Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
1.
Nat Chem Biol ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965384

ABSTRACT

Targeted protein degradation (TPD) is an emerging therapeutic strategy that would benefit from new chemical entities with which to recruit a wider variety of ubiquitin E3 ligases to target proteins for proteasomal degradation. Here we describe a TPD strategy involving the recruitment of FBXO22 to induce degradation of the histone methyltransferase and oncogene NSD2. UNC8732 facilitates FBXO22-mediated degradation of NSD2 in acute lymphoblastic leukemia cells harboring the NSD2 gain-of-function mutation p.E1099K, resulting in growth suppression, apoptosis and reversal of drug resistance. The primary amine of UNC8732 is metabolized to an aldehyde species, which engages C326 of FBXO22 to recruit the SCFFBXO22 Cullin complex. We further demonstrate that a previously reported alkyl amine-containing degrader targeting XIAP is similarly dependent on SCFFBXO22. Overall, we present a potent NSD2 degrader for the exploration of NSD2 disease phenotypes and a new FBXO22-recruitment strategy for TPD.

2.
ACS Med Chem Lett ; 15(4): 524-532, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38628784

ABSTRACT

Eleven-nineteen leukemia (ENL) is an epigenetic reader protein that drives oncogenic transcriptional programs in acute myeloid leukemia (AML). AML is one of the deadliest hematopoietic malignancies, with an overall 5-year survival rate of 27%. The epigenetic reader activity of ENL is mediated by its YEATS domain that binds to acetyl and crotonyl marks on histone tails and colocalizes with promoters of actively transcribed genes that are essential for leukemia. Prior to the discovery of TDI-11055, existing inhibitors of ENL YEATS showed in vitro potency, but had not shown efficacy in in vivo animal models. During the course of the medicinal chemistry campaign described here, we identified ENL YEATS inhibitor TDI-11055 that has an improved pharmacokinetic profile and is appropriate for in vivo evaluation of the ENL YEATS inhibition mechanism in AML.

3.
bioRxiv ; 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37961297

ABSTRACT

Targeted protein degradation (TPD) is an emerging therapeutic strategy that would benefit from new chemical entities with which to recruit a wider variety of ubiquitin E3 ligases to target proteins for proteasomal degradation. Here, we describe a TPD strategy involving the recruitment of FBXO22 to induce degradation of the histone methyltransferase and oncogene NSD2. UNC8732 facilitates FBXO22-mediated degradation of NSD2 in acute lymphoblastic leukemia cells harboring the NSD2 gain of function mutation p.E1099K, resulting in growth suppression, apoptosis, and reversal of drug resistance. The primary amine of UNC8732 is metabolized to an aldehyde species, which engages C326 of FBXO22 in a covalent and reversible manner to recruit the SCF FBXO22 Cullin complex. We further demonstrate that a previously reported alkyl amine-containing degrader targeting XIAP is similarly dependent on SCF FBXO22 . Overall, we present a highly potent NSD2 degrader for the exploration of NSD2 disease phenotypes and a novel FBXO22-dependent TPD strategy.

4.
Cancer Discov ; 12(11): 2684-2709, 2022 11 02.
Article in English | MEDLINE | ID: mdl-36053276

ABSTRACT

The chromatin reader eleven-nineteen leukemia (ENL) has been identified as a critical dependency in acute myeloid leukemia (AML), but its therapeutic potential remains unclear. We describe a potent and orally bioavailable small-molecule inhibitor of ENL, TDI-11055, which displaces ENL from chromatin by blocking its YEATS domain interaction with acylated histones. Cell lines and primary patient samples carrying MLL rearrangements or NPM1 mutations are responsive to TDI-11055. A CRISPR-Cas9-mediated mutagenesis screen uncovers an ENL mutation that confers resistance to TDI-11055, validating the compound's on-target activity. TDI-11055 treatment rapidly decreases chromatin occupancy of ENL-associated complexes and impairs transcription elongation, leading to suppression of key oncogenic gene expression programs and induction of differentiation. In vivo treatment with TDI-11055 blocks disease progression in cell line- and patient-derived xenograft models of MLL-rearranged and NPM1-mutated AML. Our results establish ENL displacement from chromatin as a promising epigenetic therapy for molecularly defined AML subsets and support the clinical translation of this approach. SIGNIFICANCE: AML is a poor-prognosis disease for which new therapeutic approaches are desperately needed. We developed an orally bioavailable inhibitor of ENL, demonstrated its potent efficacy in MLL-rearranged and NPM1-mutated AML, and determined its mechanisms of action. These biological and chemical insights will facilitate both basic research and clinical translation. This article is highlighted in the In This Issue feature, p. 2483.


