Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
3.
PLoS Negl Trop Dis ; 10(5): e0004697, 2016 05.
Article in English | MEDLINE | ID: mdl-27152855

ABSTRACT

Entamoeba histolytica causes intestinal disease in endemic settings throughout the world. Diagnosis of E. histolytica infection would be improved by the identification of biomarkers that are expressed by cysts of E. histolytica, but not by cysts of closely related commensal species of Entamoeba. Herein, we describe two novel monoclonal antibodies (1A4 and 1D3) produced against a spacer region of the E. histolytica Jacob2 lectin, an outer cyst wall protein. These reagents demonstrated no cross-reaction to E. dispar recombinant antigen and low picomolar molecular detection limits when paired in ELISA sandwich assays. In an immunofluorescence microscopy assay, the α-Jacob2 murine antibodies labeled cysts of three xenically cultured E. histolytica isolates but did not label cysts of three E. bangladeshi isolates. Monoclonal antibody 1A4 did not cross-react with xenic cultures of three E. dispar isolates, demonstrating specificity to E. histolytica, while monoclonal antibody 1D3 cross-reacted with two out of three E. dispar isolates. Both antibodies labeled cysts in formalin-fixed slides, a potential logistical advantage in some settings. The monoclonal antibody 1A4 was also used in an immunofluorescence microscopy assay with formalin-fixed stool specimens. Seven out of ten ELISA-positive stool specimens exhibited 1A4-labeled cyst-like objects, compared to one out of seven ELISA-negative specimens. These results demonstrate that antibodies generated against the flexible spacer of E. histolytica Jacob2 lectin recognize and bind to Jacob2 protein in whole cysts and are capable of differentiating Entamoeba species in fixed specimens. Thus, Jacob2 is a promising biomarker for use in diagnosing E. histolytica infection.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Protozoan/immunology , Entamoeba histolytica/immunology , Enzyme-Linked Immunosorbent Assay/methods , Protozoan Proteins/immunology , Adolescent , Amino Acid Sequence , Animals , Biomarkers , Child , Child, Preschool , Cloning, Molecular , Humans , Infant , Mice , Parasite Encystment/physiology , Sensitivity and Specificity , Species Specificity
4.
J Immunol Methods ; 427: 134-7, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26571425

ABSTRACT

Readily accessible affinity reagents are critical to the validation of biomarkers and to the development of new diagnostic tests. As alternatives to monoclonal antibodies, yeast-bound single chain fragment variable antibody (yeast-scFv) can be rapidly selected from yeast display libraries. An important characteristic for any diagnostic reagent is its stability or ability to store it. A lyophilization procedure that has extended the shelf life of yeast-scFv by a factor of ≥10-fold relative to previous reports is reported. Real time stability for three yeast-scFv clones to three distinct Entamoeba histolytica potential diagnostic antigen targets for one year at room temperature as well as at 37°C and 45°C. Retention of full binding activity and specificity of the yeast-scFv clones for their cognate antigens is shown by flow cytometry. Lyophilization can easily be carried out in batches and in single-use vials.


Subject(s)
Drug Stability , Drug Storage/methods , Reagent Kits, Diagnostic , Single-Chain Antibodies , Flow Cytometry , Freeze Drying , Yeasts
5.
Anal Chem ; 87(23): 11673-81, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26551436

ABSTRACT

New high-performance detection technologies and more robust protein capture agents can be combined to both rapidly and specifically capture and detect protein biomarkers associated with disease in complex biological samples. Here we demonstrate the use of recently developed recombinant affinity reagents, namely nanoyeast-scFv, in combination with alternating current electrohydrodynamic (ac-EHD)-induced shear forces, to enhance capture performance during protein biomarker analysis. The use of ac-EHD significantly improves fluid transport across the capture domain, resulting in enhanced sensor-target interaction and simultaneous displacement of nonspecific molecules from the electrode surface. We demonstrate this simple proof-of-concept approach for the capture and detection of Entamoeba histolytica antigens from disinfected stool, within a span of 5 min using an ac-EHD microfluidic device. Under an ac-EHD field, antigens were captured on a nanoyeast-scFv immobilized device and subsequently detected using a quantum dot conjugated antibody. This immunosensor specifically detected antigen in disinfected stool with low background noise at concentrations down to 58.8 fM with an interassay reproducibility (%RSD of n = 3) < 17.2%, and in buffer down to 5.88 fM with an interassay reproducibility (% RSD, n = 3) of 8.4%. Furthermore, antigen detection using this immunosensor was 10 times more sensitive than previously obtained with the same nanoyeast-scFv reagents in a microfluidic device employing surface-enhanced Raman scattering (SERS) detection in buffer and at least 200 times more sensitive than methods using screen printed gold electrodes in disinfected stool. We predict this rapid and sensitive approach using these stable affinity reagents may offer a new methodology to detect protein disease biomarkers from biological matrices.


