , Proportional Hazards Models , ROC Curve
19.
PLoS One ; 9(2): e89041, 2014.
Article in English | MEDLINE | ID: mdl-24558469

ABSTRACT

BACKGROUND: Peripheral blood Apolipoprotein E (ApoE) levels have been proposed as biomarkers of Alzheimer's disease (AD), but previous studies on levels of ApoE in blood remain inconsistent. This meta-analysis was designed to re-examine the potential role of peripheral ApoE in AD diagnosis and its potential value as a candidate biomarker. METHODS: We conducted a systematic literature search of MEDLINE, EMBASE, the Cochrane library, and BIOSIS previews for case-control studies measuring ApoE levels in serum or plasma from AD subjects and healthy controls. The pooled weighted mean difference (WMD) and 95% confidence interval (CI) were used to estimate the association between ApoE levels and AD risk. RESULTS: Eight studies with a total of 2250 controls and 1498 AD cases were identified and analyzed. The pooled WMD from a random-effect model of AD participants compared with the healthy controls was -5.59 mg/l (95% CI: [-8.12, -3.06]). The overall pattern in WMD was not varied by characteristics of study, including age, country, assay method, publication year, and sample type. CONCLUSIONS: Our meta-analysis supports a lowered level of blood ApoE in AD patients, and indicates its potential value as an important risk factor for AD. Further investigation employing standardized assay for ApoE measurement are still warranted to uncover the precise role of ApoE in the pathophysiology of AD.


Subject(s)
Alzheimer Disease/blood , Apolipoproteins E/blood , Biomarkers/blood , Humans , Models, Statistical , Risk Factors
20.
Alzheimers Dement ; 10(1): e9-e18, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23541187

ABSTRACT

BACKGROUND: Apolipoprotein E (APOE) ε4 allele's role as a modulator of the relationship between soluble plasma amyloid beta (Aß) and fibrillar brain Aß measured by Pittsburgh compound B positron emission tomography ([(11)C]PiB PET) has not been assessed. METHODS: Ninety-six Alzheimer's Disease Neuroimaging Initiative participants with [(11)C]PiB scans and plasma Aß1-40 and Aß1-42 measurements at the time of PET scanning were included. Regional and voxelwise analyses of [(11)C]PiB data were used to determine the influence of APOE ε4 allele on association of plasma Aß1-40, Aß1-42, and Aß1-40/Aß1-42 with [(11)C]PiB uptake. RESULTS: In APOE ε4- but not ε4+ participants, positive relationships between plasma Aß1-40/Aß1-42 and [(11)C]PiB uptake were observed. Modeling the interaction of APOE and plasma Aß1-40/Aß1-42 improved the explained variance in [(11)C]PiB binding compared with using APOE and plasma Aß1-40/Aß1-42 as separate terms. CONCLUSIONS: The results suggest that plasma Aß is a potential Alzheimer's disease biomarker and highlight the importance of genetic variation in interpretation of plasma Aß levels.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides/metabolism , Cerebral Cortex/metabolism , Cognitive Dysfunction , Peptide Fragments/metabolism , Aged , Aged, 80 and over , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Aniline Compounds , Apolipoproteins E/genetics , Brain/diagnostic imaging , Cognitive Dysfunction/genetics , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/pathology , Female , Humans , Male , Neuropsychological Tests , Positron-Emission Tomography , Radiopharmaceuticals , Thiazoles
SELECTION OF CITATIONS
SEARCH DETAIL
...