Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 939: 173461, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38815836

ABSTRACT

Thousands tons of discards of blue whiting (BW) and tuna heads (YT) by-products are generated each year in Europe. BW is the species most discarded by European fishing fleet and, in some canning factories, YT are processed for the retrieval of oil rich in omega-3, but producing a huge amount of solid remains and effluents disposal as wastes. The development of optimal and sustainable processes for both substrates is mandatory in order to reach clean solutions under the circular economy precepts. This work focused on the mathematical optimization of the production of tailored fish protein hydrolysates (FPH), from blue whiting and tuna residues, in terms of controlling average molecular weights (Mw) of proteins. For the modeling of the protein depolymerization time-course, a pseudo-mechanistic model was used, which combined a reaction mechanistic equation affected, in the kinetic parameters, by two non-lineal equations (a first-order kinetic and like-Weibull formulae). In all situations, experimental data were accurately simulated by that model achieving R2 values higher than 0.96. The validity of the experimental conditions obtained from modeling were confirmed performing productions of FPH at scale of 5 L-reactor, without pH-control in most of cases, at the different ranges of Mw selected (1-2 kDa, 2-5 kDa and 5-10 kDa). The results showed that FPH from BW with lower Mw led to a remarkable yield of production (12 % w/w of substrate), largest protein contents (77 % w/w of BW hydrolysate), greatest in vitro digestibility (>95 %), highest essential amino acid presence (43 %) and the best antioxidant (DPPH = 62 %) and antihypertensive (IC50-ACE = 80 mg/L) properties. Our results prove that the proposed procedure to produce sustainable FPH, with specific Mw characterisitics, could be extended to other fish waste substrates. Tailored FPH may have the potential to serve as valuable ingredients for functional foods and high-quality aquaculture feed.

2.
Int J Mol Sci ; 24(15)2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37569272

ABSTRACT

The liver circadian clock plays a pivotal role in driving metabolic rhythms, being primarily entrained by the feeding schedule, although the underlying mechanisms remain elusive. This study aimed to investigate the potential role of insulin as an intake signal mediating liver entrainment in fish. To achieve this, the expression of clock genes, which form the molecular basis of endogenous oscillators, was analyzed in goldfish liver explants treated with insulin. The presence of insulin directly increased the abundance of per1a and per2 transcripts in the liver. The dependency of protein translation for such insulin effects was evaluated using cycloheximide, which revealed that intermediate protein translation is seemingly unnecessary for the observed insulin actions. Furthermore, the putative interaction between insulin and glucocorticoid signaling in the liver was examined, with the results suggesting that both hormones exert their effects by independent mechanisms. Finally, to investigate the specific pathways involved in the insulin effects, inhibitors targeting PI3K/AKT and MEK/ERK were employed. Notably, inhibition of PI3K/AKT pathway prevented the induction of per genes by insulin, supporting its involvement in this process. Together, these findings suggest a role of insulin in fish as a key element of the multifactorial system that entrains the liver clock to the feeding schedule.


Subject(s)
Circadian Clocks , Insulin , Animals , Insulin/metabolism , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Goldfish/genetics , Goldfish/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Gene Expression Regulation , Liver/metabolism , Circadian Clocks/genetics , Insulin, Regular, Human , Gene Expression , Circadian Rhythm/physiology
3.
Article in English | MEDLINE | ID: mdl-37085140

ABSTRACT

Rainbow trout (Oncorhynchus mykiss) is traditionally considered as a poor user of digestible carbohydrates harbouring persistent postprandial hyperglycaemia and decreased growth performances when fed a diet containing more than 20% of digestible carbohydrates. While this glucose-intolerant phenotype is well-described in juveniles, evidence points to a particular regulation of glucose metabolism in rainbow trout broodstrocks. By detecting changes in glucose levels and triggering a specific metabolic response, the hypothalamus plays a key role in the regulation of peripheral glucose metabolism. Therefore, our objective was to assess, for the first time in fish, the short-term consequences in hypothalamus, the glucose sensing and feed intake regulation of feeding mature female and male, and neomale rainbow trout with a diet containing either no or a 33% carbohydrate. The hypothalamic glucosensing capacity was assessed through mRNA levels of glucosensing related-genes and feed intake regulation through appetite-regulating peptides. Our data indicate that a brief period of carbohydrate intake (5 meals at 8 °C) did not induce specific changes in glucosensing capacity and appetite-regulating peptides in the hypothalamus of rainbow trout broodstock. Our results did however demonstrate, for the first time in fish, the existence of sex dimorphism of glucosensing-related genes and appetite-regulating peptides.


Subject(s)
Oncorhynchus mykiss , Female , Male , Animals , Oncorhynchus mykiss/physiology , Appetite , Sex Characteristics , Glucose/metabolism , Peptides/metabolism , Hypothalamus/metabolism
4.
Int J Mol Sci ; 23(6)2022 Mar 08.
Article in English | MEDLINE | ID: mdl-35328345

ABSTRACT

REV-ERBα (nr1d1, nuclear receptor subfamily 1 group D member 1) is a transcriptional repressor that in mammals regulates nutrient metabolism, and has effects on energy homeostasis, although its role in teleosts is poorly understood. To determine REV-ERBα's involvement in fish energy balance and metabolism, we studied the effects of acute and 7-day administration of its agonist SR9009 on food intake, weight and length gain, locomotor activity, feeding regulators, plasma and hepatic metabolites, and liver enzymatic activity. SR9009 inhibited feeding, lowering body weight and length gain. In addition, the abundance of ghrelin mRNA decreased in the intestine, and abundance of leptin-aI mRNA increased in the liver. Hypocretin, neuropeptide y (npy), and proopiomelanocortin (pomc) mRNA abundance was not modified after acute or subchronic SR9009 administration, while hypothalamic cocaine- and amphetamine-regulated transcript (cartpt-I) was induced in the subchronic treatment, being a possible mediator of the anorectic effects. Moreover, SR9009 decreased plasma glucose, coinciding with increased glycolysis and a decreased gluconeogenesis in the liver. Decreased triglyceride levels and activity of lipogenic enzymes suggest a lipogenesis reduction by SR9009. Energy expenditure by locomotor activity was not significantly affected by SR9009. Overall, this study shows for the first time in fish the effects of REV-ERBα activation via SR9009, promoting a negative energy balance by reducing energetic inputs and regulating lipid and glucose metabolism.


Subject(s)
Goldfish , Nuclear Receptor Subfamily 1, Group D, Member 1 , Animals , Energy Metabolism , Goldfish/genetics , Mammals/metabolism , Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism , Pyrrolidines/pharmacology , RNA, Messenger/metabolism , Thiophenes
5.
Mol Cell Endocrinol ; 526: 111209, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33588023

ABSTRACT

Leptin, the product of the obese (ob or Lep) gene, was first cloned in teleost fish in 2005, more than a decade after its identification in mammals. This was because bony fish and mammalian leptins share a very low amino acid sequence identity, which suggests different functionality of the leptin system in fish compared to that of mammals. Indeed, major differences are evident between the mammalian and fish leptin system. Thus, for instance, mammalian leptin is synthesized and released by the adipose tissue in response to the amount of fat depots, while several tissues (mainly the liver) are the main sources of leptin in fish, whose determining factors of production are still unclear. In mammals, the main physiological role for leptin is its involvement in the maintenance of energy balance by decreasing food intake and increasing energy expenditure, although a wide variety of actions have been attributed to this hormone (e.g., regulation of lipid and carbohydrate metabolism, reproduction and immune functions). In fish, available literature also points towards a multifunctional nature for leptin, although knowledge on its functions is limited. In this review, we offer an overview of teleostean leptin structure and mechanism of action, and discuss the available knowledge on the role of this hormone in food intake regulation in teleost fish, aiming to provide a comparative overview between the functioning of the teleostean and mammalian leptin systems.


Subject(s)
Appetite Regulation/physiology , Fishes/physiology , Leptin/metabolism , Signal Transduction , Animals , Leptin/biosynthesis , Leptin/chemistry , Models, Biological , Receptors, Leptin/metabolism
6.
Gen Comp Endocrinol ; 304: 113716, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33484717

ABSTRACT

The incretin, glucagon-like peptide-1 (GLP-1) is a major player in the gut-brain axis regulation of energy balance and in fish it seems to exert a negative influence on food intake. In this study, we investigated the role of the brain serotonergic system in the effects promoted by a peripheral GLP-1 injection on food intake in rainbow trout (Oncorhynchus mykiss). For this, in a first experiment the incretin was intraperitoneally injected (100 ng/g body weight) alone or in combination with a 5HT2C receptor antagonist (SB 242084, 1 µg/g body weight) and food intake was measured 30, 90, and 180 min later. In a second experiment, we studied the effect of these treatments on mRNA abundance of hypothalamic neuropeptides that control food intake. In addition, the effect of GLP-1 on serotonin metabolism was assessed in hindbrain and hypothalamus. Our results show that GLP-1 induced a significant food intake inhibition, which agreed with the increased expression of anorexigenic neuropeptides pomc and cart in the hypothalamus. Furthermore, GLP-1 stimulated the synthesis of serotonin in the hypothalamus, which might be indicative of a higher use of the neurotransmitter. The effects of GLP-1 on food intake were partially reversed when a serotonin receptor antagonist, SB 242084, was previously administered to trout. This antagonist also reversed the stimulatory effect of the hormone in hypothalamic pomca1 mRNA abundance. We conclude that hypothalamic serotonergic pathways are essential for mediating the effects of GLP-1 on food intake in rainbow trout. In addition, the 5HT2C receptor subtype seems to have a prominent role in the inhibition of food intake induced by GLP-1 in this species.


Subject(s)
Oncorhynchus mykiss , Animals , Eating , Glucagon-Like Peptide 1 , Hypothalamus , Serotonin
7.
J Exp Biol ; 224(Pt 1)2021 01 07.
Article in English | MEDLINE | ID: mdl-33414256

ABSTRACT

The gut and brain are constantly communicating and influencing each other through neural, endocrine and immune signals in an interaction referred to as the gut-brain axis. Within this communication system, the gastrointestinal tract, including the gut microbiota, sends information on energy status to the brain, which, after integrating these and other inputs, transmits feedback to the gastrointestinal tract. This allows the regulation of food intake and other physiological processes occurring in the gastrointestinal tract, including motility, secretion, digestion and absorption. Although extensive literature is available on the mechanisms governing the communication between the gut and the brain in mammals, studies on this axis in other vertebrates are scarce and often limited to a single species, which may not be representative for obtaining conclusions for an entire group. This Review aims to compile the available information on the gut-brain axis in birds, reptiles, amphibians and fish, with a special focus on its involvement in food intake regulation and, to a lesser extent, in digestive processes. Additionally, we will identify gaps of knowledge that need to be filled in order to better understand the functioning and physiological significance of such an axis in non-mammalian vertebrates.


Subject(s)
Appetite Regulation , Gastrointestinal Microbiome , Animals , Birds , Brain , Gastrointestinal Tract , Mammals
8.
J Mol Endocrinol ; 60(4): R171-R199, 2018 05.
Article in English | MEDLINE | ID: mdl-29467140

ABSTRACT

Evidence indicates that central regulation of food intake is well conserved along the vertebrate lineage, at least between teleost fish and mammals. However, several differences arise in the comparison between both groups. In this review, we describe similarities and differences between teleost fish and mammals on an evolutionary perspective. We focussed on the existing knowledge of specific fish features conditioning food intake, anatomical homologies and analogies between both groups as well as the main signalling pathways of neuroendocrine and metabolic nature involved in the homeostatic and hedonic central regulation of food intake.


Subject(s)
Biological Evolution , Eating/physiology , Fishes/physiology , Animals , Brain/physiology , Neurosecretory Systems/metabolism , Signal Transduction
9.
BMC Genomics ; 18(1): 342, 2017 05 02.
Article in English | MEDLINE | ID: mdl-28464795

