Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Med Chem Lett ; 14(11): 1544-1550, 2023 Nov 09.
Article in English | MEDLINE | ID: mdl-37970587

ABSTRACT

The mTOR kinase regulates a variety of critical cellular processes and has become a target for the treatment of various cancers. Using a combination of property-based drug design and Free-Wilson analysis, we further optimized a series of selective mTOR inhibitors based on the (S)-6a-methyl-6a,7,9,10-tetrahydro[1,4]oxazino[3,4-h]pteridin-6(5H)-one scaffold. Our efforts resulted in 14c, which showed similar in vivo efficacy compared to previous lead 1 at 1/15 the dose, a result of its improved drug-like properties.

2.
Bioorg Med Chem Lett ; 27(12): 2678-2682, 2017 06 15.
Article in English | MEDLINE | ID: mdl-28512030
3.
Bioorg Med Chem Lett ; 26(12): 2779-2783, 2016 Jun 15.
Article in English | MEDLINE | ID: mdl-27136719

ABSTRACT

Methionine aminopeptidase-2 (MetAP2) is an enzyme that cleaves an N-terminal methionine residue from a number of newly synthesized proteins. This step is required before they will fold or function correctly. Pre-clinical and clinical studies with a MetAP2 inhibitor suggest that they could be used as a novel treatment for obesity. Herein we describe the discovery of a series of pyrazolo[4,3-b]indoles as reversible MetAP2 inhibitors. A fragment-based drug discovery (FBDD) approach was used, beginning with the screening of fragment libraries to generate hits with high ligand-efficiency (LE). An indazole core was selected for further elaboration, guided by structural information. SAR from the indazole series led to the design of a pyrazolo[4,3-b]indole core and accelerated knowledge-based fragment growth resulted in potent and efficient MetAP2 inhibitors, which have shown robust and sustainable body weight loss in DIO mice when dosed orally.


Subject(s)
Aminopeptidases/antagonists & inhibitors , Body Weight/drug effects , Drug Discovery , Enzyme Inhibitors/pharmacology , Glycoproteins/antagonists & inhibitors , Indoles/pharmacology , Obesity/drug therapy , Pyrazoles/pharmacology , Administration, Oral , Aminopeptidases/metabolism , Animals , Dose-Response Relationship, Drug , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/chemistry , Glycoproteins/metabolism , Humans , Indoles/administration & dosage , Indoles/chemistry , Methionyl Aminopeptidases , Mice , Mice, Obese , Models, Molecular , Molecular Structure , Pyrazoles/administration & dosage , Pyrazoles/chemistry , Structure-Activity Relationship
4.
Bioorg Med Chem Lett ; 26(12): 2774-2778, 2016 Jun 15.
Article in English | MEDLINE | ID: mdl-27155900

ABSTRACT

Methionine aminopeptidase 2 (MetAP2) is an enzyme that cleaves an N-terminal methionine residue from a number of newly synthesized proteins. Pre-clinical and clinical studies suggest that MetAP2 inhibitors could be used as a novel treatment for obesity. Herein we describe our use of fragment screening methods and structural biology to quickly identify and elaborate an indazole fragment into a series of reversible MetAP2 inhibitors with <10nM potency, excellent selectivity, and favorable in vitro safety profiles.


Subject(s)
Aminopeptidases/antagonists & inhibitors , Body Weight/drug effects , Drug Discovery , Enzyme Inhibitors/pharmacology , Glycoproteins/antagonists & inhibitors , Indazoles/pharmacology , Obesity/drug therapy , Administration, Oral , Aminopeptidases/metabolism , Animals , Dose-Response Relationship, Drug , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/chemistry , Glycoproteins/metabolism , Humans , Indazoles/chemical synthesis , Indazoles/chemistry , Methionyl Aminopeptidases , Mice , Mice, Obese , Models, Molecular , Molecular Structure , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL