Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-37842228

ABSTRACT

Traumatic stress disorders are defined in part by persistent avoidance of trauma-related contexts. Our lab uses a preclinical model of traumatic stress using predator odor (i.e., bobcat urine) in which some but not all rats exhibit persistent avoidance of odor-paired stimuli, similar to what is seen in humans. Bobcat urine exposure increases alcohol consumption in male Avoider rats, but it has not been tested for its effects on intake of other drugs. Here, we tested the effect of bobcat urine exposure on cocaine self-administration in adult male and female Wistar rats. We did not observe any effect of bobcat urine exposure on cocaine self-administration in male or female rats. We observed that (1) female rats with long access (6 hours) to cocaine self-administer more cocaine than long-access males, (2) long-access males and females exhibit escalation of cocaine intake over time, (3) stressed rats gain less weight than unstressed rats following acute predator odor exposure, (4) baseline cocaine self-administration is predictive of subsequent cocaine self-administration. The results of this study may inform future work on predator odor effects on cocaine self-administration.

2.
bioRxiv ; 2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36909634

ABSTRACT

Traumatic stress disorders are defined in part by persistent avoidance of trauma-related contexts. Our lab uses a preclinical model of traumatic stress using predator odor (i.e., bobcat urine) in which some but not all rats exhibit persistent avoidance of odor-paired stimuli, similar to what is seen in humans. Bobcat urine exposure increases alcohol consumption in male Avoider rats, but it has not been tested for its effects on intake of other drugs. Here, we tested the effect of bobcat urine exposure on cocaine self-administration in adult male and female Wistar rats. We did not observe any effect of bobcat urine exposure on cocaine self-administration in male or female rats. We observed that (1) female rats with long access (6 hours) to cocaine self-administer more cocaine than long-access males, (2) long-access males and females exhibit escalation of cocaine intake over time, (3) stressed rats gain less weight than unstressed rats following acute predator odor exposure, (4) baseline cocaine self-administration is predictive of subsequent cocaine self-administration. The results of this study may inform future work on predator odor effects on cocaine self-administration.

3.
Addict Biol ; 26(4): e12990, 2021 07.
Article in English | MEDLINE | ID: mdl-33331103

ABSTRACT

The neural adaptations that occur during the transition to alcohol dependence are not entirely understood but may include a gradual recruitment of brain stress circuitry by mesolimbic reward circuitry that is activated during early stages of alcohol use. Here, we focused on dopaminergic and nondopaminergic projections from the ventral tegmental area (VTA), important for mediating acute alcohol reinforcement, to the central nucleus of the amygdala (CeA), important for alcohol dependence-related negative affect and escalated alcohol drinking. The VTA projects directly to the CeA, but the functional relevance of this circuit is not fully established. Therefore, we combined retrograde and anterograde tracing, anatomical, and electrophysiological experiments in mice and rats to demonstrate that the CeA receives input from both dopaminergic and nondopaminergic projection neurons primarily from the lateral VTA. We then used slice electrophysiology and fos immunohistochemistry to test the effects of alcohol dependence on activity and activation profiles of CeA-projecting neurons in the VTA. Our data indicate that alcohol dependence activates midbrain projections to the central amygdala, suggesting that VTA projections may trigger plasticity in the CeA during the transition to alcohol dependence and that this circuit may be involved in mediating behavioral dysregulation associated with alcohol dependence.


Subject(s)
Alcoholism/physiopathology , Central Amygdaloid Nucleus/drug effects , Ventral Tegmental Area/drug effects , Animals , Dopaminergic Neurons/drug effects , Male , Mice , Neural Pathways/drug effects , Rats , Reward
4.
Neuropharmacology ; 128: 293-300, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29061508

ABSTRACT

The incubation of cue-reinforced cocaine-seeking coincides with increased extracellular glutamate within the ventromedial prefrontal cortex (vmPFC). The vmPFC is comprised of two subregions that oppositely regulate drug-seeking, with infralimbic (IL) activity inhibiting, and prelimibic (PL) activity facilitating, drug-seeking. Thus, we hypothesized that increasing and decreasing endogenous glutamate within the IL would attenuate and potentiate, respectively, cue-reinforced drug-seeking behavior, with the converse effects observed upon manipulations of endogenous glutamate within the PL. Male Sprague-Dawley rats were trained to self-administer cocaine (0.25 mg/infusion; 6 h/day X 10 days), the delivery of which was signaled by a tone-light cue. Rats were then subdivided into 3 or 30 day withdrawal groups. For testing, rats were microinjected with vehicle, 20 mM of the mGlu2/3 agonist LY379268 (to lower endogenous glutamate), or 300 µM of the excitatory amino acid transporter inhibitor threo-ß-benzyloxyaspartate (TBOA; to raise endogenous glutamate) into either the IL or PL (0.5 µl/side) and then given a 30-min test for cue-reinforced drug-seeking. Vehicle-infused rats exhibited incubated responding on the cocaine-associated lever. Neither LY379268 nor TBOA altered behavior at 3 days withdrawal, indicating that glutamate within neither subregion regulates cue-reinforced drug-seeking during early withdrawal. At 30 days withdrawal, intra-PL LY379268 microinjection significantly decreased drug-seeking behavior, while the effect was more modest when infused intra-IL. Interestingly, intra-IL TBOA attenuated incubated drug-seeking during protracted withdrawal, but did not affect behavior when infused intra-PL. These results argue that glutamate release within the PL in response to drug-seeking likely drives the manifestation of incubated cocaine-seeking during protracted withdrawal.


Subject(s)
Anesthetics, Local/pharmacology , Cerebral Cortex/drug effects , Cocaine/pharmacology , Drug-Seeking Behavior/drug effects , Glutamic Acid/metabolism , Amino Acids/pharmacology , Animals , Aspartic Acid/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Cerebral Cortex/metabolism , Cocaine-Related Disorders/drug therapy , Conditioning, Operant/drug effects , Excitatory Amino Acid Agents/pharmacology , Male , Microdialysis , Microinjections , Rats , Rats, Sprague-Dawley , Reinforcement, Psychology , Self Administration
SELECTION OF CITATIONS
SEARCH DETAIL