Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters











Publication year range
2.
J Clin Invest ; 134(16)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-39145444

ABSTRACT

A disturbed balance between excitation and inhibition (E/I balance) is increasingly recognized as a key driver of neurodegeneration in multiple sclerosis (MS), a chronic inflammatory disease of the central nervous system. To understand how chronic hyperexcitability contributes to neuronal loss in MS, we transcriptionally profiled neurons from mice lacking inhibitory metabotropic glutamate signaling with shifted E/I balance and increased vulnerability to inflammation-induced neurodegeneration. This revealed a prominent induction of the nuclear receptor NR4A2 in neurons. Mechanistically, NR4A2 increased susceptibility to excitotoxicity by stimulating continuous VGF secretion leading to glycolysis-dependent neuronal cell death. Extending these findings to people with MS (pwMS), we observed increased VGF levels in serum and brain biopsies. Notably, neuron-specific deletion of Vgf in a mouse model of MS ameliorated neurodegeneration. These findings underscore the detrimental effect of a persistent metabolic shift driven by excitatory activity as a fundamental mechanism in inflammation-induced neurodegeneration.


Subject(s)
Glycolysis , Inflammation , Neurons , Nuclear Receptor Subfamily 4, Group A, Member 2 , Animals , Mice , Humans , Neurons/metabolism , Neurons/pathology , Nuclear Receptor Subfamily 4, Group A, Member 2/metabolism , Nuclear Receptor Subfamily 4, Group A, Member 2/genetics , Inflammation/metabolism , Inflammation/pathology , Inflammation/genetics , Multiple Sclerosis/pathology , Multiple Sclerosis/metabolism , Multiple Sclerosis/genetics , Mice, Knockout , Signal Transduction , Male , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/pathology
3.
JCI Insight ; 9(15)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38935435

ABSTRACT

ER stress and proinsulin misfolding are heralded as contributing factors to ß cell dysfunction in type 2 diabetes, yet how ER function becomes compromised is not well understood. Recent data identify altered ER redox homeostasis as a critical mechanism that contributes to insulin granule loss in diabetes. Hyperoxidation of the ER delays proinsulin export and limits the proinsulin supply available for insulin granule formation. In this report, we identified glucose metabolism as a critical determinant in the redox homeostasis of the ER. Using multiple ß cell models, we showed that loss of mitochondrial function or inhibition of cellular metabolism elicited ER hyperoxidation and delayed ER proinsulin export. Our data further demonstrated that ß cell ER redox homeostasis was supported by the metabolic supply of reductive redox donors. We showed that limiting NADPH and thioredoxin flux delayed ER proinsulin export, whereas thioredoxin-interacting protein suppression restored ER redox and proinsulin trafficking. Taken together, we propose that ß cell ER redox homeostasis is buffered by cellular redox donor cycles, which are maintained through active glucose metabolism.


Subject(s)
Endoplasmic Reticulum , Glucose , Insulin-Secreting Cells , Oxidation-Reduction , Proinsulin , Thioredoxins , Proinsulin/metabolism , Insulin-Secreting Cells/metabolism , Animals , Endoplasmic Reticulum/metabolism , Mice , Humans , Glucose/metabolism , Thioredoxins/metabolism , Diabetes Mellitus, Type 2/metabolism , Mitochondria/metabolism , Endoplasmic Reticulum Stress , Homeostasis , Insulin/metabolism , NADP/metabolism , Protein Transport
4.
Am J Physiol Endocrinol Metab ; 326(3): E245-E257, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38265287

