Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 132
Filter
1.
Int J Mol Sci ; 25(3)2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38339119

ABSTRACT

Prostaglandins are bioactive compounds, and the activation of their receptors affects the expression of clock genes. However, the prostaglandin F receptor (Ptgfr) has no known relationship with biological rhythms. Here, we first measured the locomotor period lengths of Ptgfr-KO (B6.129-Ptgfrtm1Sna) mice and found that they were longer under constant dark conditions (DD) than those of wild-type (C57BL/6J) mice. We then investigated the clock gene patterns within the suprachiasmatic nucleus in Ptgfr-KO mice under DD and observed a decrease in the expression of the clock gene cryptochrome 1 (Cry1), which is related to the circadian cycle. Moreover, the expression of Cry1, Cry2, and Period2 (Per2) mRNA were significantly altered in the mouse liver in Ptgfr-KO mice under DD. In the wild-type mouse, the plasma prostaglandin F2α (PGF2α) levels showed a circadian rhythm under a 12 h cycle of light-dark conditions. In addition, in vitro experiments showed that the addition of PTGFR agonists altered the amplitude of Per2::luc activity, and this alteration differed with the timing of the agonist addition. These results lead us to hypothesize that the plasma rhythm of PGF2α is important for driving clock genes, thus suggesting the involvement of PGF2α- and Ptgfr-targeting drugs in the biological clock cycle.


Subject(s)
Circadian Rhythm , Dinoprost , Mice , Animals , Dinoprost/metabolism , Mice, Inbred C57BL , Circadian Rhythm/genetics , Biological Clocks , Suprachiasmatic Nucleus/metabolism , Gene Expression , Cryptochromes/genetics , Cryptochromes/metabolism
2.
Commun Biol ; 5(1): 1215, 2022 11 10.
Article in English | MEDLINE | ID: mdl-36357668

ABSTRACT

In vertebrates, female receptivity to male courtship is highly dependent on ovarian secretion of estrogens and prostaglandins. We recently identified female-specific neurons in the medaka (Oryzias latipes) preoptic area that express Npba, a neuropeptide mediating female sexual receptivity, in response to ovarian estrogens. Here we show by transcriptomic analysis that these neurons express a multitude of neuropeptides, in addition to Npba, in an ovarian-dependent manner, and we thus termed them female-specific, sex steroid-responsive peptidergic (FeSP) neurons. Our results further revealed that FeSP neurons express a prostaglandin E2 receptor gene, ptger4b, in an ovarian estrogen-dependent manner. Behavioral and physiological examination of ptger4b-deficient female medaka found that they exhibit increased sexual receptivity while retaining normal ovarian function and that their FeSP neurons have reduced firing activity and impaired neuropeptide release. Collectively, this work provides evidence that prostaglandin E2/Ptger4b signaling mediates the estrogenic regulation of FeSP neuron activity and female sexual receptivity.


Subject(s)
Neuropeptides , Oryzias , Animals , Female , Male , Oryzias/genetics , Receptors, Prostaglandin E , Estrogens , Neurons , Neuropeptides/genetics , Prostaglandins
3.
Biol Pharm Bull ; 45(8): 992-997, 2022.
Article in English | MEDLINE | ID: mdl-35908909

ABSTRACT

Prostanoids are a group of typical lipid mediators that are biosynthesized from arachidonic acid by the actions of cyclooxygenases and their subsequent terminal synthases. Prostanoids exert a wide variety of actions through their specific membrane receptors on target cells. In addition to their classical actions, including fever, pain, and inflammation, prostanoids have been shown to play pivotal roles in various biological processes, such as female reproduction and the maintenance of vascular and gut homeostasis. Moreover, recent research using mice deficient in each of the prostanoid receptors, or using agonists/antagonists specific for each receptor clarified novel actions of prostanoids that had long been unknown, and the mechanisms therein. In this review, we introduce recent advances in the fields of metabolic control by prostanoid receptors such as in adipocyte differentiation, lipolysis, and adipocyte browning in adipose tissues, and discuss the potential of prostanoid receptors as a treatment target for metabolic disorders.


