Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Bioorg Med Chem Lett ; 98: 129546, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-37944866

ABSTRACT

Epigenetic proteins containing YEATS domains (YD) are an emerging target class in drug discovery. Described herein are the discovery and characterization efforts associated with PFI-6, a new chemical probe for the YD of MLLT1 (ENL/YEATS1) and MLLT3 (AF9/YEATS3). For hit identification, fragment-like mimetics of endogenous YD ligands (crotonylated histone-containing proteins), were synthesized via parallel medicinal chemistry (PMC) and screened for MLLT1 binding. Subsequent SAR studies led to iterative MLLT1/3 binding and selectivity improvements, culminating in the discovery of PFI-6. PFI-6 demonstrates good affinity and selectivity for MLLT1/3 vs. other human YD proteins (YEATS2/4) and engages MLLT3 in cells. Small-molecule X-ray co-crystal structures of two molecules, including PFI-6, bound to the YD of MLLT1/3 are also described. PFI-6 may be a useful tool molecule to better understand the biological effects associated with modulation of MLLT1/3.


Subject(s)
Histones , Nuclear Proteins , Humans , Nuclear Proteins/metabolism , Histones/metabolism , Protein Domains , Drug Discovery , Neoplasm Proteins/metabolism , Transcription Factors/metabolism
2.
J Pharmacol Exp Ther ; 386(2): 117-128, 2023 08.
Article in English | MEDLINE | ID: mdl-36631279

ABSTRACT

Preclinical and clinical studies have identified the ghrelin receptor [growth hormone secretagogue receptor (GHSR)1a] as a potential target for treating alcohol use disorder. A recent phase 1a clinical trial of a GHSR1a antagonist/inverse agonist, PF-5190457, in individuals with heavy alcohol drinking identified a previously undetected major hydroxy metabolite of PF-5190457, namely PF-6870961. Here, we further characterized PF-6870961 by screening for off-target interactions in a high-throughput screen and determined its in vitro pharmacodynamic profile at GHSR1a through binding and concentration-response assays. Moreover, we determined whether the metabolite demonstrated an in vivo effect by assessing effects on food intake in male and female rats. We found that PF-6870961 had no off-target interactions and demonstrated both binding affinity and inverse agonist activity at GHSR1a. In comparison with its parent compound, PF-5190457, the metabolite PF-6870961 had lower binding affinity and potency at inhibiting GHSR1a-induced inositol phosphate accumulation. However, PF-6870961 had increased inhibitory potency at GHSR1a-induced ß-arrestin recruitment relative to its parent compound. Intraperitoneal injection of PF-6870961 suppressed food intake under conditions of both food restriction and with ad libitum access to food in male and female rats, demonstrating in vivo activity. The effects of PF-6870961 on food intake were abolished in male and female rats knockout for GHSR, thus demonstrating that its effects on food intake are in fact mediated by the GHSR receptor. Our findings indicate that the newly discovered major hydroxy metabolite of PF-5190457 may contribute to the overall activity of PF-5190457 by demonstrating inhibitory activity at GHSR1a. SIGNIFICANCE STATEMENT: Antagonists or inverse agonists of the growth hormone secretagogue receptor (GHSR)1a have demonstrated substantial potential as therapeutics for alcohol use disorder. We here expand understanding of the pharmacology of one such GHSR1a inverse agonist, PF-5190457, by studying the safety and pharmacodynamics of its major hydroxy metabolite, PF-6870961. Our data demonstrate biased inverse agonism of PF-6870961 at GHSR1a and provide new structure-activity relationship insight into GHSR1a inverse agonism.


Subject(s)
Alcoholism , Rats , Male , Female , Animals , Receptors, Ghrelin/metabolism , Drug Inverse Agonism
3.
J Med Chem ; 66(1): 460-472, 2023 01 12.
Article in English | MEDLINE | ID: mdl-36562986

ABSTRACT

A series of small-molecule YEATS4 binders have been discovered as part of an ongoing research effort to generate high-quality probe molecules for emerging and/or challenging epigenetic targets. Analogues such as 4d and 4e demonstrate excellent potency and selectivity for YEATS4 binding versus YEATS1,2,3 and exhibit good physical properties and in vitro safety profiles. A new X-ray crystal structure confirms direct binding of this chemical series to YEATS4 at the lysine acetylation recognition site of the YEATS domain. Multiple analogues engage YEATS4 with nanomolar potency in a whole-cell nanoluciferase bioluminescent resonance energy transfer assay. Rodent pharmacokinetic studies demonstrate the competency of several analogues as in vivo-capable binders.