ABSTRACT

Delayed Golgi export of proinsulin has recently been identified as an underlying mechanism leading to insulin granule loss and ß-cell secretory defects in type 2 diabetes (T2D). Because acidification of the Golgi lumen is critical for proinsulin sorting and delivery into the budding secretory granule, we reasoned that dysregulation of Golgi pH may contribute to proinsulin trafficking defects. In this report, we examined pH regulation of the Golgi and identified a partial alkalinization of the Golgi lumen in a diabetes model. To further explore this, we generated a ß-cell specific knockout (KO) of the v0a2 subunit of the v-ATPase pump, which anchors the v-ATPase to the Golgi membrane. Although loss of v0a2 partially neutralized Golgi pH and was accompanied by distension of the Golgi cisternae, proinsulin export from the Golgi and insulin granule formation were not affected. Furthermore, ß-cell function was well preserved. ß-cell v0a2 KO mice exhibited normal glucose tolerance in both sexes, no genotypic difference to diet-induced obesity, and normal insulin secretory responses. Collectively, our data demonstrate the v0a2 subunit contributes to ß-cell Golgi pH regulation but suggest that additional disturbances to Golgi structure and function contribute to proinsulin trafficking defects in diabetes.NEW & NOTEWORTHY Delayed proinsulin export from the Golgi in diabetic ß-cells contributes to decreased insulin granule formation, but the underlying mechanisms are not clear. Here, we explored if dysregulation of Golgi pH can alter Golgi function using ß-cell specific knockout (KO) of the Golgi-localized subunit of the v-ATPase, v0a2. We show that partial alkalinization of the Golgi dilates the cisternae, but does not affect proinsulin export, insulin granule formation, insulin secretion, or glucose homeostasis.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin-Secreting Cells , Animals , Female , Male , Mice , Adenosine Triphosphatases , Diabetes Mellitus, Type 2/genetics , Glucose , Insulin , Proinsulin/genetics
5.
Mol Metab ; 79: 101845, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38013154

ABSTRACT

OBJECTIVE: Although individual steps have been characterized, there is little understanding of the overall process whereby glucose co-ordinates the biosynthesis of insulin with its export out of the endoplasmic reticulum (ER) and incorporation into insulin secretory granules (ISGs). Here we investigate a role for the transcription factor CREB3L2 in this context. METHODS: MIN6 cells and mouse islets were analysed by immunoblotting after treatment with glucose, fatty acids, thapsigargin and various inhibitors. Knockdown of CREB3L2 was achieved using si or sh constructs by transfection, or viral delivery. In vivo metabolic phenotyping was conducted after deletion of CREB3L2 in ß-cells of adult mice using Ins1-CreER+. Islets were isolated for RNAseq and assays of glucose-stimulated insulin secretion (GSIS). Trafficking was monitored in islet monolayers using a GFP-tagged proinsulin construct that allows for synchronised release from the ER. RESULTS: With a Km ≈3.5 mM, glucose rapidly (T1/2 0.9 h) increased full length (FL) CREB3L2 followed by a slower rise (T1/2 2.5 h) in its transcriptionally-active cleavage product, P60 CREB3L2. Glucose stimulation repressed the ER stress marker, CHOP, and this was partially reverted by knockdown of CREB3L2. Activation of CREB3L2 by glucose was not due to ER stress, however, but a combination of O-GlcNAcylation, which impaired proteasomal degradation of FL-CREB3L2, and mTORC1 stimulation, which enhanced its conversion to P60. cAMP generation also activated CREB3L2, but independently of glucose. Deletion of CREB3L2 inhibited GSIS ex vivo and, following a high-fat diet (HFD), impaired glucose tolerance and insulin secretion in vivo. RNAseq revealed that CREB3L2 regulated genes controlling trafficking to-and-from the Golgi, as well as a broader cohort associated with ß-cell compensation during a HFD. Although post-Golgi trafficking appeared intact, knockdown of CREB3L2 impaired the generation of both nascent ISGs and proinsulin condensates in the Golgi, implying a defect in ER export of proinsulin and/or its processing in the Golgi. CONCLUSION: The stimulation of CREB3L2 by glucose defines a novel, rapid and direct mechanism for co-ordinating the synthesis, packaging and storage of insulin, thereby minimizing ER overload and optimizing ß-cell function under conditions of high secretory demand. Upregulation of CREB3L2 also potentially contributes to the benefits of GLP1 agonism and might in itself constitute a novel means of treating ß-cell failure.


Subject(s)
Glucose , Insulin , Animals , Mice , Basic-Leucine Zipper Transcription Factors , Cyclic AMP Response Element-Binding Protein , Glucose/metabolism , Insulin/metabolism , Proinsulin/genetics , Proinsulin/metabolism , Secretory Vesicles/metabolism
6.
Front Endocrinol (Lausanne) ; 14: 1187216, 2023.
Article in English | MEDLINE | ID: mdl-37305047