Subject(s)
Prostaglandins , Receptors, Prostaglandin , Adipocytes/metabolism , Animals , Female , Inflammation/metabolism , Lipolysis , Mice , Prostaglandins/physiology , Receptors, Prostaglandin/metabolism
4.
Biochem Biophys Res Commun ; 589: 139-146, 2022 01 22.
Article in English | MEDLINE | ID: mdl-34920379

ABSTRACT

The ω3 polyunsaturated fatty acids (PUFAs) are known to have beneficial effects on health and diseases, and hence their intake is encouraged. However, it remains unknown as to how ω3 PUFAs affect female reproduction processes, in which ω6 PUFA-derived prostaglandin (PG) E2 and PGF2α play crucial roles. We therefore compared female reproductive performance between ω3 PUFA-biased linseed oil diet-fed (Lin) mice and ω6 PUFA-biased soybean oil diet-fed (Soy) mice. In Lin mice, the uterine levels of arachidonic acid (AA) and eicosapentaenoic acid (EPA) were 0.42 fold and 16 fold of those in Soy mice, respectively, with the EPA/AA ratio being 0.7 (vs 0.02 in Soy mice). Lin mice showed no alterations in any of the fertility indexes, including luteolysis and parturition. The uterine PG synthesis profiles of Lin mice were similar to those of Soy mice, but the levels of PGF2α and PGE2 were 50% of those in Soy mice, as a result of the increased EPA/AA ratio. PGF3α and PGE3 were undetectable in the uterine tissues of Soy and Lin mice. Interestingly, in Lin mice, 'luteolytic' PGF2α synthesis was considerably maintained even in the ω6 PUFA-reduced condition. These results suggest the existence of an elaborate mechanism securing PGF2α synthesis to a level that is sufficient for triggering luteolysis and parturition, even under ω6 PUFA-reduced conditions.


Subject(s)
Diet , Fatty Acids, Omega-3/pharmacology , Luteolysis/physiology , Parturition/physiology , Prostaglandins/biosynthesis , Uterus/metabolism , Animals , Female , Luteolysis/drug effects , Mice, Inbred C57BL , Parturition/drug effects , Placenta/drug effects , Placenta/metabolism , Pregnancy , Reproduction/drug effects , Uterus/drug effects
5.
J Nat Prod ; 84(10): 2738-2743, 2021 10 22.
Article in English | MEDLINE | ID: mdl-34612636

ABSTRACT

A simple methylenedioxy dibromoindole alkaloid, amakusamine (1), was isolated from a marine sponge of the genus Psammocinia, and its structure was determined from spectroscopic data, time-dependent density-functional theory calculations, and synthesis. Compound 1 inhibited the receptor activator of nuclear factor-κB ligand (RANKL)-induced formation of multinuclear osteoclasts with an IC50 value of 10.5 µM in RAW264 cells. The structure-activity relationship of 1 was also investigated with synthetic derivatives.


Subject(s)
Alkaloids/pharmacology , Osteoclasts/drug effects , Porifera/chemistry , RANK Ligand/antagonists & inhibitors , Animals , Japan , Mice , Molecular Structure , RAW 264.7 Cells , Structure-Activity Relationship
6.
J Nat Prod ; 84(9): 2475-2485, 2021 09 24.
Article in English | MEDLINE | ID: mdl-34464116

ABSTRACT

Fifteen new isopimarane-type diterpenes, taichunins E-S (1-15), and a new 20-nor-isopimarane, taichunin T (16), together with four known compounds were isolated from Aspergillus taichungensis (IBT 19404). The structures of these new compounds were determined by NMR and mass spectroscopy, and their absolute configurations were analyzed by NOESY and TDDFT calculations of ECD spectra. Taichunins G, K, and N (3, 7, and 10) completely inhibited the receptor activator of nuclear factor-κB ligand (RANKL)-induced formation of multinuclear osteoclasts in RAW264 cells at 5 µM, with 3 showing 92% inhibition at a concentration of 0.2 µM.


Subject(s)
Abietanes/pharmacology , Aspergillus/chemistry , Osteoclasts/drug effects , RANK Ligand , Abietanes/isolation & purification , Animals , Biological Products/isolation & purification , Biological Products/pharmacology , Mice , Molecular Structure , RAW 264.7 Cells , Taiwan
7.
Int Arch Allergy Immunol ; 182(9): 788-799, 2021.
Article in English | MEDLINE | ID: mdl-33873179

ABSTRACT

INTRODUCTION: Epicutaneous (e.c.) allergen exposure is an important route of sensitization toward allergic diseases in the atopic march. Allergen sources such as house dust mites contain proteases that involve in the pathogenesis of allergy. Prostanoids produced via pathways downstream of cyclooxygenases (COXs) regulate immune responses. Here, we demonstrate effects of COX inhibition with nonsteroidal anti-inflammatory drugs (NSAIDs) on e.c. sensitization to protease allergen and subsequent airway inflammation in mice. METHODS: Mice were treated with NSAIDs during e.c. sensitization to a model protease allergen, papain, and/or subsequent intranasal challenge with low-dose papain. Serum antibodies, cytokine production in antigen-restimulated skin or bronchial draining lymph node (DLN) cells, and airway inflammation were analyzed. RESULTS: In e.c. sensitization, treatment with a nonspecific COX inhibitor, indomethacin, promoted serum total and papain-specific IgE response and Th2 and Th17 cytokine production in skin DLN cells. After intranasal challenge, treatment with indomethacin promoted allergic airway inflammation and Th2 and Th17 cytokine production in bronchial DLN cells, which depended modestly or largely on COX inhibition during e.c. sensitization or intranasal challenge, respectively. Co-treatment with COX-1-selective and COX-2-selective inhibitors promoted the skin and bronchial DLN cell Th cytokine responses and airway inflammation more efficiently than treatment with either selective inhibitor. CONCLUSION: The results suggest that the overall effects of COX downstream prostanoids are suppressive for development and expansion of not only Th2 but also, unexpectedly, Th17 upon exposure to protease allergens via skin or airways and allergic airway inflammation.


