Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
EMBO J ; 43(14): 2878-2907, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38816652

ABSTRACT

In mice, γδ-T lymphocytes that express the co-stimulatory molecule, CD27, are committed to the IFNγ-producing lineage during thymic development. In the periphery, these cells play a critical role in host defense and anti-tumor immunity. Unlike αß-T cells that rely on MHC-presented peptides to drive their terminal differentiation, it is unclear whether MHC-unrestricted γδ-T cells undergo further functional maturation after exiting the thymus. Here, we provide evidence of phenotypic and functional diversity within peripheral IFNγ-producing γδ T cells. We found that CD27+ Ly6C- cells convert into CD27+Ly6C+ cells, and these CD27+Ly6C+ cells control cancer progression in mice, while the CD27+Ly6C- cells cannot. The gene signatures of these two subsets were highly analogous to human immature and mature γδ-T cells, indicative of conservation across species. We show that IL-27 supports the cytotoxic phenotype and function of mouse CD27+Ly6C+ cells and human Vδ2+ cells, while IL-27 is dispensable for mouse CD27+Ly6C- cell and human Vδ1+ cell functions. These data reveal increased complexity within IFNγ-producing γδ-T cells, comprising immature and terminally differentiated subsets, that offer new insights into unconventional T-cell biology.


Subject(s)
Antigens, Ly , Receptors, Antigen, T-Cell, gamma-delta , Tumor Necrosis Factor Receptor Superfamily, Member 7 , Animals , Mice , Antigens, Ly/metabolism , Antigens, Ly/genetics , Tumor Necrosis Factor Receptor Superfamily, Member 7/metabolism , Tumor Necrosis Factor Receptor Superfamily, Member 7/genetics , Tumor Necrosis Factor Receptor Superfamily, Member 7/immunology , Humans , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Receptors, Antigen, T-Cell, gamma-delta/immunology , Receptors, Antigen, T-Cell, gamma-delta/genetics , Interferon-gamma/metabolism , Interferon-gamma/immunology , Interleukin-27/metabolism , Interleukin-27/genetics , Cell Differentiation/immunology , Mice, Inbred C57BL , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Cytotoxic/metabolism
2.
Nat Immunol ; 25(7): 1207-1217, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38802512

ABSTRACT

The contribution of γδ T cells to immune responses is associated with rapid secretion of interferon-γ (IFN-γ). Here, we show a perinatal thymic wave of innate IFN-γ-producing γδ T cells that express CD8αß heterodimers and expand in preclinical models of infection and cancer. Optimal CD8αß+ γδ T cell development is directed by low T cell receptor signaling and through provision of interleukin (IL)-4 and IL-7. This population is pathologically relevant as overactive, or constitutive, IL-7R-STAT5B signaling promotes a supraphysiological accumulation of CD8αß+ γδ T cells in the thymus and peripheral lymphoid organs in two mouse models of T cell neoplasia. Likewise, CD8αß+ γδ T cells define a distinct subset of human T cell acute lymphoblastic leukemia pediatric patients. This work characterizes the normal and malignant development of CD8αß+ γδ T cells that are enriched in early life and contribute to innate IFN-γ responses to infection and cancer.


Subject(s)
Immunity, Innate , Interferon-gamma , Receptors, Antigen, T-Cell, gamma-delta , Receptors, Interleukin-7 , STAT5 Transcription Factor , Thymus Gland , Animals , Interferon-gamma/metabolism , Interferon-gamma/immunology , Mice , Humans , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Receptors, Antigen, T-Cell, gamma-delta/immunology , Thymus Gland/immunology , Receptors, Interleukin-7/metabolism , STAT5 Transcription Factor/metabolism , Signal Transduction/immunology , Mice, Inbred C57BL , CD8-Positive T-Lymphocytes/immunology , Mice, Knockout , Receptors, Antigen, T-Cell, alpha-beta/metabolism , Receptors, Antigen, T-Cell, alpha-beta/genetics , CD8 Antigens/metabolism , Female , Intraepithelial Lymphocytes/immunology , Intraepithelial Lymphocytes/metabolism , Interleukin-7/metabolism
3.
Sci Signal ; 14(692)2021 07 20.
Article in English | MEDLINE | ID: mdl-34285131