ABSTRACT

Introduction: With technical advances, confocal and super-resolution microscopy have become powerful tools to dissect cellular pathophysiology. Cell attachment to glass surfaces compatible with advanced imaging is critical prerequisite but remains a considerable challenge for human beta cells. Recently, Phelps et al. reported that human beta cells plated on type IV collagen (Col IV) and cultured in neuronal medium preserve beta cell characteristics. Methods: We examined human islet cells plated on two commercial sources of Col IV (C6745 and C5533) and type V collagen (Col V) for differences in cell morphology by confocal microscopy and secretory function by glucose-stimulated insulin secretion (GSIS). Collagens were authenticated by mass spectrometry and fluorescent collagen-binding adhesion protein CNA35. Results: All three preparations allowed attachment of beta cells with high nuclear localization of NKX6.1, indicating a well-differentiated status. All collagen preparations supported robust GSIS. However, the morphology of islet cells differed between the 3 preparations. C5533 showed preferable features as an imaging platform with the greatest cell spread and limited stacking of cells followed by Col V and C6745. A significant difference in attachment behavior of C6745 was attributed to the low collagen contents of this preparation indicating importance of authentication of coating material. Human islet cells plated on C5533 showed dynamic changes in mitochondria and lipid droplets (LDs) in response to an uncoupling agent 2-[2-[4-(trifluoromethoxy)phenyl]hydrazinylidene]-propanedinitrile (FCCP) or high glucose + oleic acid. Discussion: An authenticated preparation of Col IV provides a simple platform to apply advanced imaging for studies of human islet cell function and morphology.


Subject(s)
Bone Plates , Collagen , Humans , Microscopy, Confocal , Collagen Type V , Glucose/pharmacology
7.
Sci Rep ; 13(1): 5218, 2023 03 30.
Article in English | MEDLINE | ID: mdl-36997560

ABSTRACT

The pancreatic islet ß-cell's preference for release of newly synthesized insulin requires careful coordination of insulin exocytosis with sufficient insulin granule production to ensure that insulin stores exceed peripheral demands for glucose homeostasis. Thus, the cellular mechanisms regulating insulin granule production are critical to maintaining ß-cell function. In this report, we utilized the synchronous protein trafficking system, RUSH, in primary ß-cells to evaluate proinsulin transit through the secretory pathway leading to insulin granule formation. We demonstrate that the trafficking, processing, and secretion of the proinsulin RUSH reporter, proCpepRUSH, are consistent with current models of insulin maturation and release. Using both a rodent dietary and genetic model of hyperglycemia and ß-cell dysfunction, we show that proinsulin trafficking is impeded at the Golgi and coincides with the decreased appearance of nascent insulin granules at the plasma membrane. Ultrastructural analysis of ß-cells from diabetic leptin receptor deficient mice revealed gross morphological changes in Golgi structure, including shortened and swollen cisternae, and partial Golgi vesiculation, which are consistent with defects in secretory protein export. Collectively, this work highlights the utility of the proCpepRUSH reporter in studying proinsulin trafficking dynamics and suggests that altered Golgi export function contributes to ß-cell secretory defects in the pathogenesis of Type 2 diabetes.


Subject(s)
Diabetes Mellitus, Type 2 , Hyperglycemia , Insulin-Secreting Cells , Islets of Langerhans , Mice , Animals , Proinsulin/metabolism , Diabetes Mellitus, Type 2/metabolism , Rodentia/metabolism , Insulin/metabolism , Hyperglycemia/metabolism , Islets of Langerhans/metabolism , Insulin-Secreting Cells/metabolism
8.
Function (Oxf) ; 3(6): zqac051, 2022.
Article in English | MEDLINE | ID: mdl-36325514

ABSTRACT

Defects in the pancreatic ß-cell's secretion system are well-described in type 2 diabetes (T2D) and include impaired proinsulin processing and a deficit in mature insulin-containing secretory granules; however, the cellular mechanisms underlying these defects remain poorly understood. To address this, we used an in situ fluorescent pulse-chase strategy to study proinsulin trafficking. We show that insulin granule formation and the appearance of nascent granules at the plasma membrane are decreased in rodent and cell culture models of prediabetes and hyperglycemia. Moreover, we link the defect in insulin granule formation to an early trafficking delay in endoplasmic reticulum (ER) export of proinsulin, which is independent of overt ER stress. Using a ratiometric redox sensor, we show that the ER becomes hyperoxidized in ß-cells from a dietary model of rodent prediabetes and that addition of reducing equivalents restores ER export of proinsulin and insulin granule formation and partially restores ß-cell function. Together, these data identify a critical role for the regulation of ER redox homeostasis in proinsulin trafficking and suggest that alterations in ER redox poise directly contribute to the decline in insulin granule production in T2D. This model highlights a critical link between alterations in ER redox and ER function with defects in proinsulin trafficking in T2D. Hyperoxidation of the ER lumen, shown as hydrogen peroxide, impairs proinsulin folding and disulfide bond formation that prevents efficient exit of proinsulin from the ER to the Golgi. This trafficking defect limits available proinsulin for the formation of insulin secretory granules during the development of T2D.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin-Secreting Cells , Prediabetic State , Humans , Insulin , Proinsulin , Diabetes Mellitus, Type 2/metabolism , Prediabetic State/metabolism , Insulin, Regular, Human/metabolism , Oxidation-Reduction , Homeostasis , Endoplasmic Reticulum/metabolism
9.
J Cell Biol ; 221(12)2022 12 05.
Article in English | MEDLINE | ID: mdl-36173346