Subject(s)
Allergens/immunology , Cyclooxygenase 1/metabolism , Cyclooxygenase 2/metabolism , Cyclooxygenase Inhibitors/pharmacology , Peptide Hydrolases/immunology , Th17 Cells/immunology , Th2 Cells/immunology , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Cell Differentiation , Female , Immunization , Mice , Papain/immunology , Respiratory Hypersensitivity/immunology , Respiratory Hypersensitivity/metabolism , Respiratory Hypersensitivity/pathology , Skin/drug effects , Skin/immunology , Skin/metabolism , T-Lymphocyte Subsets/drug effects , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Th17 Cells/drug effects , Th17 Cells/metabolism , Th2 Cells/drug effects , Th2 Cells/metabolism
8.
Cell Mol Immunol ; 18(6): 1437-1449, 2021 06.
Article in English | MEDLINE | ID: mdl-33037399

ABSTRACT

Leukotriene B4 (LTB4) receptor 1 (BLT1) is a chemotactic G protein-coupled receptor expressed by leukocytes, such as granulocytes, macrophages, and activated T cells. Although there is growing evidence that BLT1 plays crucial roles in immune responses, its role in dendritic cells remains largely unknown. Here, we identified novel DC subsets defined by the expression of BLT1, namely, BLT1hi and BLT1lo DCs. We also found that BLT1hi and BLT1lo DCs differentially migrated toward LTB4 and CCL21, a lymph node-homing chemoattractant, respectively. By generating LTB4-producing enzyme LTA4H knockout mice and CD11c promoter-driven Cre recombinase-expressing BLT1 conditional knockout (BLT1 cKO) mice, we showed that the migration of BLT1hi DCs exacerbated allergic contact dermatitis. Comprehensive transcriptome analysis revealed that BLT1hi DCs preferentially induced Th1 differentiation by upregulating IL-12p35 expression, whereas BLT1lo DCs accelerated T cell proliferation by producing IL-2. Collectively, the data reveal an unexpected role for BLT1 as a novel DC subset marker and provide novel insights into the role of the LTB4-BLT1 axis in the spatiotemporal regulation of distinct DC subsets.


Subject(s)
Dendritic Cells/metabolism , Hypersensitivity/pathology , Inflammation/pathology , Receptors, Leukotriene B4/metabolism , Skin/pathology , Animals , Biomarkers/metabolism , Cell Differentiation/drug effects , Cell Membrane/drug effects , Cell Membrane/metabolism , Cell Movement/drug effects , Cell Proliferation/drug effects , Chemokine CCL21/pharmacology , Dendritic Cells/drug effects , Dermatitis, Atopic/complications , Dermatitis, Atopic/immunology , Dermatitis, Atopic/pathology , Hypersensitivity/complications , Hypersensitivity/immunology , Inflammation/complications , Inflammation/immunology , Interleukin-12/biosynthesis , Leukotriene B4/metabolism , Lymph Nodes/drug effects , Mice, Inbred C57BL , Th1 Cells/drug effects , Th1 Cells/immunology , Transcriptome/genetics
9.
Commun Biol ; 3(1): 557, 2020 10 08.
Article in English | MEDLINE | ID: mdl-33033338

ABSTRACT

We previously showed that mice lacking pituitary adenylate cyclase-activating polypeptide (PACAP) exhibit attenuated light-induced phase shift. To explore the underlying mechanisms, we performed gene expression analysis of laser capture microdissected suprachiasmatic nuclei (SCNs) and found that lipocalin-type prostaglandin (PG) D synthase (L-PGDS) is involved in the impaired response to light stimulation in the late subjective night in PACAP-deficient mice. L-PGDS-deficient mice also showed impaired light-induced phase advance, but normal phase delay and nonvisual light responses. Then, we examined the receptors involved in the response and observed that mice deficient for type 2 PGD2 receptor DP2/CRTH2 (chemoattractant receptor homologous molecule expressed on Th2 cells) show impaired light-induced phase advance. Concordant results were observed using the selective DP2/CRTH2 antagonist CAY10471. These results indicate that L-PGDS is involved in a mechanism of light-induced phase advance via DP2/CRTH2 signaling.