ABSTRACT

Murine γδ17 cells, which are T cells that bear the γδ T cell receptor (TCRγδ) and secrete interleukin-17A (IL-17A), are generated in the thymus and are critical for various immune responses. Although strong TCRγδ signals are required for the development of interferon-γ (IFN-γ)-secreting γδ cells (γδIFN cells), the generation of γδ17 cells requires weaker TCRγδ signaling. Here, we demonstrated that constrained activation of the kinase Syk downstream of TCRγδ was required for the thymic development of γδ17 cells. Increasing or decreasing Syk activity by stimulating TCRγδ or inhibiting Syk, respectively, substantially reduced γδ17 cell numbers. This delimited Syk activity optimally engaged the phosphoinositide 3-kinase (PI3K)-Akt signaling pathway, which maintained the expression of master regulators of the IL-17 program, RORγt and c-Maf. Inhibition of PI3K not only abrogated γδ17 cell development but also augmented the development of a distinct, previously undescribed subset of γδ T cells. These CD8+Ly6a+ γδ T cells had a type-I IFN gene expression signature and expanded in response to stimulation with IFN-ß. Collectively, these studies elucidate how weaker TCRγδ signaling engages distinct signaling pathways to specify the γδ17 cell fate and identifies a role for type-I IFNs in γδ T cell development.


Subject(s)
Interleukin-17 , Receptors, Antigen, T-Cell, gamma-delta , Animals , Interleukin-17/genetics , Mice , Mice, Inbred C57BL , Phosphatidylinositol 3-Kinase , Phosphatidylinositol 3-Kinases/genetics , Receptors, Antigen, T-Cell, gamma-delta/genetics , T-Lymphocytes
4.
Nat Immunol ; 22(2): 179-192, 2021 02.
Article in English | MEDLINE | ID: mdl-33462452

ABSTRACT

Metabolic programming controls immune cell lineages and functions, but little is known about γδ T cell metabolism. Here, we found that γδ T cell subsets making either interferon-γ (IFN-γ) or interleukin (IL)-17 have intrinsically distinct metabolic requirements. Whereas IFN-γ+ γδ T cells were almost exclusively dependent on glycolysis, IL-17+ γδ T cells strongly engaged oxidative metabolism, with increased mitochondrial mass and activity. These distinct metabolic signatures were surprisingly imprinted early during thymic development and were stably maintained in the periphery and within tumors. Moreover, pro-tumoral IL-17+ γδ T cells selectively showed high lipid uptake and intracellular lipid storage and were expanded in obesity and in tumors of obese mice. Conversely, glucose supplementation enhanced the antitumor functions of IFN-γ+ γδ T cells and reduced tumor growth upon adoptive transfer. These findings have important implications for the differentiation of effector γδ T cells and their manipulation in cancer immunotherapy.


Subject(s)
Breast Neoplasms/metabolism , Colonic Neoplasms/metabolism , Energy Metabolism , Lymphocytes, Tumor-Infiltrating/metabolism , Melanoma, Experimental/metabolism , Receptors, Antigen, T-Cell, gamma-delta/metabolism , T-Lymphocyte Subsets/metabolism , Thymus Gland/metabolism , Tumor Microenvironment , Animals , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Breast Neoplasms/therapy , Cell Line, Tumor , Cell Lineage , Colonic Neoplasms/immunology , Colonic Neoplasms/pathology , Colonic Neoplasms/therapy , Female , Glucose/metabolism , Glycolysis , Humans , Immunotherapy, Adoptive , Interferon-gamma/metabolism , Interleukin-17/metabolism , Lipid Metabolism , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/transplantation , Melanoma, Experimental/immunology , Melanoma, Experimental/pathology , Melanoma, Experimental/therapy , Mice, Inbred C57BL , Mice, Transgenic , Mitochondria/metabolism , Obesity/immunology , Obesity/metabolism , Organ Culture Techniques , Phenotype , Signal Transduction , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/transplantation , Thymus Gland/immunology , Tumor Burden
5.
Immunology ; 156(4): 299-304, 2019 04.
Article in English | MEDLINE | ID: mdl-30552818

ABSTRACT

Murine γδ T cells display diverse responses to pathogens and tumours through early provision of pro-inflammatory cytokines such as interleukin-17A (IL-17) and interferon-γ (IFN-γ). Although it is now clear that acquisition of these cytokine-secreting effector fates is to a great extent developmentally pre-programmed in the thymus, the stages through which γδ progenitor cells transition, and the underlying mechanistic processes that govern these commitment events, are still largely unclear. Here, we review recent progress in the field, with particular consideration of how TCR-γδ signalling impacts on developmental programmes initiated before TCR-γδ expression.