Subject(s)
Leukemia, Myeloid, Acute , Lysine , Humans , Leukemia, Myeloid, Acute/genetics , Histones/metabolism , Chromatin , Myeloid-Lymphoid Leukemia Protein/metabolism
5.
Nature ; 609(7926): 408-415, 2022 09.
Article in English | MEDLINE | ID: mdl-35831509

ABSTRACT

Receptor tyrosine kinase (RTK)-RAS signalling through the downstream mitogen-activated protein kinase (MAPK) cascade regulates cell proliferation and survival. The SHOC2-MRAS-PP1C holophosphatase complex functions as a key regulator of RTK-RAS signalling by removing an inhibitory phosphorylation event on the RAF family of proteins to potentiate MAPK signalling1. SHOC2 forms a ternary complex with MRAS and PP1C, and human germline gain-of-function mutations in this complex result in congenital RASopathy syndromes2-5. However, the structure and assembly of this complex are poorly understood. Here we use cryo-electron microscopy to resolve the structure of the SHOC2-MRAS-PP1C complex. We define the biophysical principles of holoenzyme interactions, elucidate the assembly order of the complex, and systematically interrogate the functional consequence of nearly all of the possible missense variants of SHOC2 through deep mutational scanning. We show that SHOC2 binds PP1C and MRAS through the concave surface of the leucine-rich repeat region and further engages PP1C through the N-terminal disordered region that contains a cryptic RVXF motif. Complex formation is initially mediated by interactions between SHOC2 and PP1C and is stabilized by the binding of GTP-loaded MRAS. These observations explain how mutant versions of SHOC2 in RASopathies and cancer stabilize the interactions of complex members to enhance holophosphatase activity. Together, this integrative structure-function model comprehensively defines key binding interactions within the SHOC2-MRAS-PP1C holophosphatase complex and will inform therapeutic development .


Subject(s)
Cryoelectron Microscopy , Intracellular Signaling Peptides and Proteins , Multiprotein Complexes , Protein Phosphatase 1 , ras Proteins , Amino Acid Motifs , Binding Sites , Guanosine Triphosphate/metabolism , Humans , Intracellular Signaling Peptides and Proteins/chemistry , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , MAP Kinase Signaling System , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , Multiprotein Complexes/ultrastructure , Mutation, Missense , Phosphorylation , Protein Binding , Protein Phosphatase 1/chemistry , Protein Phosphatase 1/metabolism , Protein Phosphatase 1/ultrastructure , Protein Stability , raf Kinases , ras Proteins/chemistry , ras Proteins/metabolism , ras Proteins/ultrastructure
6.
ACS Med Chem Lett ; 13(3): 377-387, 2022 Mar 10.
Article in English | MEDLINE | ID: mdl-35300079

ABSTRACT

Aberrant gene-silencing through dysregulation of polycomb protein activity has emerged as an important oncogenic mechanism in cancer, implicating polycomb proteins as important therapeutic targets. Recently, an inhibitor targeting EZH2, the methyltransferase component of PRC2, received U.S. Food and Drug Administration approval following promising clinical responses in cancer patients. However, the current array of EZH2 inhibitors have poor brain penetrance, limiting their use in patients with central nervous system malignancies, a number of which have been shown to be sensitive to EZH2 inhibition. To address this need, we have identified a chemical strategy, based on computational modeling of pyridone-containing EZH2 inhibitor scaffolds, to minimize P-glycoprotein activity, and here we report the first brain-penetrant EZH2 inhibitor, TDI-6118 (compound 5). Additionally, in the course of our attempts to optimize this compound, we discovered TDI-11904 (compound 21), a novel, highly potent, and peripherally active EZH2 inhibitor based on a 7 member ring structure.