Subject(s)
Circadian Rhythm/physiology , Intramolecular Oxidoreductases/physiology , Lipocalins/physiology , Animals , Circadian Rhythm/genetics , Circadian Rhythm/radiation effects , Genes/genetics , Genes/physiology , In Situ Hybridization , Intramolecular Oxidoreductases/metabolism , Light , Lipocalins/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Oligonucleotide Array Sequence Analysis , Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism , Pituitary Adenylate Cyclase-Activating Polypeptide/physiology , Suprachiasmatic Nucleus/metabolism
10.
Cell Rep ; 33(2): 108265, 2020 10 13.
Article in English | MEDLINE | ID: mdl-33053354

ABSTRACT

Lipolysis, the breakdown of triglyceride storage in white adipose tissue, supplies fatty acids to other tissues as a fuel under fasting conditions. In morbid obesity, fibrosis limits adipocyte expandability, resulting in enforced lipolysis, ectopic fat distribution, and ultimately insulin resistance. Although basal levels of lipolysis persist even after feeding, the regulatory mechanisms of basal lipolysis remain unclear. Here, we show the important role of adipocyte prostaglandin (PG) E2-EP4 receptor signaling in controlling basal lipolysis, fat distribution, and collagen deposition during feeding-fasting cycles. The PGE2-synthesis pathway in adipocytes, which is coupled with lipolysis, is activated by insulin during feeding. By regulating the lipolytic key players, the PGE2-EP4 pathway sustains basal lipolysis as a negative feedback loop of insulin action, and perturbation of this process leads to "metabolically healthy obesity." The potential role of the human EP4 receptor in lipid regulation was also suggested through genotype-phenotype association analyses.


Subject(s)
Adipose Tissue, White/metabolism , Adipose Tissue, White/pathology , Adiposity , Dinoprostone/metabolism , Insulin Resistance , Lipolysis , Receptors, Prostaglandin E, EP4 Subtype/metabolism , Adipocytes/metabolism , Adipose Tissue, White/ultrastructure , Adult , Animals , Cell Line , Collagen/metabolism , Diet , Fibrosis , Humans , Insulin/metabolism , Lipase/metabolism , Liver/metabolism , Male , Mice, Inbred C57BL , Mice, Knockout , Polymorphism, Single Nucleotide/genetics , Receptors, Prostaglandin E, EP4 Subtype/genetics , Signal Transduction , Triglycerides/metabolism
11.
Pharmacol Rev ; 72(4): 910-968, 2020 10.
Article in English | MEDLINE | ID: mdl-32962984

ABSTRACT

Prostaglandins are derived from arachidonic acid metabolism through cyclooxygenase activities. Among prostaglandins (PGs), prostacyclin (PGI2) and PGE2 are strongly involved in the regulation of homeostasis and main physiologic functions. In addition, the synthesis of these two prostaglandins is significantly increased during inflammation. PGI2 and PGE2 exert their biologic actions by binding to their respective receptors, namely prostacyclin receptor (IP) and prostaglandin E2 receptor (EP) 1-4, which belong to the family of G-protein-coupled receptors. IP and EP1-4 receptors are widely distributed in the body and thus play various physiologic and pathophysiologic roles. In this review, we discuss the recent advances in studies using pharmacological approaches, genetically modified animals, and genome-wide association studies regarding the roles of IP and EP1-4 receptors in the immune, cardiovascular, nervous, gastrointestinal, respiratory, genitourinary, and musculoskeletal systems. In particular, we highlight similarities and differences between human and rodents in terms of the specific roles of IP and EP1-4 receptors and their downstream signaling pathways, functions, and activities for each biologic system. We also highlight the potential novel therapeutic benefit of targeting IP and EP1-4 receptors in several diseases based on the scientific advances, animal models, and human studies. SIGNIFICANCE STATEMENT: In this review, we present an update of the pathophysiologic role of the prostacyclin receptor, prostaglandin E2 receptor (EP) 1, EP2, EP3, and EP4 receptors when activated by the two main prostaglandins, namely prostacyclin and prostaglandin E2, produced during inflammatory conditions in human and rodents. In addition, this comparison of the published results in each tissue and/or pathology should facilitate the choice of the most appropriate model for the future studies.