Subject(s)
Antigens, Protozoan/isolation & purification , Electrochemical Techniques , Hydrodynamics , Single-Chain Antibodies/immunology , Antigens, Protozoan/analysis , Biomarkers/analysis , Entamoeba histolytica/chemistry
6.
Anal Chem ; 86(19): 9930-8, 2014 Oct 07.
Article in English | MEDLINE | ID: mdl-25192256

ABSTRACT

Quantitative and accurate detection of multiple biomarkers would allow for the rapid diagnosis and treatment of diseases induced by pathogens. Monoclonal antibodies are standard affinity reagents applied for biomarkers detection; however, their production is expensive and labor-intensive. Herein, we report on newly developed nanoyeast single-chain variable fragments (NYscFv) as an attractive alternative to monoclonal antibodies, which offers the unique advantage of a cost-effective production, stability in solution, and target-specificity. By combination of surface-enhanced Raman scattering (SERS) microspectroscopy using glass-coated, highly purified SERS nanoparticle clusters as labels, with a microfluidic device comprising multiple channels, a robust platform for the sensitive duplex detection of pathogen antigens has been developed. Highly sensitive detection for individual Entamoeba histolytica antigen EHI_115350 (limit of detection = 1 pg/mL, corresponding to 58.8 fM) and EHI_182030 (10 pg/mL, corresponding 453 fM) with high specificity has been achieved, employing the newly developed corresponding NYscFv as probe in combination with SERS microspectroscopy at a single laser excitation wavelength. Our first report on SERS-based immunoassays using the novel NYscFv affinity reagent demonstrates the flexibility of NYscFv fragments as viable alternatives to monoclonal antibodies in a range of bioassay platforms and paves the way for further applications.


Subject(s)
Antigens, Bacterial/isolation & purification , Entamoeba histolytica/chemistry , Immunoassay , Microfluidic Analytical Techniques/methods , Single-Chain Antibodies/chemistry , Biotin/chemistry , Entamoeba histolytica/pathogenicity , Limit of Detection , Microfluidic Analytical Techniques/instrumentation , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Single-Chain Antibodies/biosynthesis , Single-Chain Antibodies/isolation & purification , Spectrum Analysis, Raman , Streptavidin/chemistry , Surface Properties
7.
Biosens Bioelectron ; 55: 417-22, 2014 May 15.
Article in English | MEDLINE | ID: mdl-24434498

ABSTRACT

The time and costs associated with monoclonal antibody production limit the potential for portable diagnostic devices to penetrate the market. Replacing the antibody with a low-cost alternate affinity reagent would reduce the costs of diagnostic development and use, and lead to new portable diagnostic devices towards many diseases. Herein, we present low-cost affinity reagents, nano-yeast-scFv, on commercially available, inexpensive, and portable screen-printed electrodes for the label-free electrochemical detection of Entamoeba histolytica cyst antigens. The biosensor was able to detect antigen at concentrations down to 10 pg mL(-1) in buffer with an inter-assay reproducibility of (% RSD, n=3) 4.1%. The applicability of two differently engineered nano-yeast-scFv to each specifically detect their cognant E. histolytica cyst antigens was demonstrated in a biological matrix derived from human stool. Because of the simple, inexpensive, and sensitive nature of this methodology, it may offer a low-cost alternative to immunosensors based on antibody-target recognition.