7.
Cancer Res ; 81(8): 2002-2014, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33632898

ABSTRACT

Pancreatic adenocarcinoma (PDAC) epitomizes a deadly cancer driven by abnormal KRAS signaling. Here, we show that the eIF4A RNA helicase is required for translation of key KRAS signaling molecules and that pharmacological inhibition of eIF4A has single-agent activity against murine and human PDAC models at safe dose levels. EIF4A was uniquely required for the translation of mRNAs with long and highly structured 5' untranslated regions, including those with multiple G-quadruplex elements. Computational analyses identified these features in mRNAs encoding KRAS and key downstream molecules. Transcriptome-scale ribosome footprinting accurately identified eIF4A-dependent mRNAs in PDAC, including critical KRAS signaling molecules such as PI3K, RALA, RAC2, MET, MYC, and YAP1. These findings contrast with a recent study that relied on an older method, polysome fractionation, and implicated redox-related genes as eIF4A clients. Together, our findings highlight the power of ribosome footprinting in conjunction with deep RNA sequencing in accurately decoding translational control mechanisms and define the therapeutic mechanism of eIF4A inhibitors in PDAC. SIGNIFICANCE: These findings document the coordinate, eIF4A-dependent translation of RAS-related oncogenic signaling molecules and demonstrate therapeutic efficacy of eIF4A blockade in pancreatic adenocarcinoma.


Subject(s)
Adenocarcinoma/metabolism , Eukaryotic Initiation Factor-4A/metabolism , Pancreatic Neoplasms/metabolism , Proto-Oncogene Proteins p21(ras)/metabolism , RNA, Messenger/metabolism , Ribosomes/metabolism , 5' Untranslated Regions , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adenocarcinoma/drug therapy , Animals , Cell Line, Tumor , Cycloheximide/pharmacology , Eukaryotic Initiation Factor-4A/antagonists & inhibitors , G-Quadruplexes , Genes, ras/genetics , Humans , Mice , Mice, Nude , Mutation , Neoplasm Transplantation , Oxidation-Reduction , Pancreatic Neoplasms/drug therapy , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Polyribosomes/metabolism , Protein Biosynthesis , Protein Synthesis Inhibitors/pharmacology , Proto-Oncogene Proteins c-met/genetics , Proto-Oncogene Proteins c-met/metabolism , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , RNA Helicases , Sequence Analysis, RNA , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptome , Triterpenes/pharmacology , YAP-Signaling Proteins , rac GTP-Binding Proteins/genetics , rac GTP-Binding Proteins/metabolism , ral GTP-Binding Proteins/genetics , ral GTP-Binding Proteins/metabolism , RAC2 GTP-Binding Protein
8.
ACS Infect Dis ; 7(2): 435-444, 2021 02 12.
Article in English | MEDLINE | ID: mdl-33527832