ABSTRACT

BACKGROUND: Glucose-6-phosphate (G6pc) is a key enzyme involved in the regulation of the glucose homeostasis. The present study aims at revisiting and clarifying the evolutionary history of g6pc genes in vertebrates. RESULTS: g6pc duplications happened by successive rounds of whole genome duplication that occurred during vertebrate evolution. g6pc duplicated before or around Osteichthyes/Chondrichthyes radiation, giving rise to g6pca and g6pcb as a consequence of the second vertebrate whole genome duplication. g6pca was lost after this duplication in Sarcopterygii whereas both g6pca and g6pcb then duplicated as a consequence of the teleost-specific whole genome duplication. One g6pca duplicate was lost after this duplication in teleosts. Similarly one g6pcb2 duplicate was lost at least in the ancestor of percomorpha. The analysis of the evolution of spatial expression patterns of g6pc genes in vertebrates showed that all g6pc were mainly expressed in intestine and liver whereas teleost-specific g6pcb2 genes were mainly and surprisingly expressed in brain and heart. g6pcb2b, one gene previously hypothesised to be involved in the glucose intolerant phenotype in trout, was unexpectedly up-regulated (as it was in liver) by carbohydrates in trout telencephalon without showing significant changes in other brain regions. This up-regulation is in striking contrast with expected glucosensing mechanisms suggesting that its positive response to glucose relates to specific unknown processes in this brain area. CONCLUSIONS: Our results suggested that the fixation and the divergence of g6pc duplicated genes during vertebrates' evolution may lead to adaptive novelty and probably to the emergence of novel phenotypes related to glucose homeostasis.


Subject(s)
Evolution, Molecular , Glucose-6-Phosphatase/genetics , Vertebrates/genetics , Animals , Brain/drug effects , Brain/metabolism , Dietary Carbohydrates/pharmacology , Gene Expression Regulation, Enzymologic/drug effects , Heart/drug effects , Humans , Myocardium/metabolism , Phylogeny , Synteny
10.
J Mol Endocrinol ; 56(4): T113-8, 2016 05.
Article in English | MEDLINE | ID: mdl-26671895

ABSTRACT

Proopiomelanocortin (POMC) is a complex precursor that comprises several peptidic hormones, including melanocyte-stimulating hormones (MSHs), adrenocorticotropic hormone (ACTH), and ß-endorphin. POMC belongs to the opioid/orphanin gene family, whose precursors include either opioid (YGGF) or the orphanin/nociceptin core sequences (FGGF). This gene family diversified during early tetraploidizations of the vertebrate genome to generate four different precursors: proenkephalin (PENK), prodynorphin (PDYN), and nociceptin/proorphanin (PNOC) as well as POMC, although both PNOC and POMC seem to have arisen due to a local duplication event. POMC underwent complex evolutionary processes, including internal tandem duplications and putative coevolutionary events. Controversial and conflicting hypotheses have emerged concerning the sequenced genomes. In this article, we summarize the different evolutionary hypotheses proposed for POMC evolution.


Subject(s)
Biological Evolution , Pro-Opiomelanocortin/genetics , Pro-Opiomelanocortin/metabolism , Animals , Evolution, Molecular , Gene Expression Regulation , Humans , Multigene Family , Organ Specificity , Peptide Hormones/chemistry , Peptide Hormones/metabolism , Pro-Opiomelanocortin/chemistry , Protein Processing, Post-Translational , Proteolysis
11.
J Comp Physiol B ; 182(4): 507-16, 2012 May.
Article in English | MEDLINE | ID: mdl-22203338

ABSTRACT

Glucose and lipid metabolism in pancreatic islet organs is poorly characterized. In the present study, using as a model the carnivorous rainbow trout, a glucose-intolerant fish, we assessed mRNA expression levels of several genes involved in glucose and lipid metabolism (including ATP-citrate lyase; carnitine palmitoyltransferase-1 isoforms, CPT; the mitochondrial isoform of the phosphoenolpyrutave carboxykinase, mPEPCK and pyruvate kinase, PK) and glucosensing (glucose transporter type 2, Glut2; glucokinase, GK and the potassium channel, K(ATP)) in Brockmann bodies. We evaluated the response of these parameters to changes in feeding status (food deprived vs. fed fish) as well as to changes in the amount of carbohydrate (dextrin) in the diet. A general inhibition of the glycolytic (including the glucosensing marker GK) and ß-oxidation pathways was found when comparing fed versus food-deprived fish. When comparing fish feeding on either low- or high-carbohydrate diets, we found that some genes related to lipid metabolism were more controlled by the feeding status than by the carbohydrate content (fatty acid synthase, CPTs). Findings are discussed in the context of pancreatic regulation of glucose and lipid metabolism in fish, and show that while trout pancreatic metabolism can partially adapt to a high-carbohydrate diet, some of the molecular actors studied seem to be poorly regulated (K(ATP)) and may contribute to the glucose intolerance observed in this species when fed high-carbohydrate diets.