ABSTRACT

Insulin is synthesized by pancreatic ß-cells and stored into secretory granules (SGs). SGs fuse with the plasma membrane in response to a stimulus and deliver insulin to the bloodstream. The mechanism of how proinsulin and its processing enzymes are sorted and targeted from the trans-Golgi network (TGN) to SGs remains mysterious. No cargo receptor for proinsulin has been identified. Here, we show that chromogranin (CG) proteins undergo liquid-liquid phase separation (LLPS) at a mildly acidic pH in the lumen of the TGN, and recruit clients like proinsulin to the condensates. Client selectivity is sequence-independent but based on the concentration of the client molecules in the TGN. We propose that the TGN provides the milieu for converting CGs into a "cargo sponge" leading to partitioning of client molecules, thus facilitating receptor-independent client sorting. These findings provide a new receptor-independent sorting model in ß-cells and many other cell types and therefore represent an innovation in the field of membrane trafficking.


Subject(s)
Cytoplasmic Granules , Golgi Apparatus , Insulin-Secreting Cells , Proinsulin , Secretory Vesicles , Chromogranins/metabolism , Cytoplasmic Granules/metabolism , Golgi Apparatus/metabolism , Humans , Insulin/metabolism , Insulin-Secreting Cells/metabolism , Proinsulin/metabolism , Secretory Vesicles/metabolism
10.
Biomolecules ; 12(2)2022 02 20.
Article in English | MEDLINE | ID: mdl-35204835

ABSTRACT

Pancreatic islet ß-cells exhibit tremendous plasticity for secretory adaptations that coordinate insulin production and release with nutritional demands. This essential feature of the ß-cell can allow for compensatory changes that increase secretory output to overcome insulin resistance early in Type 2 diabetes (T2D). Nutrient-stimulated increases in proinsulin biosynthesis may initiate this ß-cell adaptive compensation; however, the molecular regulators of secretory expansion that accommodate the increased biosynthetic burden of packaging and producing additional insulin granules, such as enhanced ER and Golgi functions, remain poorly defined. As these adaptive mechanisms fail and T2D progresses, the ß-cell succumbs to metabolic defects resulting in alterations to glucose metabolism and a decline in nutrient-regulated secretory functions, including impaired proinsulin processing and a deficit in mature insulin-containing secretory granules. In this review, we will discuss how the adaptative plasticity of the pancreatic islet ß-cell's secretory program allows insulin production to be carefully matched with nutrient availability and peripheral cues for insulin signaling. Furthermore, we will highlight potential defects in the secretory pathway that limit or delay insulin granule biosynthesis, which may contribute to the decline in ß-cell function during the pathogenesis of T2D.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin-Secreting Cells , Diabetes Mellitus, Type 2/metabolism , Humans , Insulin/metabolism , Insulin-Secreting Cells/metabolism , Nutrients , Proinsulin/metabolism
11.
J Magn Reson Imaging ; 56(4): 1079-1088, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35156741