ABSTRACT

Tuberculosis remains a leading cause of death from a single bacterial infection worldwide. Efforts to develop new treatment options call for expansion into an unexplored target space to expand the drug pipeline and bypass resistance to current antibiotics. Lipoamide dehydrogenase is a metabolic and antioxidant enzyme critical for mycobacterial growth and survival in mice. Sulfonamide analogs were previously identified as potent and selective inhibitors of mycobacterial lipoamide dehydrogenase in vitro but lacked activity against whole mycobacteria. Here we present the development of analogs with improved permeability, potency, and selectivity, which inhibit the growth of Mycobacterium tuberculosis in axenic culture on carbohydrates and within mouse primary macrophages. They increase intrabacterial pyruvate levels, supporting their on-target activity within mycobacteria. Distinct modalities of binding between the mycobacterial and human enzymes contribute to improved potency and hence selectivity through induced-fit tight binding interactions within the mycobacterial but not human enzyme, as indicated by kinetic analysis and crystallography.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Animals , Anti-Bacterial Agents/therapeutic use , Dihydrolipoamide Dehydrogenase/metabolism , Humans , Kinetics , Mice , Mycobacterium tuberculosis/metabolism , Tuberculosis/drug therapy
9.
Bioorg Med Chem Lett ; 29(17): 2503-2510, 2019 09 01.
Article in English | MEDLINE | ID: mdl-31327531

ABSTRACT

Cancer cells reprogram their metabolism to support growth and to mitigate cellular stressors. The serine synthesis pathway has been identified as a metabolic pathway frequently altered in cancers and there has been considerable interest in developing pharmacological agents to target this pathway. Here, we report a series of indole amides that inhibit human 3-phosphoglycerate dehydrogenase (PHGDH), the enzyme that catalyzes the first committed step of the serine synthesis pathway. Using X-ray crystallography, we show that the indole amides bind the NAD+ pocket of PHGDH. Through structure-based optimization we were able to develop compounds with low nanomolar affinities for PHGDH in an enzymatic IC50 assay. In cellular assays, the most potent compounds inhibited de novo serine synthesis with low micromolar to sub-micromolar activities and these compounds successfully abrogated the proliferation of cancer cells in serine free media. The indole amide series reported here represent an important improvement over previously published PHGDH inhibitors as they are markedly more potent and their mechanism of action is better defined.


Subject(s)
Amides/chemistry , Enzyme Inhibitors/chemistry , Indoles/chemistry , Phosphoglycerate Dehydrogenase/antagonists & inhibitors , Serine/biosynthesis , Amides/metabolism , Amides/pharmacology , Binding Sites , Cell Line, Tumor , Cell Proliferation/drug effects , Crystallography, X-Ray , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacology , Humans , Molecular Dynamics Simulation , Phosphoglycerate Dehydrogenase/metabolism , Protein Structure, Tertiary , Structure-Activity Relationship
10.
Nat Commun ; 10(1): 2261, 2019 05 21.
Article in English | MEDLINE | ID: mdl-31113940

ABSTRACT

Cyclic GMP-AMP synthase (cGAS) is the primary sensor for aberrant intracellular dsDNA producing the cyclic dinucleotide cGAMP, a second messenger initiating cytokine production in subsets of myeloid lineage cell types. Therefore, inhibition of the enzyme cGAS may act anti-inflammatory. Here we report the discovery of human-cGAS-specific small-molecule inhibitors by high-throughput screening and the targeted medicinal chemistry optimization for two molecular scaffolds. Lead compounds from one scaffold co-crystallize with human cGAS and occupy the ATP- and GTP-binding active site. The specificity and potency of these drug candidates is further documented in human myeloid cells including primary macrophages. These novel cGAS inhibitors with cell-based activity will serve as probes into cGAS-dependent innate immune pathways and warrant future pharmacological studies for treatment of cGAS-dependent inflammatory diseases.


Subject(s)
Drug Discovery/methods , Enzyme Inhibitors/pharmacology , Nucleotidyltransferases/antagonists & inhibitors , Autoimmune Diseases/drug therapy , Autoimmune Diseases/immunology , Autoimmune Diseases/pathology , Cells, Cultured , Crystallography, X-Ray , DNA/immunology , DNA/metabolism , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/therapeutic use , High-Throughput Screening Assays/methods , Humans , Immunity, Innate/drug effects , Interferons/immunology , Interferons/metabolism , Macrophages , Models, Molecular , Nucleotides, Cyclic/immunology , Nucleotides, Cyclic/metabolism , Nucleotidyltransferases/immunology , Nucleotidyltransferases/isolation & purification , Nucleotidyltransferases/metabolism , Primary Cell Culture , Recombinant Proteins/immunology , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism
11.
J Med Chem ; 61(23): 10700-10708, 2018 12 13.
Article in English | MEDLINE | ID: mdl-30388368