Subject(s)
Dietary Carbohydrates/administration & dosage , Fish Proteins/metabolism , Glucose/metabolism , Lipid Metabolism , Nutritional Status , Oncorhynchus mykiss/metabolism , Pancreas/metabolism , Amino Acids/blood , Animals , Aquaculture , Blood Glucose/analysis , Carnitine O-Palmitoyltransferase/genetics , Carnitine O-Palmitoyltransferase/metabolism , Dextrins/administration & dosage , Dextrins/adverse effects , Diet, Carbohydrate-Restricted/veterinary , Dietary Carbohydrates/adverse effects , Fatty Acid Synthases/genetics , Fatty Acid Synthases/metabolism , Fish Proteins/genetics , Food Deprivation , Glycolysis , Islets of Langerhans/metabolism , Isoenzymes/genetics , Isoenzymes/metabolism , Oncorhynchus mykiss/blood , RNA, Messenger/metabolism , Triglycerides/blood
12.
J Exp Zool A Comp Exp Biol ; 301(10): 828-36, 2004 Oct 01.
Article in English | MEDLINE | ID: mdl-15449347

ABSTRACT

The osmoregulatory action of 17beta-estradiol (E2) was examined in the euryhaline teleost Sparus auratas. In a first set of experiments, fish were injected once with vegetable oil containing E2 (1, 2 and 5 microg/g body weight), transferred 12h after injection from sea water (SW, 38 ppt salinity) to hypersaline water (HSW, 55 ppt) or to brackish water (BW, 5 ppt salinity) and sampled 12h later (i.e. 24 h post-injection). In a second experiment, fish were injected intraperitoneally with coconut oil alone or containing E2 (10 microg/g body weight) and sampled after 5 days. In the same experiment, after 5 days of treatment, fish of each group were transferred to HSW, BW and SW and sampled 4 days later (9 days post-implant). Gill Na+,K+ -ATPase activity, plasma E2 levels, plasma osmolality, and plasma levels of ions (sodium and calcium), glucose, lactate, protein, triglyceride, and hepatosomatic index were examined. Transfer from SW to HSW produced no significant effects on any parameters assessed. E2 treatment did not affect any parameter. Transfer from SW to BW resulted in a significant decrease in plasma osmolality and plasma sodium but did not affect gill Na+,K+ -ATPase activity. A single dose of E2 attenuated the decrease in these parameters after transfer from SW to BW, but was without effect on gill Na+,K+ -ATPase activity. An implant of E2 (10 microg/g body weight) for 5 days significantly increased plasma calcium, hepatosomatic index, plasma metabolic parameters, and gill Na+,K+ -ATPase activity. In coconut oil-implanted (sham) fish, transfer from SW to HSW or BW during 4 days significantly elevated gill Na+,K+ -ATPase. Gill Na+,K+ -ATPase activity remained unaltered after transfer of E2-treated fish to HSW or BW. However, in E2-treated fish transferred from SW to SW (9 days in SW after E2-implant), gill Na+,K+ -ATPase activity decreased with respect to HSW- or BW-transferred fish. Shams transferred to HSW showed increased levels of lactate, protein, and trygliceride in plasma, while those transferred to BW only displayed increased trygliceride levels. E2-treated fish transferred to HSW showed higher protein levels without any change in other plasmatic parameters, while those transferred to BW displayed elevated plasma glucose levels but decreased osmolality and protein levels. These results substantiate a chronic stimulatory action of E2 on gill Na+,K+ -ATPase activity in the euryhaline teleost Sparus auratas.


Subject(s)
Estradiol/physiology , Sea Bream/physiology , Water-Electrolyte Balance/physiology , Analysis of Variance , Animals , Blood Chemical Analysis , Coconut Oil , Estradiol/blood , Gills/metabolism , Osmolar Concentration , Plant Oils , Sea Bream/metabolism , Seawater , Sodium-Potassium-Exchanging ATPase/metabolism , Spectrophotometry, Atomic
SELECTION OF CITATIONS
SEARCH DETAIL
...