Subject(s)
Receptors, Antigen, T-Cell, gamma-delta/immunology , T-Lymphocyte Subsets/immunology , Animals , Mice , Signal Transduction/immunology
6.
Sci Rep ; 7(1): 10659, 2017 09 06.
Article in English | MEDLINE | ID: mdl-28878277

ABSTRACT

CD4(+)CD8(+) "double positive" (DP) thymocytes differentiate into diverse αß T cell sub-types using mechanistically distinct programs. For example, conventional αß T cells develop from DP cells after partial-agonist T cell receptor (TCR) interactions with self-peptide/MHC, whereas unconventional αß T cells, such as TCRαß(+)CD8αα(+) intraepithelial lymphocytes (IELs), require full-agonist TCR interactions. Despite this, DP cells appear homogeneous, and it remains unclear how distinct TCR signalling instructs distinct developmental outcomes. Moreover, whether TCR signals at earlier stages of development, for example in CD4(-)CD8(-) double negative (DN) cells, impact on later fate decisions is presently unknown. Here, we assess four strains of mice that display altered TCR signal strength in DN cells, which correlates with altered generation of unconventional TCRαß(+)CD8αα(+) IELs. FVB/n mice (compared to C57BL/6 animals) and mice with altered preTCRα (pTα) expression, both displayed weaker TCR signalling in DN cells, an inefficient DN-to-DP transition, and reduced contribution of TCRαß(+)CD8αα(+) IELs to gut epithelium. Conversely, TCRαß(+)CD8αα(+) IEL development was favoured in mice with increased TCR signal strength in DN cells. Collectively, these data suggest TCR signal strength in DN cells directly impacts on subsequent DP cell differentiation, fundamentally altering the potential of thymocyte progenitors to adopt conventional versus unconventional T cell fates.


Subject(s)
CD8-Positive T-Lymphocytes/metabolism , Receptors, Antigen, T-Cell/metabolism , Signal Transduction , Thymocytes/metabolism , Animals , Biomarkers , Immunophenotyping , Intraepithelial Lymphocytes/metabolism , Mice , Mice, Knockout , Mice, Transgenic , Mucosal-Associated Invariant T Cells/metabolism , Receptors, Antigen, T-Cell, alpha-beta/genetics , Receptors, Antigen, T-Cell, alpha-beta/metabolism
7.
Cell Rep ; 19(12): 2469-2476, 2017 06 20.
Article in English | MEDLINE | ID: mdl-28636936

ABSTRACT

Despite a growing appreciation of γδ T cell contributions to numerous immune responses, the mechanisms that underpin their thymic development remain poorly understood. Here, using precursor/product relationships, we identify thymic stages in two distinct developmental pathways that generate γδ T cells pre-committed to subsequent secretion of either IL-17A or IFNγ. Importantly, this framework for tracking γδ T cell development has permitted definitive assessment of TCRγδ signal strength in commitment to γδ T cell effector fate; increased TCRγδ signal strength profoundly prohibited the development of all IL-17A-secreting γδ T cells, regardless of Vγ usage, but promoted the development of γδ progenitors along the IFNγ pathway. This clarifies the recently debated role of TCRγδ signal strength in commitment to distinct γδ T cell effector fates and proposes an alternate methodology for the study of γδ T cell development.


Subject(s)
Interleukin-17/metabolism , Receptors, Antigen, T-Cell, gamma-delta/metabolism , T-Lymphocytes/physiology , Animals , Cell Differentiation , Cells, Cultured , Female , Mice, Inbred C57BL , Thymus Gland/cytology
8.
Trends Immunol ; 38(5): 336-344, 2017 05.
Article in English | MEDLINE | ID: mdl-28285814

ABSTRACT

γd T cells have emerged as major sources of the proinflammatory cytokines interleukin-17 (IL-17) and interferon-γ (IFNγ) in multiple models of infection, cancer and autoimmune disease. However, unlike their αß T cell counterparts that require peripheral activation for effector cell differentiation, γδ T cells instead can be 'developmentally programmed' in the thymus to generate discrete γδ T cell effector subsets with distinctive molecular signatures. Nonetheless, recent studies have presented conflicting viewpoints on the signals involved in thymic γδ T cell development and differentiation, namely on the role of both T cell receptor (TCR)-dependent and TCR-independent factors. Here we review the current data and the ongoing controversies.