ABSTRACT

Herein we describe structure-activity relationship (SAR) and metabolite identification (Met-ID) studies that provided insight into the origin of time-dependent inhibition (TDI) of cytochrome P450 3A4 (CYP3A4) by compound 1. Collectively, these efforts revealed that bioactivation of the fluoropyrimidine moiety of 1 led to reactive metabolite formation via oxidative defluorination and was responsible for the observed TDI. We discovered that substitution at both the 4- and 6-positions of the 5-fluoropyrimidine of 1 was necessary to ameliorate this TDI as exemplified by compound 19.


Subject(s)
Cytochrome P-450 CYP3A Inhibitors/chemistry , Cytochrome P-450 CYP3A Inhibitors/pharmacology , Cytochrome P-450 CYP3A/metabolism , Pyrimidines/chemistry , Pyrimidines/pharmacology , Animals , Cytochrome P-450 CYP3A Inhibitors/pharmacokinetics , Humans , Kinetics , Pyrimidines/pharmacokinetics , Rats , Structure-Activity Relationship , Tissue Distribution
12.
ACS Med Chem Lett ; 9(5): 457-461, 2018 May 10.
Article in English | MEDLINE | ID: mdl-29795759

ABSTRACT

The ever-growing prevalence of type 2 diabetes in the world has necessitated an urgent need for multiple orally effective agents that can regulate glucose homeostasis with a concurrent reduction in body weight. G-Protein coupled receptor 119 (GPR119) is a GPCR target at which agonists have demonstrated glucose-dependent insulin secretion and shows beneficial effects on glycemic control. Herein, we describe our efforts leading to the identification of a potent, oral GPR-119 agonist, MK-8282, which shows improved glucose tolerance in multiple animal models and has excellent off-target profile. The key design elements in the compounds involved a combination of a fluoro-pyrimidine and a conformationally constrained bridged piperidine to impart good potency and efficacy.

13.
ACS Med Chem Lett ; 8(12): 1292-1297, 2017 Dec 14.
Article in English | MEDLINE | ID: mdl-29259750

ABSTRACT

Using the HIV-1 protease binding mode of MK-8718 and PL-100 as inspiration, a novel aspartate binding bicyclic piperazine sulfonamide core was designed and synthesized. The resulting HIV-1 protease inhibitor containing this core showed an 60-fold increase in enzyme binding affinity and a 10-fold increase in antiviral activity relative to MK-8718.

14.
J Med Chem ; 60(7): 2983-2992, 2017 04 13.
Article in English | MEDLINE | ID: mdl-28245354

ABSTRACT

Leucine-rich repeat kinase 2 (LRRK2) is a large, multidomain protein which contains a kinase domain and GTPase domain among other regions. Individuals possessing gain of function mutations in the kinase domain such as the most prevalent G2019S mutation have been associated with an increased risk for the development of Parkinson's disease (PD). Given this genetic validation for inhibition of LRRK2 kinase activity as a potential means of affecting disease progression, our team set out to develop LRRK2 inhibitors to test this hypothesis. A high throughput screen of our compound collection afforded a number of promising indazole leads which were truncated in order to identify a minimum pharmacophore. Further optimization of these indazoles led to the development of MLi-2 (1): a potent, highly selective, orally available, brain-penetrant inhibitor of LRRK2.