Subject(s)
Gene Expression Regulation , Protein Processing, Post-Translational , Protein Domains , Acetylation , Epigenesis, Genetic
4.
J Med Chem ; 65(22): 15000-15013, 2022 11 24.
Article in English | MEDLINE | ID: mdl-36322383

ABSTRACT

Discovery efforts leading to the identification of ervogastat (PF-06865571), a systemically acting diacylglycerol acyltransferase (DGAT2) inhibitor that has advanced into clinical trials for the treatment of non-alcoholic steatohepatitis (NASH) with liver fibrosis, are described herein. Ervogastat is a first-in-class DGAT2 inhibitor that addressed potential development risks of the prototype liver-targeted DGAT2 inhibitor PF-06427878. Key design elements that culminated in the discovery of ervogastat are (1) replacement of the metabolically labile motif with a 3,5-disubstituted pyridine system, which addressed potential safety risks arising from a cytochrome P450-mediated O-dearylation of PF-06427878 to a reactive quinone metabolite precursor, and (2) modifications of the amide group to a 3-THF group, guided by metabolite identification studies coupled with property-based drug design.


Subject(s)
Diacylglycerol O-Acyltransferase , Non-alcoholic Fatty Liver Disease , Humans , Drug Design , Liver Cirrhosis , Non-alcoholic Fatty Liver Disease/drug therapy
5.
J Med Chem ; 63(22): 13546-13560, 2020 11 25.
Article in English | MEDLINE | ID: mdl-32910646

ABSTRACT

Increased fructose consumption and its subsequent metabolism have been implicated in metabolic disorders such as nonalcoholic fatty liver disease and steatohepatitis (NAFLD/NASH) and insulin resistance. Ketohexokinase (KHK) converts fructose to fructose-1-phosphate (F1P) in the first step of the metabolic cascade. Herein we report the discovery of a first-in-class KHK inhibitor, PF-06835919 (8), currently in phase 2 clinical trials. The discovery of 8 was built upon our originally reported, fragment-derived lead 1 and the recognition of an alternative, rotated binding mode upon changing the ribose-pocket binding moiety from a pyrrolidinyl to an azetidinyl ring system. This new binding mode enabled efficient exploration of the vector directed at the Arg-108 residue, leading to the identification of highly potent 3-azabicyclo[3.1.0]hexane acetic acid-based KHK inhibitors by combined use of parallel medicinal chemistry and structure-based drug design.


Subject(s)
Drug Discovery/methods , Enzyme Inhibitors/chemistry , Fructokinases/antagonists & inhibitors , Fructokinases/metabolism , Fructose/adverse effects , Metabolic Diseases/enzymology , Animals , Crystallography, X-Ray , Dogs , Dose-Response Relationship, Drug , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Fructose/administration & dosage , Hepatocytes/drug effects , Hepatocytes/enzymology , Humans , Insulin Resistance/physiology , Male , Metabolic Diseases/chemically induced , Metabolic Diseases/drug therapy , Protein Structure, Secondary , Rats , Rats, Wistar
6.
Chem Biol ; 22(12): 1588-96, 2015 Dec 17.
Article in English | MEDLINE | ID: mdl-26670081

ABSTRACT

Bromodomains are involved in transcriptional regulation through the recognition of acetyl lysine modifications on diverse proteins. Selective pharmacological modulators of bromodomains are lacking, although the largely hydrophobic nature of the pocket makes these modules attractive targets for small-molecule inhibitors. This work describes the structure-based design of a highly selective inhibitor of the CREB binding protein (CBP) bromodomain and its use in cell-based transcriptional profiling experiments. The inhibitor downregulated a number of inflammatory genes in macrophages that were not affected by a selective BET bromodomain inhibitor. In addition, the CBP bromodomain inhibitor modulated the mRNA level of the regulator of G-protein signaling 4 (RGS4) gene in neurons, suggesting a potential therapeutic opportunity for CBP inhibitors in the treatment of neurological disorders.