ABSTRACT

BACKGROUND: There has been a growing interest in exploring the applications of stretched-exponential (SEM) and intravoxel incoherent motion (IVIM) models of diffusion-weighted imaging (DWI) in breast imaging, with the focus on differentiation of breast lesions. However, the use of SEM and IVIM models to predict early response to neoadjuvant chemotherapy (NACT) has received less attention. PURPOSE: To investigate the value of monoexponential, SEM, and IVIM models to predict early response to NACT in patients with primary breast cancer. STUDY TYPE: Prospective. POPULATION: Thirty-seven patients with primary breast cancer (aged 46 ± 11 years) due to undergo NACT. FIELD STRENGTH/SEQUENCES: A 1.5-T MR scanner, T1 -weighted three-dimensional spoiled gradient-echo, two-dimensional single-shot spin-echo echo-planar imaging sequence (DWI) at six b-values (0-800 s mm-2 ). ASSESSMENT: Tumor volume, apparent diffusion coefficient, tissue diffusion (Dt ), pseudo-diffusion coefficient (Dp ), perfusion fraction (f), distributed diffusion coefficient, and alpha (α) were extracted, following volumetric sampling of the tumors, at three time-points: pretreatment, post one and three cycles of NACT. STATISTICAL TESTS: Mann-Whitney test, receiver operating characteristic (ROC) curve. Statistical significance level was P < 0.05. RESULTS: Following NACT, 17 patients were determined to be pathological responders and 20 nonresponders. Tumor volume was significantly larger in nonresponders at each MRI time-point and demonstrated reasonable performance in predicting response (area under the ROC curve [AUC] = 0.83-0.87). No significant differences between groups were found in the diffusion coefficients at each time-point (P = 0.09-1). The parameters α (SEM), f, and f × Dp (IVIM) were able to differentiate between response groups after one cycle of NACT (AUC = 0.73, 0.72, and 0.74, respectively). CONCLUSION: Diffusion coefficients derived from the monoexponential, SEM, and IVIM models did not predict pathological response. However, the IVIM-derived parameters f and f × Dp and the SEM-derived parameter α were able to predict response to NACT in breast cancer patients following one cycle of NACT. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY STAGE: 2.


Subject(s)
Breast Neoplasms , Neoadjuvant Therapy , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Diffusion Magnetic Resonance Imaging/methods , Female , Humans , Magnetic Resonance Imaging , Motion , Prospective Studies
12.
Mol Ther Nucleic Acids ; 26: 307-320, 2021 Dec 03.
Article in English | MEDLINE | ID: mdl-34513312

ABSTRACT

Micropeptides (microproteins) encoded by transcripts previously annotated as long noncoding RNAs (lncRNAs) are emerging as important mediators of fundamental biological processes in health and disease. Here, we applied two computational tools to identify putative micropeptides encoded by lncRNAs that are expressed in the human pancreas. We experimentally verified one such micropeptide encoded by a ß cell- and neural cell-enriched lncRNA TCL1 Upstream Neural Differentiation-Associated RNA (TUNAR, also known as TUNA, HI-LNC78, or LINC00617). We named this highly conserved 48-amino-acid micropeptide beta cell- and neural cell-regulin (BNLN). BNLN contains a single-pass transmembrane domain and localizes at the endoplasmic reticulum (ER) in pancreatic ß cells. Overexpression of BNLN lowered ER calcium levels, maintained ER homeostasis, and elevated glucose-stimulated insulin secretion in pancreatic ß cells. We further assessed the BNLN expression in islets from mice fed a high-fat diet and a regular diet and found that BNLN is suppressed by diet-induced obesity (DIO). Conversely, overexpression of BNLN enhanced insulin secretion in islets from lean and obese mice as well as from humans. Taken together, our study provides the first evidence that lncRNA-encoded micropeptides play a critical role in pancreatic ß cell functions and provides a foundation for future comprehensive analyses of micropeptide function and pathophysiological impact on diabetes.

13.
Biomedicines ; 9(6)2021 Jun 02.
Article in English | MEDLINE | ID: mdl-34199469

ABSTRACT

Pancreatic neuroendocrine tumors (pNETs) are difficult-to-treat neoplasms whose incidence is rising. Greater understanding of pNET pathogenesis is needed to identify new biomarkers and targets for improved therapy. RABL6A, a novel oncogenic GTPase, is highly expressed in patient pNETs and required for pNET cell proliferation and survival in vitro. Here, we investigated the role of RABL6A in pNET progression in vivo using a well-established model of the disease. RIP-Tag2 (RT2) mice develop functional pNETs (insulinomas) due to SV40 large T-antigen expression in pancreatic islet ß cells. RABL6A loss in RT2 mice significantly delayed pancreatic tumor formation, reduced tumor angiogenesis and mitoses, and extended survival. Those effects correlated with upregulation of anti-angiogenic p19ARF and downregulation of proangiogenic c-Myc in RABL6A-deficient islets and tumors. Our findings demonstrate that RABL6A is a bona fide oncogenic driver of pNET angiogenesis and development in vivo.