Subject(s)
Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Indazoles/chemistry , Indazoles/pharmacology , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/antagonists & inhibitors , Animals , Brain/metabolism , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/pharmacokinetics , Humans , Indazoles/administration & dosage , Indazoles/pharmacokinetics , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Male , Molecular Docking Simulation , Parkinson Disease/drug therapy , Parkinson Disease/enzymology , Rats , Rats, Wistar
15.
Bioorg Med Chem Lett ; 27(5): 1124-1128, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28185720

ABSTRACT

The paper describes the SAR/SPR studies that led to the discovery of phenoxy cyclopropyl phenyl acetamide derivatives as potent and selective GPR119 agonists. Based on a cis cyclopropane scaffold discovered previously, phenyl acetamides such as compound 17 were found to have excellent GPR119 potency and improved physicochemical properties. Pharmacokinetic data of compound 17 in rat, dog and rhesus will be described. Compound 17 was suitable for QD dosing based on its predicted human half-life, and its projected human dose was much lower than that of the recently reported structurally-related benzyloxy compound 2. Compound 17 was selected as a tool compound candidate for NHP (Non-Human Primate) efficacy studies.


Subject(s)
Acetamides/pharmacology , Receptors, G-Protein-Coupled/agonists , Acetamides/pharmacokinetics , Animals , Half-Life , Humans , Quantum Dots , Rats , Structure-Activity Relationship
16.
J Med Chem ; 59(23): 10435-10450, 2016 12 08.
Article in English | MEDLINE | ID: mdl-27933948

ABSTRACT

Verubecestat 3 (MK-8931), a diaryl amide-substituted 3-imino-1,2,4-thiadiazinane 1,1-dioxide derivative, is a high-affinity ß-site amyloid precursor protein cleaving enzyme 1 (BACE1) inhibitor currently undergoing Phase 3 clinical evaluation for the treatment of mild to moderate and prodromal Alzheimer's disease. Although not selective over the closely related aspartyl protease BACE2, verubecestat has high selectivity for BACE1 over other key aspartyl proteases, notably cathepsin D, and profoundly lowers CSF and brain Aß levels in rats and nonhuman primates and CSF Aß levels in humans. In this annotation, we describe the discovery of 3, including design, validation, and selected SAR around the novel iminothiadiazinane dioxide core as well as aspects of its preclinical and Phase 1 clinical characterization.


Subject(s)
Alzheimer Disease/drug therapy , Amyloid beta-Protein Precursor/antagonists & inhibitors , Cyclic S-Oxides/pharmacology , Drug Discovery , Thiadiazines/pharmacology , Alzheimer Disease/metabolism , Amyloid beta-Protein Precursor/metabolism , Animals , Cyclic S-Oxides/chemical synthesis , Cyclic S-Oxides/chemistry , Dogs , Dose-Response Relationship, Drug , Humans , Macaca fascicularis , Models, Molecular , Molecular Structure , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship , Thiadiazines/chemical synthesis , Thiadiazines/chemistry
17.
Sci Transl Med ; 8(363): 363ra150, 2016 11 02.
Article in English | MEDLINE | ID: mdl-27807285

ABSTRACT

ß-Amyloid (Aß) peptides are thought to be critically involved in the etiology of Alzheimer's disease (AD). The aspartyl protease ß-site amyloid precursor protein cleaving enzyme 1 (BACE1) is required for the production of Aß, and BACE1 inhibition is thus an attractive target for the treatment of AD. We show that verubecestat (MK-8931) is a potent, selective, structurally unique BACE1 inhibitor that reduced plasma, cerebrospinal fluid (CSF), and brain concentrations of Aß40, Aß42, and sAPPß (a direct product of BACE1 enzymatic activity) after acute and chronic administration to rats and monkeys. Chronic treatment of rats and monkeys with verubecestat achieved exposures >40-fold higher than those being tested in clinical trials in AD patients yet did not elicit many of the adverse effects previously attributed to BACE inhibition, such as reduced nerve myelination, neurodegeneration, altered glucose homeostasis, or hepatotoxicity. Fur hypopigmentation was observed in rabbits and mice but not in monkeys. Single and multiple doses were generally well tolerated and produced reductions in Aß40, Aß42, and sAPPß in the CSF of both healthy human subjects and AD patients. The human data were fit to an amyloid pathway model that provided insight into the Aß pools affected by BACE1 inhibition and guided the choice of doses for subsequent clinical trials.