Subject(s)
CREB-Binding Protein/antagonists & inhibitors , Drug Design , Small Molecule Libraries/chemistry , CREB-Binding Protein/genetics , Fluorescence Resonance Energy Transfer , Gene Expression Regulation/drug effects , Humans , Protein Structure, Tertiary , RGS Proteins/genetics , Small Molecule Libraries/pharmacology , Transcriptome
7.
ACS Med Chem Lett ; 6(2): 156-61, 2015 Feb 12.
Article in English | MEDLINE | ID: mdl-25699143

ABSTRACT

Several polar heteroaromatic acetic acids and their piperidine amides were synthesized and evaluated as ghrelin or type 1a growth hormone secretagogue receptor (GHS-R1a) inverse agonists. Efforts to improve pharmacokinetic and safety profile was achieved by modulating physicochemical properties and, more specifically, emphasizing increased polarity of our chemical series. ortho-Carboxamide containing compounds provided optimal physicochemical, pharmacologic, and safety profile. pH-dependent chemical stability was also assessed with our series.

8.
ACS Med Chem Lett ; 5(5): 474-9, 2014 May 08.
Article in English | MEDLINE | ID: mdl-24900864

ABSTRACT

The identification of potent, highly selective orally bioavailable ghrelin receptor inverse agonists from a spiro-azetidino-piperidine series is described. Examples from this series have promising in vivo pharmacokinetics and increase glucose-stimulated insulin secretion in human whole and dispersed islets. A physicochemistry-based strategy to increase lipophilic efficiency for ghrelin receptor potency and retain low clearance and satisfactory permeability while reducing off-target pharmacology led to the discovery of 16h. Compound 16h has a superior balance of ghrelin receptor pharmacology and off-target selectivity. On the basis of its promising pharmacological and safety profile, 16h was advanced to human clinical trials.

9.
Bioorg Med Chem Lett ; 23(19): 5410-4, 2013 Oct 01.
Article in English | MEDLINE | ID: mdl-23953189

ABSTRACT

The optimization for selectivity and central receptor occupancy for a series of spirocyclic azetidine-piperidine inverse agonists of the ghrelin receptor is described. Decreased mAChR muscarinic M2 binding was achieved by use of a chiral indane in place of a substituted benzylic group. Compounds with desirable balance of human in vitro clearance and ex vivo central receptor occupancy were discovered by incorporation of heterocycles. Specifically, heteroaryl rings with nitrogen(s) vicinal to the indane linkage provided the most attractive overall properties.


Subject(s)
Central Nervous System/drug effects , Receptors, Ghrelin/antagonists & inhibitors , Amino Acid Sequence , Animals , Binding Sites , Drug Inverse Agonism , Heterocyclic Compounds/chemistry , Heterocyclic Compounds/pharmacology , Humans , Indans/chemistry , Indans/pharmacology , Inhibitory Concentration 50 , Isomerism , Molecular Structure , Protein Binding/drug effects , Rats , Structure-Activity Relationship
10.
Bioorg Med Chem Lett ; 22(13): 4281-7, 2012 Jul 01.
Article in English | MEDLINE | ID: mdl-22677316

ABSTRACT

The discovery of spirocyclic piperidine-azetidine inverse agonists of the ghrelin receptor is described. The characterization and redressing of the issues associated with these compounds is detailed. An efficient three-step synthesis and a binding assay were relied upon as the primary means of rapidly improving potency and ADMET properties for this class of inverse agonist compounds. Compound 10 n bearing distributed polarity in the form of an imidazo-thiazole acetamide and a phenyl triazole is a unit lower in logP and has significantly improved binding affinity compared to the hit molecule 10a, providing support for further optimization of this series of compounds.


Subject(s)
Azetidines/chemistry , Piperidines/chemistry , Receptors, Ghrelin/agonists , Animals , Azetidines/chemical synthesis , Azetidines/pharmacokinetics , Drug Inverse Agonism , Humans , Microsomes, Liver/metabolism , Rats , Receptors, Ghrelin/metabolism , Structure-Activity Relationship
11.
Bioorg Med Chem Lett ; 14(9): 2163-7, 2004 May 03.
Article in English | MEDLINE | ID: mdl-15081001

ABSTRACT

The present manuscript details the discovery and early fundamental structure-activity relationship studies involving compound 3, a novel hydroxyethylene peptide isostere derived molecule that provides micromolar inhibition of CCL3 binding to its receptor CCR1. Initial studies established this screening hit as a legitimate lead for further medicinal chemistry optimization.