14.
Diabetes ; 70(8): 1717-1728, 2021 08.
Article in English | MEDLINE | ID: mdl-34039628

ABSTRACT

The defining feature of pancreatic islet ß-cell function is the precise coordination of changes in blood glucose levels with insulin secretion to regulate systemic glucose homeostasis. While ATP has long been heralded as a critical metabolic coupling factor to trigger insulin release, glucose-derived metabolites have been suggested to further amplify fuel-stimulated insulin secretion. The mitochondrial export of citrate and isocitrate through the citrate-isocitrate carrier (CIC) has been suggested to initiate a key pathway that amplifies glucose-stimulated insulin secretion, though the physiological significance of ß-cell CIC-to-glucose homeostasis has not been established. Here, we generated constitutive and adult CIC ß-cell knockout (KO) mice and demonstrate that these animals have normal glucose tolerance, similar responses to diet-induced obesity, and identical insulin secretion responses to various fuel secretagogues. Glucose-stimulated NADPH production was impaired in ß-cell CIC KO islets, whereas glutathione reduction was retained. Furthermore, suppression of the downstream enzyme cytosolic isocitrate dehydrogenase (Idh1) inhibited insulin secretion in wild-type islets but failed to impact ß-cell function in ß-cell CIC KO islets. Our data demonstrate that the mitochondrial CIC is not required for glucose-stimulated insulin secretion and that additional complexities exist for the role of Idh1 and NADPH in the regulation of ß-cell function.


Subject(s)
Citric Acid/metabolism , Glucose/pharmacology , Insulin Secretion/drug effects , Insulin-Secreting Cells/metabolism , Isocitrates/metabolism , Mitochondria/metabolism , Animals , Cytosol/metabolism , Homeostasis/drug effects , Insulin-Secreting Cells/drug effects , Mice , Mice, Knockout , Mitochondria/drug effects
15.
JCI Insight ; 6(9)2021 05 10.
Article in English | MEDLINE | ID: mdl-33784258

ABSTRACT

Perilipin 2 (PLIN2) is a lipid droplet (LD) protein in ß cells that increases under nutritional stress. Downregulation of PLIN2 is often sufficient to reduce LD accumulation. To determine whether PLIN2 positively or negatively affects ß cell function under nutritional stress, PLIN2 was downregulated in mouse ß cells, INS1 cells, and human islet cells. ß Cell-specific deletion of PLIN2 in mice on a high-fat diet reduced glucose-stimulated insulin secretion (GSIS) in vivo and in vitro. Downregulation of PLIN2 in INS1 cells blunted GSIS after 24-hour incubation with 0.2 mM palmitic acid. Downregulation of PLIN2 in human pseudoislets cultured at 5.6 mM glucose impaired both phases of GSIS, indicating that PLIN2 is critical for GSIS. Downregulation of PLIN2 decreased specific OXPHOS proteins in all 3 models and reduced oxygen consumption rates in INS1 cells and mouse islets. Moreover, we found that PLIN2-deficient INS1 cells increased the distribution of a fluorescent oleic acid analog to mitochondria and showed signs of mitochondrial stress, as indicated by susceptibility to fragmentation and alterations of acyl-carnitines and glucose metabolites. Collectively, PLIN2 in ß cells has an important role in preserving insulin secretion, ß cell metabolism, and mitochondrial function under nutritional stress.


Subject(s)
Insulin Secretion/genetics , Insulin-Secreting Cells/metabolism , Lipid Droplets/metabolism , Perilipin-2/genetics , Stress, Physiological/genetics , Animals , Carnitine/analogs & derivatives , Carnitine/metabolism , Diet, High-Fat , Down-Regulation , Glucose/metabolism , Humans , In Vitro Techniques , Islets of Langerhans , Mice , Mice, Knockout , Mitochondria/metabolism , Oleic Acid/metabolism , Oxidative Phosphorylation , Oxidative Stress/genetics , Oxygen Consumption/genetics , Perilipin-2/metabolism , Rats
16.
Am J Physiol Endocrinol Metab ; 319(4): E805-E813, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32865009

