Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 28(10): 14300-14309, 2020 May 11.
Article in English | MEDLINE | ID: mdl-32403471

ABSTRACT

In this study, we observe and study the early evolution of cavitation bubbles generated during pulsed laser ablation of titanium targets in different liquid environments utilizing a high-resolution stroboscopic shadowgraphy system. A hydrodynamic model is proposed to calculate the early pressure changes within the bubble and in the surrounding fluid. Our results show that the cavitation bubble is a low-pressure region that is bounded by a high-pressure fluid lamina after the incipient stage, and its evolution is primarily affected by the liquid density. Moreover, the initial bubble pressure increases substantially in high viscosity liquids. This work illuminates how the liquid properties affect the early bubble dynamics and is a step towards a deeper understanding of laser-materials interactions in liquid environments.

2.
ACS Appl Mater Interfaces ; 11(44): 41717-41725, 2019 Nov 06.
Article in English | MEDLINE | ID: mdl-31619041

ABSTRACT

Organic semiconductors (OSCs) offer a new avenue to the next-generation electronics, but the lack of a scalable and inexpensive nanoscale patterning/deposition technique still limits their use in electronic applications. Recently, a new lithographic etching technique has been introduced that uses molecular dopants to reduce semiconducting polymer solubility in solvents and a direct-write laser to remove dopants locally, enabling rapid OSC etching with diffraction limited resolution. Previous publications postulated that the reaction that enables patterning is a photochemical reaction between photoexcited dopants with neutral solvent molecules. In this work, we analyze the photoinduced dissolution kinetics of F4TCNQ doped P3HT films using time-resolved in situ optical probing. We find two competing mechanisms that control de-doping and dissolution: the first is the photochemical reaction posited in the literature, and the second involves direct heating of the polymer by the laser, inducing increased solubility for both the polymer and dopant. We show that the wavelength-specific photochemical effect is dominant in low photon doses while the photothermal effect is dominant with high excitation rates regardless of laser wavelength. With sufficiently high optical intensity input, the photothermal mechanism can in principle achieve a high writing speed up to 1 m/s. Our findings bring new insights into the mechanisms behind laser direct writing of OSCs based on dopant induced solubility control and enable ultraprecise fabrications of various device configurations in large-scale manufacturing.

3.
ACS Appl Mater Interfaces ; 11(42): 39385-39393, 2019 Oct 23.
Article in English | MEDLINE | ID: mdl-31553575

ABSTRACT

Various exotic optoelectronic properties of two-dimensional (2D) transition metal dichalcogenides (TMDCs) strongly depend on their number of layers, and typically manifest in ultrathin few-layer or monolayer formats. Thus, precise manipulation of thickness and shape is essential to fully access their potential in optoelectronic applications. Here, we demonstrate site-selective atomic layer precision thinning of exfoliated MoS2 flake by laser. The oxidation mediated anisotropic chemical etching initiated from edge defects and progressed by controlled scanning of the laser beam. Thereby, the topmost layer can be preferentially removed in designed patterns without damaging the bottom flake. In addition, we could monitor the deceleration of the thinning by in situ reflectance measurement. The apparent slow down of the thinning rate is attributed to the sharp reduction in the temperature of the flake due to thickness dependent optical properties. Fabrication of monolayer stripes by laser thinning suggests potential applications in nonlinear optical gratings. The proposed thinning method would offer a unique and rather straightforward way to obtain arbitrary shape and thickness of a TMDCs flake for various optoelectronic applications.

4.
ACS Appl Mater Interfaces ; 10(49): 42933-42940, 2018 Dec 12.
Article in English | MEDLINE | ID: mdl-30444346

ABSTRACT

Three-dimensional (3D) nanofabrication using the directed self-assembly of block copolymers (BCPs) holds great promise for the nanoscale device fabrication and integration into 3D architectures over large areas with high element densities. In this work, a robust platform is developed for building 3D BCP architectures with tailored functionality using 3D micron-scale woodpile structures (WPSs), fabricated by a multiphoton polymerization technique. By completely filling the spaces of the WPSs and using the interactions of the blocks of the BCPs with the struts of the WPS, well-developed 3D nanoscopic morphologies are produced. Metal ion complexation with one block of the copolymer affords a convenient stain to highlight one of the microdomains of the copolymer for electron microscopy studies but also, with the reduction of the complexing salt to the corresponding metal, a simple strategy is shown to produce 3D constructs with nanoscopic domain resolution.

SELECTION OF CITATIONS
SEARCH DETAIL