Subject(s)
Peptides/pharmacology , Receptors, Chemokine/antagonists & inhibitors , Crystallography, X-Ray , Peptides/chemistry , Protein Conformation , Receptors, CCR1
12.
Bioorg Med Chem Lett ; 14(9): 2169-73, 2004 May 03.
Article in English | MEDLINE | ID: mdl-15081002

ABSTRACT

The present manuscript details structure-activity relationship studies of lead structure 1, which led to the discovery of CCR1 antagonists >100-fold more potent than 1.


Subject(s)
Receptors, Chemokine/antagonists & inhibitors , Cell Line , Humans , Receptors, CCR1 , Structure-Activity Relationship
13.
Bioorg Med Chem Lett ; 14(4): 919-23, 2004 Feb 23.
Article in English | MEDLINE | ID: mdl-15012994

ABSTRACT

The synthesis and in vitro p38 alpha activity of a novel series of benzimidazolone inhibitors is described. The p38 alpha SAR is consistent with a mode of binding wherein the benzimidazolone carbonyl serves as the H-bond acceptor to Met109 of p38 alpha in a manner analogous to the pyridine nitrogen of prototypical pyridylimidazole p38 inhibitors. Potent p38 alpha activity comparable to that of several previously reported p38 inhibitors is observed for this novel chemotype.


Subject(s)
Benzimidazoles/pharmacology , Enzyme Inhibitors/pharmacology , Mitogen-Activated Protein Kinases/antagonists & inhibitors , Benzimidazoles/chemical synthesis , Enzyme Inhibitors/chemical synthesis , Imidazoles/pharmacology , Mitogen-Activated Protein Kinase 14 , Mitogen-Activated Protein Kinases/metabolism , Molecular Structure , Pyridines/pharmacology , Structure-Activity Relationship
14.
J Biol Chem ; 278(42): 40473-80, 2003 Oct 17.
Article in English | MEDLINE | ID: mdl-12909630

ABSTRACT

The chemokines CCL3 and CCL5, as well as their shared receptor CCR1, are believed to play a role in the pathogenesis of several inflammatory diseases including rheumatoid arthritis, multiple sclerosis, and transplant rejection. In this study we describe the pharmacological properties of a novel small molecular weight CCR1 antagonist, CP-481,715 (quinoxaline-2-carboxylic acid [4(R)-carbamoyl-1(S)-(3-fluorobenzyl)-2(S),7-dihydroxy-7-methyloctyl]amide). Radiolabeled binding studies indicate that CP-481,715 binds to human CCR1 with a Kd of 9.2 nm and displaces 125I-labeled CCL3 from CCR1-transfected cells with an IC50 of 74 nm. CP-481,715 lacks intrinsic agonist activity but fully blocks the ability of CCL3 and CCL5 to stimulate receptor signaling (guanosine 5'-O-(thiotriphosphate) incorporation; IC50 = 210 nm), calcium mobilization (IC50 = 71 nm), monocyte chemotaxis (IC50 = 55 nm), and matrix metalloproteinase 9 release (IC50 = 54 nm). CP-481,715 retains activity in human whole blood, inhibiting CCL3-induced CD11b up-regulation and actin polymerization (IC50 = 165 and 57 nm, respectively) on monocytes. Furthermore, it behaves as a competitive and reversible antagonist. CP-481,715 is >100-fold selective for CCR1 as compared with a panel of G-protein-coupled receptors including related chemokine receptors. Evidence for its potential use in human disease is suggested by its ability to inhibit 90% of the monocyte chemotactic activity present in 11/15 rheumatoid arthritis synovial fluid samples. These data illustrate that CP-481,715 is a potent and selective antagonist for CCR1 with therapeutic potential for rheumatoid arthritis and other inflammatory diseases.


Subject(s)
Inflammation , Quinoxalines/chemistry , Quinoxalines/pharmacology , Receptors, Chemokine/antagonists & inhibitors , Actins/metabolism , Arthritis, Rheumatoid/metabolism , CD11b Antigen/biosynthesis , Calcium/metabolism , Cell Line , Chemokines/metabolism , Chemotaxis , Dose-Response Relationship, Drug , Humans , Inhibitory Concentration 50 , Kinetics , Ligands , Matrix Metalloproteinase 9/metabolism , Models, Chemical , Monocytes/metabolism , Protein Binding , Receptors, CCR1 , Receptors, Chemokine/metabolism , Signal Transduction , Transfection , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...