ABSTRACT

Sirtuins are a family of proteins that regulate biological processes such as cellular stress and aging by removing posttranslational modifications (PTMs). We recently identified several novel PTMs that can be removed by sirtuin 4 (SIRT4), which is found in mitochondria. We showed that mice with a global loss of SIRT4 [SIRT4-knockout (KO) mice] developed an increase in glucose- and leucine-stimulated insulin secretion, and this was followed by accelerated age-induced glucose intolerance and insulin resistance. Because whole body SIRT4-KO mice had alterations to nutrient-stimulated insulin secretion, we hypothesized that SIRT4 plays a direct role in regulating pancreatic ß-cell function. Thus, we tested whether ß-cell-specific ablation of SIRT4 would recapitulate the elevated insulin secretion seen in mice with a global loss of SIRT4. Tamoxifen-inducible ß-cell-specific SIRT4-KO mice were generated, and their glucose tolerance and glucose- and leucine-stimulated insulin secretion were measured over time. These mice exhibited normal glucose- and leucine-stimulated insulin secretion and maintained normal glucose tolerance even as they aged. Furthermore, 832/13 ß-cells with a CRISPR/Cas9n-mediated loss of SIRT4 did not show any alterations in nutrient-stimulated insulin secretion. Despite the fact that whole body SIRT4-KO mice demonstrated an age-induced increase in glucose- and leucine-stimulated insulin secretion, our current data indicate that the loss of SIRT4 specifically in pancreatic ß-cells, both in vivo and in vitro, does not have a significant impact on nutrient-stimulated insulin secretion. These data suggest that SIRT4 controls nutrient-stimulated insulin secretion during aging by acting on tissues external to the ß-cell, which warrants further study.


Subject(s)
Insulin Secretion/physiology , Insulin-Secreting Cells/metabolism , Mitochondrial Proteins/metabolism , Sirtuins/metabolism , Animals , Glucose/pharmacology , Glucose Intolerance/metabolism , Insulin Resistance , Islets of Langerhans/cytology , Islets of Langerhans/metabolism , Leucine/pharmacology , Mice , Mice, Knockout , Mitochondria/metabolism , Nutrients , Protein Processing, Post-Translational
17.
iScience ; 23(6): 101216, 2020 Jun 26.
Article in English | MEDLINE | ID: mdl-32535024

ABSTRACT

Ghrelin regulates both energy intake and glucose homeostasis. In the endocrine pancreas, ghrelin inhibits insulin release to prevent hypoglycemia during fasting. The mechanism through which this is accomplished is unclear, but recent studies suggest that ghrelin acts on δ cells to stimulate somatostatin release, which in turn inhibits insulin release from ß cells. Recently, the Melanocortin Receptor Accessory Protein 2 (MRAP2) was identified as an essential partner of the ghrelin receptor (GHSR1a) in mediating the central orexigenic action of ghrelin. In this study we show that MRAP2 is expressed in islet δ cells and is required for ghrelin to elicit a calcium response in those cells. Additionally, we show that both global and δ cell targeted deletion of MRAP2 abrogates the insulinostatic effect of ghrelin. Together, these findings establish that ghrelin signaling within δ cells is essential for the inhibition of insulin release and identify MRAP2 as a regulator of insulin secretion.

18.
Diabetes ; 2020 Mar 31.
Article in English | MEDLINE | ID: mdl-32234723

ABSTRACT

Lipid droplets (LDs) are frequently increased when excessive lipid accumulation leads to cellular dysfunction. Distinct from mouse beta cells, LDs are prominent in human beta cells, however, the regulation of LD mobilization (lipolysis) in human beta cells remains unclear. We found that glucose increases lipolysis in non-diabetic human islets, but not in type 2 diabetic (T2D) islets, indicating dysregulation of lipolysis in T2D islets. Silencing adipose triglyceride lipase (ATGL) in human pseudoislets (shATGL) increased triglycerides, and the number and size of LDs indicating that ATGL is the principal lipase in human beta cells. In shATGL pseudoislets, biphasic glucose-stimulated insulin secretion (GSIS) and insulin secretion to IBMX and KCl were all reduced without altering oxygen consumption rate compared with scramble control. Like human islets, INS1 cells showed visible LDs, glucose responsive lipolysis, and impairment of GSIS after ATGL silencing. ATGL deficient INS1 cells and human pseudoislets showed reduced Stx1a, a key SNARE component. Proteasomal degradation of Stx1a was accelerated likely through reduced palmitoylation in ATGL deficient INS1 cells. Therefore, ATGL is responsible for LD mobilization in human beta cells and supports insulin secretion by stabilizing Stx1a. The dysregulated lipolysis may contribute to LD accumulation and beta cell dysfunction in T2D islets.