Subject(s)
Receptors, Prostaglandin E/metabolism , Animals , Autoimmune Diseases/immunology , Autoimmune Diseases/metabolism , Dinoprostone/immunology , Dinoprostone/metabolism , Epoprostenol/immunology , Epoprostenol/metabolism , Humans , Inflammation/immunology , Inflammation/metabolism , Mice , Polymorphism, Single Nucleotide , Protein Multimerization , Rats , Receptors, Prostaglandin E/chemistry , Receptors, Prostaglandin E/genetics , Receptors, Prostaglandin E/immunology , Species Specificity
12.
Biol Pharm Bull ; 43(4): 649-662, 2020.
Article in English | MEDLINE | ID: mdl-32238706

ABSTRACT

Multiple external and internal factors have been reported to induce thymic involution. Involution involves dramatic reduction in size and function of the thymus, leading to various immunodeficiency-related disorders. Therefore, clarifying and manipulating molecular mechanisms governing thymic involution are clinically important, although only a few studies have dealt with this issue. In the present study, we investigated the molecular mechanisms underlying thymic involution using a murine acute diet-restriction model. Gene expression analyses indicated that the expression of T helper 1 (Th1)-producing cytokines, namely interferon-γ and interleukin (IL)-2, was down-regulated, while that of Th2-producing IL-5, IL-6, IL-10 and IL-13 was up-regulated, suggesting that acute diet-restriction regulates the polarization of naïve T cells to a Th2-like phenotype during thymic involution. mRNAs for prostanoid biosynthetic enzymes were up-regulated by acute diet-restriction. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyses detected the increased production of prostanoids, particularly prostaglandin D2 and thromboxane B2, a metabolite of thromboxane A2, in the diet-restricted thymus. Administration of non-steroidal anti-inflammatory drugs, namely aspirin and etodolac, to inhibit prostanoid synthesis suppressed the biased expression of Th1- and Th2-cytokines as well as molecular markers of Th1 and Th2 cells in the diet-restricted thymus, without affecting the reduction of thymus size. In vitro stimulation of thymocytes with phorbol myristate acetate (PMA)/ionomycin confirmed the polarization of thymocytes from diet-restricted mice toward Th2 cells. These results indicated that the induced production of prostanoids during diet-restriction-induced thymic involution is involved in the polarization of naïve T cells in the thymus.


Subject(s)
Caloric Restriction , Cytokines/immunology , Prostaglandins/immunology , Th1 Cells/immunology , Th2 Cells/immunology , Thymus Gland/immunology , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Aspirin/pharmacology , Cytokines/genetics , Diet , Etodolac/pharmacology , Male , Mice, Inbred ICR , Organ Size/drug effects , Thymus Gland/anatomy & histology , Thymus Gland/drug effects
13.
J Ocul Pharmacol Ther ; 36(3): 162-169, 2020 04.
Article in English | MEDLINE | ID: mdl-31934812

ABSTRACT

Purpose: We aimed at comparing the effects of omidenepag (OMD) with those of prostaglandin F (FP) receptor agonists (FP agonists) on adipogenesis in mouse 3T3-L1 cells. Methods: To evaluate the agonistic activities of OMD against the mouse EP2 (mEP2) receptor, we determined cAMP contents in mEP2 receptor-expressing CHO cells by using radioimmunoassays. Overall, 3T3-L1 cells were cultured in differentiation medium for 10 days and adipocyte differentiation was assessed according to Oil Red O-stained cell areas. Changes in expression levels of the adipogenic transcription factors Pparg, Cebpa, and Cebpb were determined by using real-time polymerase chain reaction (PCR). OMD at 0.1, 1, 10, and 40 µmol/L, latanoprost free acid (LAT-A) at 0.1 µmol/L, or prostaglandin F2α (PGF2α), at 0.1 µmol/L were added to cell culture media during adipogenesis. Oil Red O-stained areas and expression patterns of transcription factor targets of OMD or FP agonists were compared with those of untreated controls. Results: The 50% effective concentration (EC50) of OMD against the mEP2 receptor was 3.9 nmol/L. Accumulations of Oil Red O-stained lipid droplets were observed inside control cells on day 10. LAT-A and PGF2α significantly inhibited the accumulation of lipid droplets; however, OMD had no effect on this process even at concentrations up to 40 µmol/L. LAT-A and PGF2α significantly suppressed Pparg, Cebpa, and Cebpb gene expression levels during adipocyte differentiation. Conversely, OMD had no obvious effects on the expression levels of these genes. Conclusions: A selective EP2 receptor agonist, OMD, did not affect the adipocyte differentiation in 3T3-L1 cells, whereas FP agonists significantly inhibited this process.


Subject(s)
3T3-L1 Cells/drug effects , Adipocytes/drug effects , Adipogenesis/drug effects , Glycine/analogs & derivatives , Latanoprost/pharmacology , Pyrazoles/pharmacology , Pyridines/pharmacology , Receptors, Prostaglandin E, EP2 Subtype/agonists , 3T3-L1 Cells/metabolism , Adipocytes/cytology , Adipocytes/metabolism , Animals , CHO Cells/drug effects , CHO Cells/metabolism , Cell Differentiation/drug effects , Cricetulus , Cyclic AMP/metabolism , Disease Models, Animal , Glycine/pharmacology , Lipid Droplets/drug effects , Lipid Droplets/metabolism , Mice , Prostaglandins F, Synthetic/pharmacology , Radioimmunoassay/methods
14.
Genes Cells ; 25(3): 197-214, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31989743