Subject(s)
Antigens, Protozoan/analysis , Conductometry/instrumentation , Electrodes , Entamoeba histolytica/immunology , Feces/parasitology , Immunoassay/instrumentation , Single-Chain Antibodies/immunology , Antigens, Protozoan/immunology , Biosensing Techniques/instrumentation , Entamoeba histolytica/isolation & purification , Equipment Design , Equipment Failure Analysis , Fungal Proteins/immunology , Gold , Metal Nanoparticles/chemistry , Molecular Probe Techniques , Reproducibility of Results , Sensitivity and Specificity
8.
Biochemistry ; 48(13): 2981-9, 2009 Apr 07.
Article in English | MEDLINE | ID: mdl-19228020

ABSTRACT

In an effort to further probe metal binding to metallo-beta-lactamase L1 (mbetal L1), Cu- (Cu-L1) and Ni-substituted (Ni-L1) L1 were prepared and characterized by kinetic and spectroscopic studies. Cu-L1 bound 1.7 equiv of Cu and small amounts of Zn(II) and Fe. The EPR spectrum of Cu-L1 exhibited two overlapping, axial signals, indicative of type 2 sites with distinct affinities for Cu(II). Both signals indicated multiple nitrogen ligands. Despite the expected proximity of the Cu(II) ions, however, only indirect evidence was found for spin-spin coupling. Cu-L1 exhibited higher k(cat) (96 s(-1)) and K(m) (224 microM) values, as compared to the values of dinuclear Zn(II)-containing L1, when nitrocefin was used as substrate. The Ni-L1 bound 1 equiv of Ni and 0.3 equiv of Zn(II). Ni-L1 was EPR-silent, suggesting that the oxidation state of nickel was +2; this suggestion was confirmed by (1)H NMR spectra, which showed relatively sharp proton resonances. Stopped-flow kinetic studies showed that ZnNi-L1 stabilized significant amounts of the nitrocefin-derived intermediate and that the decay of intermediate is rate-limiting. (1)H NMR spectra demonstrate that Ni(II) binds in the Zn(2) site and that the ring-opened product coordinates Ni(II). Both Cu-L1 and ZnNi-L1 hydrolyze cephalosporins and carbapenems, but not penicillins, suggesting that the Zn(2) site modulates substrate preference in mbetal L1. These studies demonstrate that the Zn(2) site in L1 is very flexible and can accommodate a number of different transition metal ions; this flexibility could possibly offer an organism that produces L1 an evolutionary advantage when challenged with beta-lactam-containing antibiotics.


Subject(s)
Copper/metabolism , Nickel/metabolism , Stenotrophomonas maltophilia/enzymology , beta-Lactamases/chemistry , beta-Lactamases/metabolism , Catalytic Domain , Electron Spin Resonance Spectroscopy , Kinetics , Magnetic Resonance Spectroscopy , Protein Structure, Secondary , Spectrum Analysis , Substrate Specificity
9.
Biochemistry ; 47(30): 7947-53, 2008 Jul 29.
Article in English | MEDLINE | ID: mdl-18597493

ABSTRACT

In an effort to probe whether the metal content of metallo-beta-lactamase L1 is affected by metal ion bioavailability, L1 was overexpressed as mature protein (M-L1) and full-length (FL-L1) analogues, and the analogues were characterized with metal analyses, kinetics, and EPR spectroscopy. FL-L1, containing the putative leader sequence, was localized in the periplasm of Escherichia coli and shown to bind Zn(II) preferentially. The metal content of FL-L1 could be altered if the enzyme was overexpressed in minimal medium containing Fe and Mn, and surprisingly, an Fe-binding analogue was obtained. On the other hand, M-L1, lacking the putative leader sequence, was localized in the cytoplasm of E. coli and shown to bind various amounts of Fe and Zn(II), and like FL-L1, the metal content of the resulting enzyme could be affected by the amount of metal ions in the growth medium. L1 was refolded in the presence of Fe, and a dinuclear Fe-containing analogue of L1 was obtained, although this analogue is catalytically inactive. EPR spectra demonstrate the presence of an antiferromagnetically coupled Fe(III)Fe(II) center in Fe-containing L1 and suggest the presence of a Fe(III)Zn(II) center in M-L1. Metal analyses on the cytoplasmic and periplasmic fractions of E. coli showed that the concentration of metal ions in the periplasm is not tightly controlled and increases as the concentration of metal ions in the growth medium increases. In contrast, the concentration of Zn(II) in the cytoplasm is tightly controlled while that of Fe is less so.


Subject(s)
Ions/metabolism , Metals/metabolism , beta-Lactamases/metabolism , Cytoplasm/metabolism , Electron Spin Resonance Spectroscopy , Escherichia coli/enzymology , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Iron/metabolism , Kinetics , Manganese/metabolism , Mutation , Periplasm/metabolism , Protein Binding , Protein Folding , Zinc/metabolism , beta-Lactamases/chemistry , beta-Lactamases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...