Subject(s)
Cell Differentiation/immunology , Receptors, Antigen, T-Cell, gamma-delta/immunology , T-Lymphocyte Subsets/immunology , Thymus Gland/immunology , Animals , Cytokines/immunology , Cytokines/metabolism , Humans , Lymphocyte Activation/immunology , Models, Immunological , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Signal Transduction/immunology , T-Lymphocyte Subsets/metabolism , Thymus Gland/metabolism
9.
Proc Natl Acad Sci U S A ; 113(50): 14378-14383, 2016 12 13.
Article in English | MEDLINE | ID: mdl-27911793

ABSTRACT

Human γδ T cells display potent responses to pathogens and malignancies. Of particular interest are those expressing a γδ T-cell receptor (TCR) incorporating TCRδ-chain variable-region-2 [Vδ2(+)], which are activated by pathogen-derived phosphoantigens (pAgs), or host-derived pAgs that accumulate in transformed cells or in cells exposed to aminobisphosphonates. Once activated, Vδ2(+) T cells exhibit multiple effector functions that have made them attractive candidates for immunotherapy. Despite this, clinical trials have reported mixed patient responses, highlighting a need for better understanding of Vδ2(+) T-cell biology. Here, we reveal previously unappreciated functional heterogeneity between the Vδ2(+) T-cell compartments of 63 healthy individuals. In this cohort, we identify distinct "Vδ2 profiles" that are stable over time; that do not correlate with age, gender, or history of phosphoantigen activation; and that develop after leaving the thymus. Multiple analyses suggest these Vδ2 profiles consist of variable proportions of two dominant but contrasting Vδ2(+) T-cell subsets that have divergent transcriptional programs and that display mechanistically distinct cytotoxic potentials. Importantly, an individual's Vδ2 profile predicts defined effector capacities, demonstrated by contrasting mechanisms and efficiencies of killing of a range of tumor cell lines. In short, these data support patient stratification to identify individuals with Vδ2 profiles that have effector mechanisms compatible with tumor killing and suggest that tailored Vδ2-profile-specific activation protocols may maximize the chances of future treatment success.


Subject(s)
Receptors, Antigen, T-Cell, gamma-delta/metabolism , T-Lymphocyte Subsets/immunology , T-Lymphocytes, Cytotoxic/immunology , Adolescent , Adult , Aged , CX3C Chemokine Receptor 1/metabolism , Child , Child, Preschool , Cytotoxicity, Immunologic , Female , Gene Expression Profiling , Genes, T-Cell Receptor delta , Healthy Volunteers , Humans , Immunophenotyping , Lymphocyte Activation/immunology , Male , Middle Aged , Receptors, Antigen, T-Cell, gamma-delta/genetics , Receptors, CCR6/metabolism , Young Adult
10.
Nat Immunol ; 14(6): 564-73, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23603794

ABSTRACT

Type 2 immunity is critical for defense against cutaneous infections but also underlies the development of allergic skin diseases. We report the identification in normal mouse dermis of an abundant, phenotypically unique group 2 innate lymphoid cell (ILC2) subset that depended on interleukin 7 (IL-7) and constitutively produced IL-13. Intravital multiphoton microscopy showed that dermal ILC2 cells specifically interacted with mast cells, whose function was suppressed by IL-13. Treatment of mice deficient in recombination-activating gene 1 (Rag1(-/-)) with IL-2 resulted in the population expansion of activated, IL-5-producing dermal ILC2 cells, which led to spontaneous dermatitis characterized by eosinophil infiltrates and activated mast cells. Our data show that ILC2 cells have both pro- and anti-inflammatory properties and identify a previously unknown interactive pathway between two innate populations of cells of the immune system linked to type 2 immunity and allergic diseases.


Subject(s)
Dermatitis/immunology , Immunity, Innate/immunology , Lymphocytes/immunology , Skin/immunology , Animals , Cell Communication/immunology , Cells, Cultured , Dermatitis/genetics , Dermatitis/metabolism , Dermis/cytology , Dermis/immunology , Dermis/metabolism , Eosinophils/immunology , Eosinophils/metabolism , Flow Cytometry , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/immunology , Homeodomain Proteins/metabolism , Immunity, Innate/genetics , Interleukin-13/immunology , Interleukin-13/metabolism , Interleukin-17/immunology , Interleukin-17/metabolism , Interleukin-2/immunology , Interleukin-2/pharmacology , Lymphocytes/drug effects , Lymphocytes/metabolism , Mast Cells/immunology , Mast Cells/metabolism , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Microscopy, Fluorescence, Multiphoton , Skin/metabolism , Videotape Recording
11.
Immunology ; 136(3): 283-90, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22385416