19.
Diabetes ; 69(6): 1178-1192, 2020 06.
Article in English | MEDLINE | ID: mdl-32312867

ABSTRACT

Lipid droplets (LDs) are frequently increased when excessive lipid accumulation leads to cellular dysfunction. Distinct from mouse ß-cells, LDs are prominent in human ß-cells. However, the regulation of LD mobilization (lipolysis) in human ß-cells remains unclear. We found that glucose increases lipolysis in nondiabetic human islets but not in islets in patients with type 2 diabetes (T2D), indicating dysregulation of lipolysis in T2D islets. Silencing adipose triglyceride lipase (ATGL) in human pseudoislets with shRNA targeting ATGL (shATGL) increased triglycerides (TGs) and the number and size of LDs, indicating that ATGL is the principal lipase in human ß-cells. In shATGL pseudoislets, biphasic glucose-stimulated insulin secretion (GSIS), and insulin secretion to 3-isobutyl-1-methylxanthine and KCl were all reduced without altering oxygen consumption rate compared with scramble control. Like human islets, INS1 cells showed visible LDs, glucose-responsive lipolysis, and impairment of GSIS after ATGL silencing. ATGL-deficient INS1 cells and human pseudoislets showed reduced SNARE protein syntaxin 1a (STX1A), a key SNARE component. Proteasomal degradation of Stx1a was accelerated likely through reduced palmitoylation in ATGL-deficient INS1 cells. Therefore, ATGL is responsible for LD mobilization in human ß-cells and supports insulin secretion by stabilizing STX1A. The dysregulated lipolysis may contribute to LD accumulation and ß-cell dysfunction in T2D islets.


Subject(s)
Insulin-Secreting Cells/physiology , Lipase/metabolism , Lipid Droplets/physiology , Syntaxin 1/metabolism , Animals , Down-Regulation , Gene Expression Regulation, Enzymologic/physiology , Humans , Insulin/metabolism , Lipase/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Oxygen/metabolism , Oxygen Consumption , Syntaxin 1/genetics
20.
PLoS One ; 15(3): e0224344, 2020.
Article in English | MEDLINE | ID: mdl-32176701

ABSTRACT

A key event in the development of both major forms of diabetes is the loss of functional pancreatic islet ß-cell mass. Strategies aimed at enhancing ß-cell regeneration have long been pursued, but methods for reliably inducing human ß-cell proliferation with full retention of key functions such as glucose-stimulated insulin secretion (GSIS) are still very limited. We have previously reported that overexpression of the homeobox transcription factor NKX6.1 stimulates ß-cell proliferation, while also enhancing GSIS and providing protection against ß-cell cytotoxicity through induction of the VGF prohormone. We developed an NKX6.1 pathway screen by stably transfecting 832/13 rat insulinoma cells with a VGF promoter-luciferase reporter construct, using the resultant cell line to screen a 630,000 compound chemical library. We isolated three compounds with consistent effects to stimulate human islet cell proliferation, but not expression of NKX6.1 or VGF, suggesting an alternative mechanism of action. Further studies of the most potent of these compounds, GNF-9228, revealed that it selectively activates human ß-cell relative to α-cell proliferation and has no effect on δ-cell replication. In addition, pre-treatment, but not short term exposure of human islets to GNF-9228 enhances GSIS. GNF-9228 also protects 832/13 insulinoma cells against ER stress- and inflammatory cytokine-induced cytotoxicity. GNF-9228 stimulates proliferation via a mechanism distinct from recently emergent DYRK1A inhibitors, as it is unaffected by DYRK1A overexpression and does not activate NFAT translocation. In conclusion, we have identified a small molecule with pleiotropic positive effects on islet biology, including stimulation of human ß-cell proliferation and insulin secretion, and protection against multiple agents of cytotoxic stress.


Subject(s)
Cell Proliferation/drug effects , Insulin Secretion/drug effects , Insulin-Secreting Cells/metabolism , Insulinoma/metabolism , Protein Kinase Inhibitors/pharmacology , Animals , Cell Line, Tumor , Glucagon-Secreting Cells/metabolism , Glucagon-Secreting Cells/pathology , Glucose/pharmacology , Homeodomain Proteins/metabolism , Humans , Insulin-Secreting Cells/pathology , Insulinoma/pathology , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/metabolism , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/metabolism , Protein-Tyrosine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/metabolism , Rats , Dyrk Kinases
SELECTION OF CITATIONS
SEARCH DETAIL