ABSTRACT

Cell competition is a biological process by which unfit cells are eliminated from "cell society." We previously showed that cultured mammalian epithelial Madin-Darby canine kidney (MDCK) cells expressing constitutively active YAP were eliminated by apical extrusion when surrounded by "normal" MDCK cells. However, the molecular mechanism underlying the elimination of active YAP-expressing cells was unknown. Here, we used high-throughput chemical compound screening to identify cyclooxygenase-2 (COX-2) as a key molecule triggering cell competition. Our work shows that COX-2-mediated PGE2 secretion engages its receptor EP2 on abnormal and nearby normal cells. This engagement of EP2 triggers downstream signaling via an adenylyl cyclase-cyclic AMP-PKA pathway that, in the presence of active YAP, induces E-cadherin internalization leading to apical extrusion. Thus, COX-2-induced PGE2 appears a warning signal to both abnormal and surrounding normal cells to drive cell competition.


Subject(s)
Cell Competition , Cell Cycle Proteins/metabolism , Dinoprostone/metabolism , Receptors, Prostaglandin E, EP2 Subtype/metabolism , Signal Transduction , Transcription Factors/metabolism , Animals , Cells, Cultured , Cyclooxygenase 2/metabolism , Dogs , High-Throughput Screening Assays , Humans , Madin Darby Canine Kidney Cells/metabolism
15.
Kidney360 ; 1(8): 781-796, 2020 08 27.
Article in English | MEDLINE | ID: mdl-35372949

ABSTRACT

Background: Renal proximal tubulopathy plays a crucial role in kidney disease, but its molecular mechanism is incompletely understood. Because proximal tubular cells consume a lot of energy during reabsorption, the relationship between fatty acids (FAs) and proximal tubulopathy has been attracting attention. The purpose of this study is to investigate the association between change in renal FA composition and tubulopathy. Methods: Mice with cisplatin-induced nephrotoxicity were used as a model of AKI and 5/6-nephrectomized mice were used as a model of CKD. Renal FA composition in mice was measured by GC-MS. Human tubular epithelial cells (HK-2 cells) were used for in vitro studies. Results: In kidneys of AKI mice, increased stearic acid (C18:0) and decreased palmitic acid (C16:0) were observed, accompanied by increased expression of the long-chain FA elongase Elovl6. Similar results were also obtained in CKD mice. We show that C18:0 has higher tubular toxicity than C16:0 via induction of ER stress. Using adenovirus-expressing Elovl6 or siRNA for Elovl6 in HK-2 cells, we demonstrated that increased Elovl6 expression contributes to tubulopathy via increasing C18:0. Elovl6 knockout suppressed the increased serum creatinine levels, renal ER stress, and inflammation that would usually result after 5/6 nephrectomy. Advanced oxidation protein products (AOPPs), specifically an oxidized albumin, was found to induce Elovl6 via the mTORC1/SREBP1 pathway. Conclusions: AOPPs may contribute to renal tubulopathy via perturbation of renal FAs through induction of Elovl6. The perturbation of renal FAs induced by the AOPPs-Elovl6 system could be a potential target for the treatment of tubulopathy.


Subject(s)
Advanced Oxidation Protein Products , Fatty Acids , Acetyltransferases/genetics , Advanced Oxidation Protein Products/metabolism , Animals , Fatty Acid Elongases , Fatty Acids/metabolism , Kidney/metabolism , Mice
16.
Nat Commun ; 10(1): 4007, 2019 09 05.
Article in English | MEDLINE | ID: mdl-31488836

ABSTRACT

Gut microbiota mediates the effects of diet, thereby modifying host metabolism and the incidence of metabolic disorders. Increased consumption of omega-6 polyunsaturated fatty acid (PUFA) that is abundant in Western diet contributes to obesity and related diseases. Although gut-microbiota-related metabolic pathways of dietary PUFAs were recently elucidated, the effects on host physiological function remain unclear. Here, we demonstrate that gut microbiota confers host resistance to high-fat diet (HFD)-induced obesity by modulating dietary PUFAs metabolism. Supplementation of 10-hydroxy-cis-12-octadecenoic acid (HYA), an initial linoleic acid-related gut-microbial metabolite, attenuates HFD-induced obesity in mice without eliciting arachidonic acid-mediated adipose inflammation and by improving metabolic condition via free fatty acid receptors. Moreover, Lactobacillus-colonized mice show similar effects with elevated HYA levels. Our findings illustrate the interplay between gut microbiota and host energy metabolism via the metabolites of dietary omega-6-FAs thereby shedding light on the prevention and treatment of metabolic disorders by targeting gut microbial metabolites.