ABSTRACT

γδ T cells are increasingly recognized as having important functional roles in a range of disease scenarios such as infection, allergy, autoimmunity and cancer. With this has come realization that γδ cells are not a homogeneous population of cells with a single physiological role. Instead, ever increasing complexity in both phenotype and function is being ascribed to γδ cell subsets from various tissues and locations, and in both mouse and human. Here, we review this complexity by describing how diverse γδ cell subsets are generated in the murine thymus, and how these events relate to subsequent γδ subset function in the periphery. We then review the two major γδ cell populations in human, highlighting the several similarities of Vδ1(+) cells to certain murine γδ subsets, and describing the remarkable functional plasticity of human Vδ2(+) cells. A better understanding of this spectrum of γδ cell phenotypes should facilitate more targeted approaches to utilise their tremendous functional potential in the clinic.


Subject(s)
Receptors, Antigen, T-Cell, gamma-delta/metabolism , T-Lymphocyte Subsets/immunology , Animals , Cell Differentiation/immunology , Cell Lineage/immunology , Humans , Lymphocyte Activation , Mice , Models, Immunological , Signal Transduction/immunology , Species Specificity , T-Lymphocyte Subsets/cytology , Thymus Gland/cytology , Thymus Gland/immunology
12.
J Exp Med ; 208(3): 505-18, 2011 Mar 14.
Article in English | MEDLINE | ID: mdl-21339323

ABSTRACT

The presence of γδ T cell receptor (TCR)-expressing cells in the epidermis of mice, termed dendritic epidermal T cells (DETCs), is well established. Because of their strict epidermal localization, it is likely that DETCs primarily respond to epithelial stress, such as infections or the presence of transformed cells, whereas they may not participate directly in dermal immune responses. In this study, we describe a prominent population of resident dermal γδ T cells, which differ from DETCs in TCR usage, phenotype, and migratory behavior. Dermal γδ T cells are radioresistant, cycle in situ, and are partially depend on interleukin (IL)-7, but not IL-15, for their development and survival. During mycobacterial infection, dermal γδ T cells are the predominant dermal cells that produce IL-17. Absence of dermal γδ T cells is associated with decreased expansion in skin draining lymph nodes of CD4(+) T cells specific for an immunodominant Mycobacterium tuberculosis epitope. Decreased CD4(+) T cell expansion is related to a reduction in neutrophil recruitment to the skin and decreased BCG shuttling to draining lymph nodes. Thus, dermal γδ T cells are an important part of the resident cutaneous immunosurveillance program. Our data demonstrate functional specialization of T cells in distinct microcompartments of the skin.


Subject(s)
Immunologic Surveillance/immunology , Langerhans Cells/cytology , Receptors, Antigen, T-Cell, gamma-delta/immunology , Skin/cytology , T-Lymphocyte Subsets/immunology , Animals , Interleukin-15/immunology , Interleukin-15/physiology , Interleukin-7/immunology , Interleukin-7/physiology , Langerhans Cells/immunology , Mice , Mice, Inbred C57BL , Mycobacterium tuberculosis/immunology , Skin/immunology , Tuberculosis, Cutaneous/immunology
13.
Immunol Cell Biol ; 87(7): 559-66, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19564888

ABSTRACT

The design of effective antiviral immunotherapies depends on a detailed understanding of the cellular and molecular processes involved in generating and maintaining immune responses. Control of cytomegalovirus (CMV) infection requires the concerted activities of both innate and adaptive immune effectors. In the mouse, immunity to acute murine CMV (MCMV) infection depends on natural killer (NK) cells and/or CD8(+) T cells. The relative importance of NK and CD8(+) T cells varies in different mouse strains. In C57BL/6 mice, early viral infection is controlled by Ly49H(+) NK cells, whereas in BALB/c mice, CD8(+) T cells exert the principal antiviral activities. Although the role of NK and CD8(+) T cells is defined, the molecular mechanisms they utilize to limit acute infection are poorly understood. Here, we define the specific roles of perforin (pfp) and interferon-gamma (IFN-gamma) in the context of NK- or T-cell-mediated immunity to MCMV during acute infection. We show that pfp is essential for both NK- and T-cell-mediated antiviral immunity during the early stages of infection. The relative importance of IFN-gamma is more pronounced in Ly49H(-) mice. Using BALB/c background mice congenic for Ly49H and lacking pfp, we show that Ly49H-regulated NK-cell control of MCMV infection is dependent on pfp-mediated cytolysis.