Subject(s)
Alzheimer Disease/metabolism , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Amyloid beta-Peptides/chemistry , Aspartic Acid Endopeptidases/antagonists & inhibitors , Central Nervous System/metabolism , Cyclic S-Oxides/pharmacology , Thiadiazines/pharmacology , Administration, Oral , Amyloid Precursor Protein Secretases/metabolism , Animals , Aspartic Acid Endopeptidases/metabolism , Brain/metabolism , Catalytic Domain , Crystallography, X-Ray , Drug Design , Female , Glucose/metabolism , Macaca fascicularis , Magnetic Resonance Spectroscopy , Mice , Myelin Sheath/chemistry , Peptides/chemistry , Rabbits , Rats
18.
ACS Med Chem Lett ; 7(5): 498-501, 2016 May 12.
Article in English | MEDLINE | ID: mdl-27190600

ABSTRACT

In our efforts to develop second generation DPP-4 inhibitors, we endeavored to identify distinct structures with long-acting (once weekly) potential. Taking advantage of X-ray cocrystal structures of sitagliptin and other DPP-4 inhibitors, such as alogliptin and linagliptin bound to DPP-4, and aided by molecular modeling, we designed several series of heterocyclic compounds as initial targets. During their synthesis, an unexpected chemical transformation provided a novel tricyclic scaffold that was beyond our original design. Capitalizing on this serendipitous discovery, we have elaborated this scaffold into a very potent and selective DPP-4 inhibitor lead series, as highlighted by compound 17c.

19.
Nucleosides Nucleotides Nucleic Acids ; 35(6): 277-94, 2016 Jun 02.
Article in English | MEDLINE | ID: mdl-27104963

ABSTRACT

Novel 2'-modified guanosine nucleosides were synthesized from inexpensive starting materials in 7-10 steps via hydroazidation or hydrocyanation reactions of the corresponding 2'-olefin. The antiviral effectiveness of the guanosine nucleosides was evaluated by converting them to the corresponding 5'-O-triphosphates (compounds 38-44) and testing their biochemical inhibitory activity against the wild-type NS5B polymerase.


Subject(s)
Antiviral Agents/chemical synthesis , Guanine Nucleotides/chemical synthesis , Nucleic Acid Synthesis Inhibitors/chemical synthesis , Viral Nonstructural Proteins/antagonists & inhibitors , Alkenes/chemical synthesis , Azides/chemical synthesis , Hepacivirus/enzymology , Viral Nonstructural Proteins/chemistry
20.
J Med Chem ; 59(7): 3231-48, 2016 Apr 14.
Article in English | MEDLINE | ID: mdl-26937601

ABSTRACT

We describe successful efforts to optimize the in vivo profile and address off-target liabilities of a series of BACE1 inhibitors represented by 6 that embodies the recently validated fused pyrrolidine iminopyrimidinone scaffold. Employing structure-based design, truncation of the cyanophenyl group of 6 that binds in the S3 pocket of BACE1 followed by modification of the thienyl group in S1 was pursued. Optimization of the pyrimidine substituent that binds in the S2'-S2″ pocket of BACE1 remediated time-dependent CYP3A4 inhibition of earlier analogues in this series and imparted high BACE1 affinity. These efforts resulted in the discovery of difluorophenyl analogue 9 (MBi-4), which robustly lowered CSF and cortex Aß40 in both rats and cynomolgus monkeys following a single oral dose. Compound 9 represents a unique molecular shape among BACE inhibitors reported to potently lower central Aß in nonrodent preclinical species.


Subject(s)
Amyloid Precursor Protein Secretases/antagonists & inhibitors , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Drug Design , Heterocyclic Compounds/chemistry , Imines/chemistry , Amyloid beta-Peptides/cerebrospinal fluid , Animals , Cerebral Cortex/metabolism , Enzyme Inhibitors/pharmacology , Macaca fascicularis , Molecular Structure , Rats , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...