Subject(s)
Diet, High-Fat/adverse effects , Dietary Fats, Unsaturated/therapeutic use , Fatty Acids, Unsaturated/pharmacology , Gastrointestinal Microbiome/drug effects , Obesity/metabolism , Adipose Tissue/pathology , Animals , Cell Line , Diet, Western , Dietary Supplements , Energy Metabolism , Fatty Acids, Omega-6/metabolism , Fatty Acids, Omega-6/therapeutic use , Fatty Acids, Unsaturated/metabolism , Gastrointestinal Microbiome/physiology , Humans , Inflammation/metabolism , Lactobacillus/metabolism , Linoleic Acid/metabolism , Metabolic Diseases/diet therapy , Metabolic Diseases/metabolism , Metabolic Diseases/prevention & control , Mice , Mice, Inbred C57BL , Models, Animal , Oleic Acids/metabolism
17.
Endocrinology ; 160(12): 2800-2810, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31517984

ABSTRACT

Parturition is an essential process in placental mammals for giving birth to offspring. However, the molecular machineries of parturition are not fully understood. We investigated whether oxytocin plays a crucial role in the progress of parturition in cooperation with the prostaglandin F2α (PGF2α) receptor. We first examined alterations in the expression of uterine contraction-associated genes in uteri of oxytocin receptor-deficient mice (Oxtr-/-) during parturition. We found that induction of cyclooxygenase (COX)-2 and connexin 43 expression was impaired in Oxtr-/-, whereas that of PGF2α receptor expression was not. We next generated mice with double knockout of genes for the oxytocin receptor/oxytocin and PGF2α receptor (Oxtr-/-;Ptgfr-/- and Oxt-/-;Ptgfr-/-) and evaluated their parturition with Oxtr-/-, Oxt-/-, Ptgfr-/-, and wild-type mice. In Oxtr-/-;Ptgfr-/- and Oxt-/-;Ptgfr-/-, pregnancy rates were similar to those of other genotypes. However, normal parturition was not observed in Oxtr-/-;Ptgfr-/- or Oxt-/-;Ptgfr-/- because of persistent progesterone from the corpus luteum, as observed in Ptgfr-/-. We administered RU486, a progesterone antagonist, to Ptgfr-/-, Oxtr-/-;Ptgfr-/-, and Oxt-/-;Ptgfr-/- on gestation day 19. These mice were able to deliver a living first pup and the parturition onset was similar to that in Ptgfr-/-. Meanwhile, unlike Ptgfr-/-, ∼75% of Oxtr-/-;Ptgfr-/- and Oxt-/-;Ptgfr-/- administered RU486 remained in labor at 24 hours after the onset of parturition. All of the pups that experienced prolonged labor died. We thus revealed that the oxytocin receptor is an upstream regulator of COX-2 and connexin 43 in the uterus during parturition and that both oxytocin/oxytocin receptor and PGF2α receptor are major components for successful parturition.


Subject(s)
Oxytocin/physiology , Parturition , Receptors, Oxytocin/metabolism , Receptors, Prostaglandin/metabolism , Uterus/metabolism , Animals , Connexin 43/metabolism , Cyclooxygenase 2/metabolism , Female , Male , Mice , Mice, Knockout , Pregnancy , Progesterone/blood , Receptors, Oxytocin/genetics , Receptors, Progesterone/antagonists & inhibitors , Receptors, Prostaglandin/genetics
18.
J Allergy Clin Immunol ; 144(4): 1036-1049, 2019 10.
Article in English | MEDLINE | ID: mdl-31378305

ABSTRACT

BACKGROUND: Psoriasis is a chronic inflammatory skin disease characterized by IL-17-mediated immune responses. p38 is known to be highly activated in the psoriatic epidermis; however, whether p38 is involved in the development of psoriasis is unclear. OBJECTIVE: We sought to demonstrate that activation of p38 mitogen-activated protein kinase is sufficient to induce psoriatic inflammation in mice and that cutaneous p38 activities are the topical therapeutic targets for psoriasis. METHODS: A p38 activator, anisomycin, was applied daily to murine skin. Transcriptomic analyses were performed to evaluate the similarities of the skin responses to those in human psoriasis and the existing animal model. BIRB796, a small-molecule inhibitor targeting p38 activities, was applied to the murine psoriatic models topically or to human psoriatic skin specimens ex vivo. RESULTS: Topical treatment with anisomycin induced key signatures in psoriasis, such as epidermal thickening, neutrophil infiltration, and gene expression of Il1a, Il1b, Il6, Il24, Cxcl1, Il23a, and Il17a, in treated murine skin. These responses were fully abrogated by topical treatment with BIRB796, and were reduced in IL-17A-deficient mice. Transcriptomic analyses demonstrated the similarities of anisomycin-induced dermatitis to human psoriasis and imiquimod-induced murine psoriatic dermatitis. Furthermore, BIRB796 targeting of p38 activities reduced expression of psoriasis-related genes in both human keratinocytes stimulated with recombinant IL-17A in vitro and psoriatic skin specimens ex vivo. CONCLUSION: Therefore our findings suggest that cutaneous p38 activation can be a key event in patients with psoriasis and a potential topical therapeutic target of a small molecule.