Subject(s)
Immunity, Cellular/genetics , Interferon-gamma/physiology , Killer Cells, Natural/immunology , Perforin/physiology , Viruses/immunology , Animals , Cells, Cultured , Cytomegalovirus/physiology , Cytomegalovirus Infections/genetics , Cytomegalovirus Infections/immunology , Cytomegalovirus Infections/metabolism , Cytotoxicity, Immunologic/genetics , Female , Interferon-gamma/genetics , Interferon-gamma/metabolism , Killer Cells, Natural/metabolism , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , NK Cell Lectin-Like Receptor Subfamily A/genetics , NK Cell Lectin-Like Receptor Subfamily A/physiology , Perforin/genetics , Perforin/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/physiology , Virus Replication/genetics , Virus Replication/immunology
14.
Immunity ; 25(5): 835-48, 2006 Nov.
Article in English | MEDLINE | ID: mdl-17088087

ABSTRACT

Successful control of viral infection requires the host to eliminate the infecting pathogen without causing overt immunopathology. Here we showed that perforin (Prf1) and granzymes (Gzms) have distinct roles in defensive immunity and immunopathology in a well-established model of viral infection. Both Prf1 and Gzms drastically affected the outcome of murine cytomegalovirus (MCMV) infection. Viral titres increased markedly in both Prf1(-/-) and Gzma(-/-)Gzmb(-/-) mice, but Gzma(-/-)Gzmb(-/-) mice recovered and survived infection, whereas Prf1(-/-) mice did not. Indeed, infected Prf1-deficient hosts developed a fatal hemophagocytic lymphohistiocytosis (HLH)-like syndrome. This distinction in outcome depended on accumulation of mononuclear cells and T cells in infected Prf1(-/-) mice. Importantly, blocking experiments that clearly identified tumor necrosis factor-alpha (TNF-alpha) as the principal contributor to the lethality observed in infected Prf1(-/-) mice provided support for the clinical potential of such an approach in HLH patients whose disease is triggered by viral infection.


Subject(s)
Cytomegalovirus Infections/immunology , Cytomegalovirus Infections/pathology , Cytotoxicity, Immunologic , Granzymes/immunology , Membrane Glycoproteins/immunology , Pore Forming Cytotoxic Proteins/immunology , Animals , Cytomegalovirus/immunology , Enzyme-Linked Immunosorbent Assay , Interferon-gamma/immunology , Interferon-gamma/metabolism , Killer Cells, Natural/immunology , Mice , Perforin , Tumor Necrosis Factor-alpha/immunology , Tumor Necrosis Factor-alpha/metabolism
15.
J Immunol ; 175(5): 3235-43, 2005 Sep 01.
Article in English | MEDLINE | ID: mdl-16116214

ABSTRACT

Cytotoxic lymphocytes express a large family of granule serine proteases, including one member, granzyme (Grz)M, with a unique protease activity, restricted expression, and distinct gene locus. Although a number of Grzs, including GrzM, have been shown to mediate target cell apoptosis in the presence of perforin, the biological activity of Grz has been restricted to control of a number of viral pathogens, including two natural mouse pathogens, ectromelia, and murine CMV (MCMV). In this article, we describe the first reported gene targeting of GrzM in mice. GrzM-deficient mice display normal NK cell/T cell development and homeostasis and intact NK cell-mediated cytotoxicity of tumor targets as measured by membrane damage and DNA fragmentation. GrzM-deficient mice demonstrated increased susceptibility to MCMV infection typified by the presence of more viral inclusions and transiently higher viral burden in the visceral organs of GrzM-deficient mice compared with wild-type (WT) mice. The cytotoxicity of NK cells from MCMV-infected GrzM-deficient mice remained unchanged and, like WT control mice, GrzM-deficient mice eventually effectively cleared MCMV infection from the visceral organs. In contrast, GrzM-deficient mice were as resistant as WT control mice to mouse pox ectromelia infection, as well as challenge with a number of NK cell-sensitive tumors. These data confirm a role for GrzM in the host response to MCMV infection, but suggest that GrzM is not critical for NK cell-mediated cytotoxicity.


Subject(s)
Ectromelia, Infectious/immunology , Herpesviridae Infections/immunology , Muromegalovirus , Serine Endopeptidases/physiology , Animals , Cytotoxicity, Immunologic , Granzymes , Herpesviridae Infections/pathology , Homeostasis , Killer Cells, Natural/physiology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Muromegalovirus/immunology , Neoplasms, Experimental/immunology , T-Lymphocytes/physiology
SELECTION OF CITATIONS
SEARCH DETAIL