Subject(s)
Dermatitis/metabolism , Psoriasis/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Adult , Aged , Animals , Anisomycin/pharmacology , Dermatitis/immunology , Enzyme Activation/drug effects , Enzyme Activation/physiology , Enzyme Activators/pharmacology , Female , Humans , Male , Mice , Mice, Inbred C57BL , Middle Aged , Psoriasis/immunology , Skin/metabolism , Young Adult , p38 Mitogen-Activated Protein Kinases/immunology
19.
Sci Rep ; 9(1): 7650, 2019 05 21.
Article in English | MEDLINE | ID: mdl-31114004

ABSTRACT

Lymphatic endothelial cells arise from the venous endothelial cells in embryonic lymphatic development. However, the molecular mechanisms remain to be elucidated. We here report that prostaglandin (PG) E2 plays essential roles in the embryonic lymphatic development through the EP3 receptor, one of the PGE2 receptors. Knockdown of the EP3 receptor or inhibition of cyclooxygenases (COX; rate-limiting enzymes for PG synthesis) impaired lymphatic development by perturbing lymphatic specification during zebrafish development. These impairments by COX inhibition were recovered by treatment with sulprostone (EP1/3 agonist). Knockdown of the EP3 receptor further demonstrated its requirement in the expression of sex determining region Y-box 18 (sox18) and nuclear receptor subfamily 2, group F, member 2 (nr2f2), essential factors of the lymphatic specification. The EP3 receptor was expressed in the posterior cardinal vein (region of embryonic lymphatic development) and the adjacent intermediate cell mass (ICM) during the lymphatic specification. COX1 was expressed in the region more upstream of the posterior cardinal vein relative to the EP3 receptor, and the COX1-selective inhibitor impaired the lymphatic specification. On the other hand, two COX2 subtypes did not show distinct sites of expression around the region of expression of the EP3 receptor. Finally, we generated EP3-deficient zebrafish, which also showed defect in lymphatic specification and development. Thus, we demonstrated that COX1-derived PGE2-EP3 pathway is required for embryonic lymphatic development by upregulating the expression of key factors for the lymphatic specification.


Subject(s)
Dinoprostone/metabolism , Lymphatic Vessels/metabolism , Morphogenesis , Receptors, Prostaglandin E, EP3 Subtype/metabolism , Zebrafish Proteins/metabolism , Animals , COUP Transcription Factor II/agonists , COUP Transcription Factor II/genetics , COUP Transcription Factor II/metabolism , Cell Lineage , Cyclooxygenase Inhibitors/pharmacology , Dinoprostone/analogs & derivatives , Dinoprostone/pharmacology , Lymphatic Vessels/drug effects , Lymphatic Vessels/embryology , Receptors, Prostaglandin E, EP3 Subtype/genetics , Zebrafish , Zebrafish Proteins/genetics
20.
Int Immunol ; 31(9): 597-606, 2019 08 23.
Article in English | MEDLINE | ID: mdl-30926983

ABSTRACT

Prostaglandins (PGs) are the major lipid mediators in animals and which are biosynthesized from arachidonic acid by the cyclooxygenases (COX-1 or COX-2) as the rate-limiting enzymes. Prostaglandin E2 (PGE2), which is the most abundantly detected PG in various tissues, exerts versatile physiological and pathological actions via four receptor subtypes (EP1-4). Non-steroidal anti-inflammatory drugs, such as aspirin and indomethacin, exert potent anti-inflammatory actions by the inhibition of COX activity and the resulting suppression of PG production. Therefore, PGE2 has been shown to exacerbate several inflammatory responses and immune diseases. Recently, studies using mice deficient in each PG receptor subtype have clarified the detailed mechanisms underlying PGE2-associated inflammation and autoimmune diseases involving each EP receptor. Here, we review the recent advances in our understanding of the roles of PGE2 receptors in the progression of acute and chronic inflammation and autoimmune diseases. PGE2 induces acute inflammation through mast cell activation via the EP3 receptor. PGE2 also induces chronic inflammation and various autoimmune diseases through T helper 1 (Th1)-cell differentiation, Th17-cell proliferation and IL-22 production from Th22 cells via the EP2 and EP4 receptors. The possibility of EP receptor-targeted drug development for the treatment of immune diseases is also discussed.


Subject(s)
Dinoprostone/immunology , Immune System Diseases/immunology , Inflammation/immunology , Animals , Humans , Prostaglandin-Endoperoxide Synthases/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...